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Abstract: One-stage production of carbohydrate-enriched microalgae biomass in wastewater is a
promising option to obtain biofuels. Understanding the interaction of water quality parameters
such as nutrients, carbon, internal carbohydrates, and microbial composition in the culture is crucial
for efficient operation and viable large-scale cultivation. Bioprocess models are an essential tool
for studying the simultaneous effect of complex factors on carbohydrate accumulation, optimizing
the process, and reducing operational costs. In this sense, we use a dataset obtained from an
empirical model that analyzed the accumulation of carbohydrates in a single process (simultaneous
growth and accumulation) from real wastewater. In this experiment, there were no ideal conditions
(limiting nutrient conditions), but rather these limitations are guaranteed by the operating conditions
(hydraulic retention times/nutrient or carbon loads). Thus, the model integrates 18 variables that are
affected and not only carbohydrates. The effect of these variables directly influences the accumulation
of carbohydrates. Therefore, this paper analyzes artificial intelligence (AI) algorithms to develop a
model to forecast biomass production in wastewater treatment systems. Carbohydrates were modeled
using five artificial intelligence methods: (1) Artificial Neural Networks (ANNs), (2) Convolutional
Neural Networks (CNN), (3) Long Short-Term Memory Network (LSTMs), (4) K-Nearest Neighbors
(kNN), and (5) Random Forest (RF)). The AI methods allow learning how several components interact
and if their combinations work faster than building the physical experiments over the same period of
time. After comparing the five learning models, the CNN-1D model obtained the best results with an
MSE (Mean Squared Error) = 0.0028. This result shows that the model adequately approximates the
system’s dynamics.

Keywords: carbohydrate accumulation modeling; deep learning algorithms; microalgae; resource
recovery

1. Introduction

The increase in global population and rapid industrialization has stimulated high
demand and high energy consumption from fossil-fuels [1–3]. The overexploitation of these
petroleum-based sources has exhausted that resource, resulting in an imminent energy
crisis. Moreover, these fossil fuels’ adverse environmental and health effects due to the
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associated noxious greenhouse gases have attracted global attention to seek alternative
energy sources [4,5]. Hence, the search for climate-neutral fuel technology as part of an
energy security strategy in different parts of the world has become a crucial researchable
area. To date, biomass from renewable sources (i.e., lignocellulosic waste or microalgae)
has been investigated as possible materials for biofuel production.

Cyanobacteria are prokaryotic photosynthetic microalgae that convert and store solar
energy and inorganic compounds into chemical energy [6]. In the last years, microalgae
cultivation has become an important source to produce a variety of compounds [7,8], and
there is much interest in the production and harvest of algal biomass for its conversion
potential in different types of biofuels, namely biogas, biodiesel, bioethanol, biobutanol
or biohydrogen [9,10]. From these alternatives, the last three are becoming an attractive
alternative of biofuels, and carbohydrate is the only substrate required for its production.

In a recent study, a promising alternative to produce carbohydrate-rich biomass in
a one-stage process was presented [11]. A mixed culture of N-fixing soil cyanobacteria
was cultivated in a semi-continuous reactor fed with domestic wastewater, operated at
different nutrients loads and different initial internal carbohydrates. The results showed
an increasing accumulation of carbohydrates, (reaching up to 48%) when the culture was
submitted to low nutrients loads, while the cultures submitted to high loads showed a de-
creasing pattern in carbohydrate content. However, it was unclear if other parameters such
as influent and effluent nutrients and carbon concentrations, initial internal carbohydrates,
and microbial population changes played a significant role in carbohydrate patterns and
final accumulation. Hence, understanding the interaction of those parameters is required
for viable largescale cultivation.

Robust bioprocess models capable of predicting carbohydrate accumulation consider-
ing complex factors and variables influencing a microalgae-based wastewater treatment
can significantly aid in establishing optimal cultivation strategies. Artificial intelligence
(AI) algorithms have shown excellent performance for tasks such as forecasting and classi-
fication [12–17]. AI algorithms can model different behaviors of complex and chaotic set
of data. They present rapid development, easy scalability, and repeatability to changes
arising in variables such as simplicity and plasticity [18]. These are interesting advantages
in comparison to traditional mathematical models based mostly on Monod [19,20] and
Droop [6,21,22] formulations, which normally require intense calibration and parameter
tuning to be validated in applications.

In the last few years, increasing interest has been paid to AI models to predict interactions
in microalgae cultivation systems [23]. Few studies on the field have shown that AI algorithms
such as Artificial Neural Network (ANN) and Convolutional Neural Networks (CNN) can
be used for the prediction of genome interactions [24,25], microalgae flocculation [26] and
biomass quantification [27], providing improvement in the processes by reducing the number
of experiments and condition optimization [28]. In this context, AI models can be an alternative
to predict complex interactions between wastewater treatment and microalgae growth and
the accumulation of internal metabolites such as carbohydrates.

Computational models that can predict biomass growth and carbohydrate accumula-
tion under different growing conditions will help optimize process performance, operating
conditions, and scale-up of cultivation systems for commercialization suitability. Some
mathematical models based on Droop and Monod models have been applied to forecast
pure microalgal cultures growth or lipids production with one variable (carbon source, N or
P, and light). Some recent works have also considered multiple variables; for instance, the
works of Andreotti et al. [29] and Solimeno et al. [30] built and validated a mathematical
model considering TIC, N, light, and temperature on microalgal growth in open and closed
reactors. Moreover, Figueroa-Torres et al. [31] developed another multi-parameter kinetic
model describing Chlamydomonas reinhardtii growth as well as carbohydrate (starch) and
lipid accumulation under controlled mixotrophic conditions. However, these models do
not consider biotic factors, such as the competition between cyanobacteria and microalgal
species and the interaction of other microorganisms (diatoms and grazers rotifers, amoebas,
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ciliates, and flagellates) that could affect carbohydrate content. Moreover, variable condi-
tions in wastewater and mixed liquor could make it difficult for those models to capture
the adaptation of cyanobacteria to such changing environments.

Therefore, this work aims to evaluate AI models based on deep learning (ANN, CNN-
1D, and Long Short-Term Memory Network (LSTMs)) and machine learning algorithms
(K-Nearest Neighbors (kNN) and Random Forest (RF)) for the prediction of carbohydrate-
enriched biomass production in semi-continuous reactors used for municipal wastewater
treatment. To the authors’ knowledge, this is the first time that these types of methods
are used to forecast the interaction of input and output microalgae-based wastewater
parameters as nutrients (N, P), carbon, and biomass population with total carbohydrate
production in microalgae-based wastewater treatment systems. Furthermore, the main
contributions of this work can be described as follows:

• This work uses a dataset with 18 variables affecting carbohydrate accumulation in
a mixed cyanobacteria consortium treating real wastewater. This work started with
an incomplete dataset for three main reasons: (1) the costs involved in water quality
analysis; (2) the fact that an automatic device does not monitor the samples, so
an analysis has to be performed on a daily or weekly basis; and (3) water quality
analysis generates waste in most of the cases, which generates the need to perform a
reconstruction of information.

• A trade-off analysis of five learning models of artificial intelligence was carried out
using the database of cyanobacterial biomass production in wastewater treatment
systems. The five learning models considered were as folows: (1) Artificial Neural
Networks (ANNs), (2) Convolutional Neural Networks (CNN), (3) Long Short-Term
Memory Network (LSTMs), (4) K-Nearest Neighbors (kNN), and (5) Random Forest
(RF)). The AI methods allow learning how the 18 variables of the database interact in
order to predict biomass production.

• The best result to predict the biomass production was the CNN-1D model with an
MSE (Mean Squared Error) = 0.0028. If a model has an MSE close to zero, it can be
concluded that the learning model adequately follows the system’s dynamics.

• By using the forecast model (CNN-1D), several simulations can be generated to evaluate
the conditions of experiments that predict the accumulation of carbohydrates, which
could reduce sampling analysis, reagents cost, human work, and waste generation.

2. Materials and Methods
2.1. Experimental Data

This subsection will present a brief description of the data obtention, providing a
general description of experimental procedures.

Microalgae Inoculum and Culture

Experimental data were obtained from the study of Arias et al. [11]; this study aimed to
evaluate the one-stage operation to produce carbohydrate-enriched cyanobacterial biomass
while treating domestic wastewater. The experiments consisted of four closed photoreac-
tors operated at a semi-continuous regime hypothesizing that nutrient and carbon loads
controlled by hydraulic retention times could increase biomass carbohydrate production in
a medium-term study. Briefly, dry soil crusts were used as inoculum and cultivated in four
lab-scale photobioreactors (PBRs) (3L). PBRs were operated in a semi-continuous mode
using municipal wastewater as feeding following the operation shown in Table 1. All PBRs
were continuously maintained in alternate light/dark phases of 12 h, while temperature
and pH were continuously controlled at 27 (±2) °C and 7.5, respectively. Mixed liquor re-
moval and feeding were performed each day at the end of the dark phase by the automatic
addition/withdrawal accomplished by peristaltic pumps.
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Table 1. Operational characteristics of four photobioreactors treating municipal wastewater under
semi-continuous regime used in the experimental setup.

Experiment HRT/SRT (d) Dilution Rate Influent a Volume Removed (L) b Volume Added (L) c

Set 1 A1 10 1:1 0.25 0.25
A2 10 2:1 0.25 0.25

Set 2 A3 8 1 0.31 0.31
A4 6 1 0.42 0.42

a Dilution rate of wastewater with distilled water. b Volume of mixed liquor removed. c Volume of wastewater
added to the photobioreactor.

Water quality and biomass production parameters were measured to determine the
PBR performance for a period of 24–31 days. Total organic carbon (TOC), total inorganic
carbon (TIC), and total nitrogen (TN); and total phosphorus (TP) and total inorganic
phosphorus (TIP) were analyzed in triplicate from the influent and effluent (equivalent
to the mixed liquor of the culture) twice a week at the end of the dark phase. Biomass
was measured as total suspended solids (TSS) and volatile suspended solids (VSS) in
the mixed liquor three days per week. These parameters were analyzed using the proce-
dures described in the Standard Methods [32]. Quantitative analyses of microalgae and
cyanobacteria were performed by microscopic area cell counting (cell·mL−1) three times
a week according to the methodology of [33], and total carbohydrate (intracellular and
exopolysaccharides) contents were measured twice per week in all PBRs at the end of
the dark phase [34]. The experiments were performed during approximately 30 days of
operation, obtaining the data shown in Table 2.

Table 2. Averages and standard deviations of water quality and biomass parameters in the influent,
effluent, and mixed liquor used as model inputs.

Experiment

A1 A2 A3 A4

Parameter Units Average Value

Mixed liquor

Biomass production g/L·d 0.04 ± 0.01 0.04 ± 0.01 0.06 ± 0.01 0.05 ± 0.01
Carbohydrates % 15.51 ± 11.8 23.78 ± 13.82 18.20 ± 5.08 16.03 ± 6.07

Cyanobacteria population Log cell/mL 11.9 ± 0.01 11.91 ± 0.02 11.92 ± 0.02 11.95 ± 0.04
Diatom population Log cell/mL 9.14 ± 0.39 9.24 ± 0.28 9.45 ± 0.22 9.66 ± 0.28

Green algae population Log cell/mL 8.50 ± 0.37 8.43 ± 0.42 8.48 ± 0.52 8.76 ± 0.46
Protozoa population Log cell/mL 6.93 ± 3.06 7.84 ± 0.38 7.99 ± 0.19 8.15 ± 0.16

Influent

TIC mg/L 71.46 ± 12.25 71.46 ± 12.25 84.25 ± 6.00 84.25 ± 6.00
TOC mg/L 161.82 ± 52.5 161.83 ± 52.50 117.56 ± 25.46 117.56 ± 25.46
TIN mg/L 67.5 ± 12.83 67.5 ± 13.84 65.12 ± 6.87 65.12 ± 6.87
TON mg/L 35.18 ± 17.32 35.19 ± 17.33 19.69 ± 8.91 19.69 ± 8.91
TIP mg/L 8.59 ± 3.06 8.59 ± 3.07 5.22 ± 1.41 5.22 ± 1.41
TOP mg/L 5.68 ± 3.08 5.69 ± 3.09 2.50 ± 1.24 2.5 ± 1.24

Effluent

TIC mg/L 4.48 ± 1.48 3.58 ± 3.16 0.93 ± 3.01 2.94 ± 3.78
TOC mg/L 22.52 ± 10.32 24.06 ± 16.39 0.54 ± 1.39 2.53 ± 3.47
TIN mg/L 2.10 ± 3.41 1.16 ± 1.66 21.92 ± 11.42 16.17 ± 10.44
TON mg/L 3.40 ± 1.69 0 0.05 ± 0.15 2.33 ± 3.6
TIP mg/L 8.59 ± 3.06 0.37 ± 0.83 3.72 ± 1.61 3.73 ± 1.78
TOP mg/L 0.73 ± 0.82 2.41 ± 0.95 0.98 ± 1.88 0.79 ± 1.23

2.2. Machine Learning Approach Description

This section describes the data preparation and the configuration of the machine
learning models used to carry out the task of predicting the carbohydrate’s percentage.
The code and the experimental data can be found in https://github.com/mariovp/ml-
microalgae (accessed on 26 February 2022) [35].

https://github.com/mariovp/ml-microalgae
https://github.com/mariovp/ml-microalgae
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2.2.1. Dataset Preparation

Dataset preparation comprises two main stages: (1) database reconstruction and
(2) database building, which are described as follows:

Dataset Reconstruction. Not all variables were recorded with the same periodicity
(i.e., the variable carbohydrates was only measured twice per week during the 30-day
experiment) during carbohydrate-enriched biomass cultivation. A device does not auto-
matically monitor these methodological techniques, and they have to be performed by
an analyst. This is why not all measurements are taken. Some water quality methods
(i.e., COD) even generate hazardous residues, making continuous sampling unsustainable
in the long term. Therefore, the database contained some missing values in the dataset. As
shown in Table 3, some of the values in the table are null. Therefore, it was necessary to
perform a reconstruction process of the database.

Data reconstruction techniques were used to prepare the data for working with Machine
Learning models. Polynomial interpolation reconstructed the missing values in Carbohy-
drates, Biomass, Cyanobacteria, Green Algae, Diatom, and Protozoa in the range from the
first Carbohydrate registry to the last one because they change sequentially with time.

Table 3. A database example with missing values.

Database

X1 x1,1, x1,2, x1,3, . . . , x1,n
X2 x2,1, null, x2,3, . . . , x2,n
X3 x3,1, x3,2, null, . . . , x3,n
. . . . . .

Xn−2 xn−2,1, xn−2,2, null, . . . , xn−2,n
Xn−1 xn−1,1, null, xn−1,3, . . . , xn−1,n

Xn xn,1, xn,2, null, . . . , xn,n

Database building. After the data reconstruction process, each database record
(18 entries, see parameter in Table 2) was taken as the input data. By modeling by su-
pervised machine learning, dividing the total number of samples into two sets is necessary
(training and validation sets). For this experiment, there were 108 samples, where 81 samples
(75%) were taken for the training set and 27 samples (25%) for the validation set. Then,
both sets were transformed using min–max normalization to place all the values in a range
of real numbers between 0 and 1, because the variables were in very different scales and
could introduce a bias towards features at larger scales. Table 4 shows a database split into a
training set and validation set. Inside the database, each sample has a vector Xi that corre-
sponds to the 18 entries (x1, x2, x3, . . . , x17, x18) used as an input of the learning model, and
yi corresponds to the desired output used for the learning model’s parameter adjustment.

Table 4. Database split into 75% of samples for training and 25% of samples for validation.

Sample Input Output

Training X1 x1,1, x1,2, x1,3, . . . , x1,n y1
data X2 x2,1, x2,2, x2,3, . . . , x2,n y2
75% X3 x31 , x3,2, x3,3, . . . , x3,n y3

. . . . . . . . .

Validation . . . . . . . . .
data Xn−2 xn−2,1, xn−2,2, xn−2,3, . . . , xn−2,n yn−2
25% Xn−1 xn−1,1, xn−1,2, xn−1,3, . . . , xn−1,n yn−1

Xn xn,1, xn,2, xn,3, . . . , xn,n yn
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2.2.2. Machine Learning Setup

Forecasting a variable using machine learning is performed by adjusting the model’s
parameters from a training set. As shown in Figure 1, the training set contains a set of
samples (X) that are evaluated at a certain number of epochs. During each epoch (evaluation
of the entire training set), the model is scored (feedforward) by obtaining its error from the
outputs contained in the database (e = ŷi − yi). Moreover, this error is propagated backward
(backpropagation algorithm) to improve the model’s fitness in the next iteration (epoch).

Figure 1. Illustration about the machine learning model’s setup. Stars form a training set used for the
tuning process.

Once the training process is completed, the model undergoes a validation stage. This
is based on the model trained in the previous stage, and all the validation set samples are
evaluated. It should be noted that these samples are never provided prior to the model.
The error obtained is used to validate whether the model is suitable for implementation or
if it is necessary to repeat the process.

The applications that the generated model can have include the forecast of the modeled
variable (biomass production), reconstruction of missing information, and experimentation
simulation. For the experiment’s simulation, the model allows a virtual recreation of the
experiment with the desired conditions, without the need to perform it physically.

2.2.3. Machine Learning Model Design

The experimental design consisted of five machine learning models to predict the
carbohydrate percentage, taking the other variables as predictors. Model description and
their configurations are described in the following sections.

Artificial Neural Network

Artificial Neural Networks (ANNs) are computational models based on biological
brains. One of the most popular ANNs is the Multilayer Perceptron or MLP, which consists
of one input layer, one or more hidden layers, and an output layer [36], as represented in
Figure 2. The model experiment began with the Artificial Neural Network, composed of
dense layers with ReLu activation function and an output layer with Sigmoid activation.
It is a simple architecture by Deep Learning standards. Still, it can deliver great results
with the available cyanobacteria data, where a larger model would need more data to be
adequately trained.
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Figure 2. Artificial Neural Network scheme applied for the regression task.

Convolutional Neural Network

A Convolutional Neural Network (CNN) comprises two parts: a feature extractor
and a classifier or regressor [37]. A simple one-dimensional convolutional neural network
was implemented due to data size constraints. The feature extractor consists of a 1D
convolutional layer and a 1D max-pooling layer. Then, the features are converted from a
matrix to an array in the flattened layer in order to be inputted in the MLP regressor. The
regressor section has two layers with 16 neurons each and an output layer with one neuron,
as represented in Figure 3.

Figure 3. The Convolutional Neural Network scheme proposed.

Long Short-Term Memory Network

Long Short-Term Memory Network (LSTMs) is a type of neural network with the
particular ability to remember previous important information. While basic ANNs have
neurons, LSTMs have memory cells. Cells have an internal state to store previous informa-
tion for managing the state; each cell has a set of internal gates through which the input
information passes so the cell can forget unimportant information, learn new information,
and affect the output [38]. In Figure 4, a brief graphical representation is presented. The
complexity of the cells in the LSTM network compared to simple neurons allows it to use
fewer results and obtains good results. The LSTM network used in the experiment had two
LSTM layers with three and five cells and a ReLu activation function for the cell’s output.
After those layers, a layer with a neuron is used as output.
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Figure 4. LSTM cell and connections for regression tasks.

K-Nearest Neighbors

K-Nearest Neighbors (kNN) is a supervised learning algorithm that takes an unlabeled
object and compares its features to its nearest neighbors to assign it a class or a numerical
value. The algorithm has two important parameters. The first one is k, which is the number
of neighbors to which the object is compared. The second one is the distance metric used
to calculate similarity between features [39], as shown in Figure 5. The kNN model was
optimized using a grid search with parameter k in a range of 2–21, the optimum found for
this problem was k = 6.

Figure 5. kNN flow representation for regression tasks.

Random Forest

Random Forest (RF) is an ensemble machine learning method. It consists of many
decision trees trained with random data points drawn from the complete data set. To make
a classification, all decision trees in the ensemble provide an answer, and the most voted
answer is given as output; when performing regression, the output results from averaging
all answers. A flowchart in Figure 6 is presented to illustrate this ensemble. The plurality
and low correlation of answers between many decision trees provide this method with
good results in tabular data [37]. The random forest used in the experiment is composed of
150 estimators or decision trees to make the prediction.
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Figure 6. Flowchart for the Random Forest method.

2.3. Evaluation Metric and Optimization

The model’s predictions was based on three metrics: (1) Mean Squared Error (MSE),
(2) Root Mean Squared Error (RMSE), and (3) Coefficient of Determination (R2). Each one
is described as follows.

The MSE ensures that our trained models have no outlier predictions with huge errors
since MSE places larger weight on these errors due to the squaring part of the function (see
Equation (1)).

MSE =
1
n

n

∑
t=1

e2
t (1)

The RMSE provides a relatively high weight to large errors since the errors are squared
before they are averaged (see Equation (2)). RMSE is most useful when large errors are
particularly undesirable; hence, we include this metric to detect if the predictions are near
the real values. In this metric, the lower the value, the better the model’s performance.

RMSE =

√
1
n

n

∑
t=1

e2
t (2)

The R2 score is known as the coefficient of determination (see Equation (3)). R2

indicates how good a model fits a given dataset, showing how close the regression line is
to the actual data values. The R squared value lies between 0 and 1, where 0 indicates that
this model does not fit the given data, and 1 implies that the model perfectly fits the dataset
provided (see Equation (3)).

R2 = 1 − SSres

SStot
(3)

The sum of squares of residuals SSres, also called the residual sum of squares, is defines
as follows.

SSres = ∑
i

e2
i (4)

The total sum of squares SStot is proportional to the variance of the data, which are
defined as follows:

SStot = ∑
i
(yi − ȳ)2 (5)

where the dataset has n values marked y1, . . . , yn (collectively known as yi or as a vector
y = [y1, . . . , yn]T), and each value is associated with a fitted (or modeled or predicted)
value f1, . . . , fn known as fi as a vector f . The residuals are defined as ei = yi − fi (forming
a vector e), and ȳ is the mean of the observed data.

One of the models in the experiment was optimized using a method called Grid
Search. It consists of defining a limited set of values for parameters and iterating across all
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combinations possible to find the best solution within that search space. It was applied to
the K-Nearest Neighbors model because the implementation used had only two parameters
with a small range of values.

3. Results
3.1. Experiments Configuration

A total of 108 registries were obtained from the sliding window process. The registers
were split into two sets, 75% for a training set and 25% for the testing set, resulting in
81 samples for model training and 27 for model validation. Both groups were preprocessed
by both groups using a min–max normalization to place all values in a range of real numbers
between 0 and 1. Normalization was performed because the variables were in very different
scales and could introduce a bias towards features in larger scales.

The configurations shown in Table 5 were used for different algorithms used to model
the accumulation of carbohydrates. Parameter optimization was performed based on expe-
rience. Scikit-Learn library [40], for instance, was used for the algorithms implementation
of KNN and RF. Tensor Flow library [41] was used to implement the ANN, CNN, and
LSTM algorithms. The dataset and source code of the experimentation are published at
https://github.com/mariovp/ml-microalgae (accessed on 26 February 2022). The meaning
or interpretation of the configuration parameters can be found in reference [40,41].

Table 5. Learning model architecture.

Model Configurations Hyperparameters

ANN

Input layer = 2, relu (input shape = 18)
Hidden layer = 20, relu
Hidden layer = 20, relu

Output layer = 1, sigmoid
Optimizer = adam

Loss = MSE
Metrics = accuracy

Epochs = 1500
Batch size = 16

Verbose = 0
Shuffle = 1
EarlyStop

Patience = 20
Monitor loss

CNN

Conv1D (filters = 32, kernel size = 3, activation = relu)
MaxPooling (pool Size = 2)

Flatten()
Dense(16, activation = relu)
Dense (16, activation = relu)

Dense (1, activation = sigmoid)
Optimizer = adam

Loss = mse
Metrics = Accuracy

Epochs = 400
Batch size = 16

Verbose = 0
Shuffle = 1
EarlyStop

Patience = 20
Monitor loss

KNN

weights = uniform
n_neighbors = 5

algorithm = ’auto’
leaf_size = 30 metric =’

minkowski’
metric_params = None

n_jobs = None

LSTM

LAYERS
LSTM (3, activation = relu)
LSTM (5, activation relu,
return_sequence = true)

Timedistributed (dense(1))
Optimizer = adam

Loss = MSE
Metrics = accuracy

Epochs = 500
Batch size = 16

Verbose = 0
Shuffle = 1
EarlyStop

Patience = 20
Monitor loss

https://github.com/mariovp/ml-microalgae
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Table 5. Cont.

Model Configurations Hyperparameters

RF

criterion = ’squared_error’
max_depth = None

min_samples_split = 2
min_samples_leaf = 1

min_weight_fraction_leaf = 0.0
min_weight_fraction_leaf = 0.0

max_leaf_nodes = None
min_impurity_decrease = 0.0

bootstrap = True
random_state = None

verbose = 0
ccp_alpha = 0.0

max_samples = None

3.2. Experiments Results

Table 6 shows the three loss functions (metrics) to understand the differences between
the model’s predictions and the ground truth: (1) Mean Squared Error (MSE), (2) Root
Mean Squared Error (RMSE), and (3) Coefficient of Determination (R2).

Table 6. Model performance comparison.

Models MSE RMSE R2

ANN 0.0043 0.0655 0.8403
CNN 1D 0.0028 0.0529 0.8966
LSTM 0.0036 0.0600 0.8646
kNN 0.0085 0.0921 0.6831
Random Forest 0.0046 0.0678 0.8286

Most machine learning models presented in Table 6 were able to provide an accurate
prediction about carbohydrate production. Nevertheless, the CNN 1D model obtained the
most accurate predictions of all models with a value of MSE = 0.0028, which is the smallest
of the models, as shown in Table 6. The CNN 1D model produced a very close estimation
compared to the real value with a few exceptions, see Figure 7. Hence, this model was
chosen to predict carbohydrate production. Furthermore, Figure 8 illustrates the errors
obtained by each model in a bar graph.

The LSTM model comes second with an MSE of 0.0036; test results are also depicted in
Figure 7. The ANN model obtained an MSE of 0.0043; observed in Figure 7, the test results
for carbohydrate production were overestimated. This behavior is similar for Random
Forest with an MSE = 0.0046 and the kNN with an MSE = 0.0085 (see Figure 7). The model
with the worst performance in the experiment was kNN with R2 = 0.6831.

The R2 score shows a correlation between the forecast model and the interest variable,
which in this case involves the carbohydrates. CNN-1D shows a model that is more
correlated to the real variable compared to the other three proposed methods according
to the R2 column see (Table 6). Despite being less complex than neural network models
(ANN and LSTM), the Random Forest was able to obtain excellent performance with a lot
less effort in the model design phase (see Figure 7).

The results demonstrated in Figure 7 exhibit that ML models could learn the growth
behavior of carbohydrates. Notably, using the best model CNN D1, with an MSE of
0.0028 and a coefficient of determination of 89%, it is possible to simulate many different
scenarios reaching a defined objective without additional experimental work, implying
money savings when not spending on inputs or personnel. In addition, it can reduce the
contamination caused by physical tests. The process’s optimization could be crucial for
the cost-effective application of microalgae/cyanobacteria-based wastewater treatment for
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carbohydrate production at a large scale. In this manner, biomass can be submitted to a
fermentation process that could further convert it into valuable biofuels.

Figure 7. Comparison of the five artificial intelligence models vs. the real value of % carbohydrates.

Figure 8. Bar graph illustrating the aptitude obtained by each learning model used in this work.

In the last years, the most used methods have been based on kinetic models predicting
algal growth or metabolites (lipids or carbohydrates) accumulation [31,42–47]. However,
these studies focused on controlled studies with pure cultures, which involve an expensive
cost of biomass or metabolites production. We remark that the comparisons presented
in Table 7 are not 100% fair since the related works aim at different objectives by using
different datasets with varying size. In this sense, Table 7 shows a comparison of sev-
eral works focused on microalgae growth that has proposed kinetic models or dynamic
equations to model growth. Only the study of Supriyanto et al. [48] employed ANN to
predict microalgal concentration using mixed cultures but with controlled conditions and
artificial growth mediums. Conversely, this study proposed a comparison among five
specialized machine learning models to forecast carbohydrate accumulation by considering
uncontrolled conditions provided by the wastewater influent and also the variations in
the microbial populations of a mixed microalgal consortium. In fact, this work estimated
carbohydrate content by considering 18 parameters—this helps to model real conditions
experimented within the lab and in real scenarios. In addition, each of these parameters
can be modified and observed in terms of how machine learning model prediction affects
growth. It should be observed that this model and previous studies focused on laboratory
scale works with constant physicochemical parameters such as pH, light, and temperature.
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In this context, future work can be directed towards restructuring the model to include vari-
ations of such parameters. Hence, more scalable scenarios can be proposed and optimized
for large-scale outdoors carbohydrate-rich biomass production.

As is well known, the production of biofuels derived from carbohydrates (e.g., bioethanol)
obtained from microalgae (on a large scale) has been limited by the low amount of carbohy-
drates within the algal biomass that is processed. Most of the previous studies (and models)
presented in Table 7 focus on performing two processes to obtain microalgae to accumulate
carbohydrates. The first process focuses on the production of algal biomass; once they achieve
the highest biomass growth, the biomass is passed onto the next process (carbohydrate ac-
cumulation), where the environmental conditions of the crop are modified so that a nutrient
(nitrogen or phosphorus) is limited, and stress is achieved in the cell and carbohydrates
accumulate. It should be noted that the accumulation of carbohydrates, in most cases, is
carried out in batch processes. Even all previous models have been in batch processes in
synthetic culture media.

An experimental model considered in this study was used to develop a forecast
biomass production in wastewater treatment systems (see the experiment details in Table 2
and the database construction explained in Section 2.2.1). The empirical model is a process
that seeks to model the accumulation of carbohydrates in a single process (simultane-
ous growth and accumulation) from real wastewater. In this process, there are no ideal
conditions (limiting nutrient conditions); rather, these limitations are guaranteed by the
operating conditions (hydraulic retention times/nutrient or carbon loads). Thus, this model
integrates all variables that are affected and not only carbohydrates. The effect of these
variables directly influences the accumulation of carbohydrates. Studies such as these,
where understanding and predicting these interactions are aimed at, are very important
since they are the first step to achieve the simultaneous accumulation of carbohydrates in
microalgae in wastewater and, in the future, to achieve the appropriate biomass to undergo
the production of biofuels on a larger scale.

Therefore, to reduce the number of high-resolution simulations, machine learning
models were implemented with a set of simulations normally performed. The machine
learning algorithms can learn how produce the most optimal solutions, which is what the
experiment requires. In addition, the evaluation can be fast even when using multiple
combinations of input parameters to forecast the expected output. This fact provides a
wide breadth of knowledge on how several components interact and if their combinations
work faster than building the physical experiments over the same period of time. In this
sense, modeling carbohydrate-enriched cyanobacterial biomass production in wastewater
treatment systems by using machine learning can result in the identification of the value of
factors required to maximize the output of biomass production. This impacts the time and
cost associated with several experiments to determine the best combination between the
18 factors.

Artificial intelligence has a study area that focuses on using data and algorithms to
imitate the manner humans learn, gradually improving its accuracy; this is named machine
learning. These algorithms have been used to solve fault detection, object classification,
control, diagnostics, and forecasting problems. This work proposed using five artificial
intelligence to determine the best candidate to predict carbohydrate production in wastew-
ater. Normally, for artificial intelligence algorithms, information or samples of the problem
must be collected and preprocessed to eliminate noise or apply reconstruction techniques
for data reconstruction. For instance, in the problem presented in this paper, the samples
generated required more than 90 days, where the costs of materials and human resources
are high, introducing delays if one experiment is not well designed or does not offer an
expected result. Therefore, if a simulation is carried out, an expected output (forecast) about
the future behavior will be obtained by considering the input parameters so that the real
experiment can confirm the assumptions obtained by artificial intelligence algorithms. In
this sense, the forecast should only be tested in a real scenario with the best results resulting
in saving resources and time.
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Table 7. Comparison of state-of-the art works and our proposal.

Culture Model Inputs Model Type Model Outputs Ref.

Isochrysis Galbana
• Biomass
• Lipids
• NaNO_3

Baranyi–Roberts and logistic equation,
and Luedeking–Piret model Lipid production [42]

Dunaliella viridis

• Functional biomass
• Carbohydrates
• Lipids
• Chlorophyll a
• Extracelullar nitrogen
• Intracelullar nitrogen

Kinetic model Lipids, carbohydrates, and biomass [43]

Chlamydomonas reinhardtii
• Nitrogen
• Acetate in biomass starch
• Lipid formation

Kinetic model Biomass, starch, and lipid [31]

Chlorella vulgaris SAG 211–12
• NaCI
• Glucose
• Glycerol

ow-order polynomial models Growth, lipid and Starch [44]

Chlorella sorokiniana FACHB-275
• Glucose
• Nitrogen
• Phosphorus

Kinetic model based on Monod and
Luedeking–Piret expressions Biomass, carbohydrate and lipid [45]

Coelastrella sp. 3–4,
Scenedesmus sp. B2-2 and

Scenedesmus obliquus RISE (UTEX 417)

• Lipid
• Biomass
• Nitrogen
• Carbohydrates

Kinetic model based on
Droop’s mathematical model Biomass growth [46]

Pseudochlorococcum sp.

• Algal biomass concentration, excluding neutral lipids
• Neutral lipid concentration
• Chlorophyll a
• Extracellular nitrogen concentration

Kinetic model based on
Droop’s mathematical model Microalgae growth and neutral lipids [47]
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Table 7. Cont.

Culture Model Inputs Model Type Model Outputs Ref.

Mixed culture

• Initial microalgae Concentration (dry basis)
• Harvesting period
• Hydraulic retention time
• Sodium acetate addition
• Average solar irradiance
• Average water temperature
• Average pH
• Nitrate concentration

ANN Microalgae concentration [48]

Mixed culture

• Mixed liquor
• Biomass production
• Carbohydrates
• Cyanobacteria population
• Diatom population
• Green algae population
• Protozoa population Influent
• TIC
• TOC
• TIN

ANNs, CNN, LSTMs, KNN, RF Carbohydrate’s content This
study
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We remark that the generated model allows performing simulations very close to
reality. They are performed instantaneously, and if they are combined with optimization
algorithms (i.e., evolutionary computation and Bayesian optimization), better results in real
experiments can be confirmed; this could be a research area for future work. Thus, they can
help generate a procedure that maximizes the desired variable without high consumptions
of time, financial, and/or human resources.

4. Conclusions

This work deals with modeling carbohydrate accumulation in microalgae cultivated
in domestic wastewater. Traditionally, related works are carried out by an expert in
mathematical modeling, generating differential equations to describe microalgae growth or
subproducts accumulation. Hence, it is needed to solve different challenges with time and
cost restrictions, such as calibration and validation of complex dynamic models.

This work explored five supervised learning methods (ANN, CNN-1D, LSTM, kNN,
and Random Forest) to model carbohydrates accumulation considering the interaction of
nutrients, carbon, and biomass growth and population. The models based on deep learning
(LSTM, ANN, and CNN-1D) showed a better performance in estimating carbohydrate
accumulation present in the cultures. The CNN-1D model showed better performance
than the models evaluated. These deep learning models allow us to describe the cultures’
behavior when considering a larger number of descriptors.

The best result obtained among the methods explored has a mean square error of
0.002, with a variance of 5%. It produces a certainty of 89% (R2) with respect to correlation
when simulating different scenarios without performing the experiments physically. The
advantages of using machine learning models include reducing the number of experiments
and process optimization and saving the amount of reagents used for analysis and lab work.

As future work, the models’ results could be used as an input to optimize other AI
methods. For instance, the inputs based on heuristics and meta-heuristics stories such as
genetic algorithms, particle swarm, ant colony, and neuro-fuzzy could find a combination
of elements that maximize the production of carbohydrates in microalgae.
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