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Abstract: Experimental and computational data and field data obtained from measurements are
often sparse and noisy. Consequently, interpolating unknown functions under these restrictions to
provide accurate predictions is very challenging. This study compares machine-learning methods
and cubic splines on the sparsity of training data they can handle, especially when training samples
are noisy. We compare deviation from a true function f using the mean square error, signal-to-noise
ratio and the Pearson R2 coefficient. We show that, given very sparse data, cubic splines constitute a
more precise interpolation method than deep neural networks and multivariate adaptive regression
splines. In contrast, machine-learning models are robust to noise and can outperform splines after
a training data threshold is met. Our study aims to provide a general framework for interpolating
one-dimensional signals, often the result of complex scientific simulations or laboratory experiments.

Keywords: machine learning; deep neural networks; MARS; splines; interpolation; feedforward
neural networks; noisy data; sparse data
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1. Introduction

Modelling the behaviour of non-linear systems is challenging. Therefore, data-driven
methods have become prevalent, providing an alternative to modelling complex systems [1–4].

Surrogate and reduced order models are common in engineering [5–7]. Moreover,
there is an increasing interest in exploring artificial intelligence approaches in complex
engineering science and addressing technology problems where experimental data are
scarce and fine-grain simulations are computationally expensive or prohibitive. Throughout
the paper, we refer to a limited amount of data as scarce data. Machine-learning (ML) and
deep-learning (DL) methods, such as multivariate adaptive regression splines (MARS) and
deep feedforward neural networks (FFN) are data-driven approaches. They rely on big
datasets to approximate linear and non-linear functions. However, experimental or field
data may be scarce in many applications due to the inability to conduct detailed physical
experiments or to instrumentation constraints.

Moreover, data obtained from fine-grain simulations, e.g., large eddy or direct numerical
simulations of turbulence [8], can be expensive in terms of computing time and storage [9].
Under the scarcity restriction, many ML models may under-perform in capturing meaningful
patterns in the data.

Previous investigations have attempted to compare artificial neural networks and
MARS in pattern recognition and forecasting tasks for various applications. For example,
researchers have sought to discover patterns of breast cancer via both neural networks and
MARS [10]. MARS and neural networks were compared on the runoff forecasting in the
Himalayan region where limited data are available [11]. Other studies have also performed
direct comparisons between MARS and neural networks for the forecasting of sales, and
tourism [12,13].
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Simpler techniques, such as splines, refer to a wide range of functions used in applica-
tions where data interpolation or smoothing is necessary. They are piecewise polynomial
functions with a local elementary form while being globally flexible and smooth. Specifi-
cally, cubic splines are a particular type with parameters up to third-order polynomials that
must satisfy certain restrictions, which we will explain later. Splines have been extensively
used in interpolating functions for unseen inputs based on sparse observations and creating
efficient surrogate models [14,15]. Splines have also been used in aerospace engineering
for airfoil design [16] and for designing radar-based collision risk models in high-density
terminal areas [17].

Furthermore, research in the field suggests that rectified linear unit (ReLU)-based deep
neural networks (DNN) [18] can be viewed as a hierarchical or deep spline [19–22]. Hence,
the question arises as to when spline interpolation is more favourable than an interpolation
via DNN. However, DNN, MARS and spline interpolation comparisons have yet to be
directly presented. Moreover, studies have yet to be conducted on the effects of sparsity
and noise in the training data on NN, MARS or spline performance.

The motivation for this study emerged from engineering applications in which sound
and vibration can lead to acoustic fatigue of structures, e.g., Figure 1. Aerodynamic
turbulence induces pressure fluctuations on the structure’s walls, manifested as noise. In
practice, we analyse the wall pressure fluctuations averaged in the spanwise direction,
thus making them one-dimensional, and study their behaviour in time. These continued
pressure fluctuations can lead to acoustic fatigue with significant effects on structural
integrity. Turbulence is challenging to predict both experimentally and computationally. For
example, in high-speed aircraft applications, the flow features turbulence, shock waves, and
shock-boundary layer interaction [23–26], which facilitate flutter. Due to instrumentation
constraints, experimental wind-tunnel measurements also become more challenging at
supersonic speeds.

Figure 1. Various engineering applications are featuring acoustic-wall effects and vibration induced
by aerodynamic loading: high-speed aircraft, turbomachinery, wind turbines, and high-speed trains.

On the other hand, fine-grain numerical simulations that capture turbulence and
acoustic effects take several days or weeks on several high-performance computing cores.
Moreover, such simulations are limited to simpler geometries, such as flat panels or ramps,
rather than complete aircraft geometries.

Similar challenges exist in other engineering applications, such as wind turbines,
high-speed trains and turbomachinery. For example, aeroelasticity has become a significant
challenge for large offshore wind turbines. The average hub height for offshore turbines
can be up to 150 m, with a mean rotor diameter of 127.5 m. Structural vibration and fatigue
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are critical mechanical issues for large wind turbines. Again, experiments are difficult to
perform, and field data can also be limited. ML methods can be beneficial in calculating the
vibrational properties of wind turbines; thus, knowing their limitations is essential.

Our work aims to fill a research gap by directly comparing cubic spline, DNN and
MARS interpolation under varied observational data sparsity and noise levels. Further-
more, we aim to provide guidelines on the performance of different methods. The most
important factors taken into account are the level of noise in the dataset, the availability of
observational data and the complexity of the modelled function.

2. Methods
2.1. Feedforward Neural Networks

Deep feedforward neural networks (FNN) can be considered the simplest deep learn-
ing architecture. A feedforward network is a multilayer network where units (neurons)
are connected without cycles directly to the next layer. If the network is also densely
connected, then each neuron of layer Li is connected directly to every neuron of layer Li+1.
For historical reasons, this architecture is sometimes called a multilayer perceptron, which
is, however, a misnomer due to units in modern networks being non-linear, unlike the
traditional perceptron unit, which is purely linear.

The goal of a feedforward neural network is to approximate a function f ∗ by creating
a mapping y = f (x; θ) and optimizing the values of the parameters θ. An FNN is a
composition of multiple functions f (i). These vector-to-vector functions accept an input
vector xi and map it into an output vector yi. An acyclic graph G = (V, E) and a weight
function over the edges, w : E → R, are often used to describe how these functions are
composed. For example, a neural network might consist of n functions f (1), f (2), . . . , f (n)

connected in a chain to form an overall function

f (x) = f (n)( f (n−1)(. . . ( f (1)(x)))). (1)

In such a case, f (1) is called the first layer of the network, f (2) is called the second
layer and so on. The number of layers, f (i), present in a network is an architectural design
decision and can vary depending on the application. However, it is generally accepted that
deeper neural networks have a stronger approximation ability than shallower ones [27,28].
The first and final layers of the network are called the input and output, respectively. All
intermediate layers are called hidden layers, and their functionality is often unknown,
which is why neural networks are considered black-box models.

Training data points are noisy approximate examples of f ∗. Each training point
consists of a value x inside f ∗’s domain and a label y∗ ≈ f ∗(x). Training examples directly
command what the output layer must do. It must produce an output close to y∗ for
every input x. In contrast, the learning algorithm decides how to utilize each layer f (i)

to approximate f ∗ with minimum error. When labels y∗ represent classes (categories),
the problem is a classification problem. On the other hand, when y∗ takes continuous
numerical values, the problem is a regression, as in our case.

Layers consist of units called neurons. The number of neurons a layer has is also an
architectural design decision. However, past research has shown that deep networks can
approximate a problem with the same accuracy as shallow networks but with a signifi-
cantly lower number of training parameters and Vapnik–Chervonenkis (VC) dimensions (a
measure of the capacity of a set of function) [27,28]. A neuron represents a vector-to-scalar
function, and all neurons of a layer act in parallel. Inspired by the human brain, each unit
receives input from many other units and computes its activation value, similar to how
brain neurons function. Each neuron applies an activation function α to a weighted sum of
its inputs and a learnable bias term b.

a = α(z) = b +
li

∑
i=1

wixi = wx + b, (2)
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in the case of a sigmoid activation function, the neuron’s output becomes

a = σ(z) =
1

1 + e−(wx+b)
. (3)

The activation function for each application is a hyperparameter choice often achieved
through a trial-and-error approach. However, Sigmoid and ReLU activations have been
a common choice with other variations, such as leaky ReLU [29], ELU [30], GELU [31],
aiming to solve certain drawbacks with varied effectiveness.

We have used feedforward neural networks instead of more complicated architectures,
such as RNN or CNN. FNNs have a simpler architecture that facilitates direct comparisons
between deep learning and splines. CNNs are not inherently designed for this application
since their success is mainly related to computer-vision applications and RNNs are used
for sequential data.

For our experiments, we designed two architectures, the small SDNN and the larger
LDNN. SDNN is a 10-layer-deep neural network presented in Figure 2. The network has
3421 learnable parameters θ that need to be optimized. Except for the final layer, all layers
consist of 20 neurons and use the leaky ReLU as an activation function since we observed
that it helps to avoid constant trivial solutions more than other activations.

Leaky_ReLU(x) = max{0.01x, x}. (4)

Since we are working on a one-variable regression problem, the final layer has only one
neuron and uses the identity function as activation.

Figure 2. SDNN architecture visualized. A 10-layer network, with hidden layers consisting of
20 neurons each. The leaky ReLU activation function is used on every layer. The total number of
learnable parameters is 3421.

In contrast, LDNN has nine layers but a total of 25,022,541 (∼25 M) learnable param-
eters θ. Hence, this can be considered a medium-sized network by modern standards.
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Table 1 describes the architecture in detail. The input layer only has one neuron, similar to
SDNN, since we only accept one input (not shown in the table). All layers use the leaky
ReLU activation function, except that the final layer uses the identity function and has one
neuron since we are attempting to regress a single variable.

Table 1. Architecture of the “large” feedforward network model LDNN.

- Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 Layer7 Layer8 Final
Layer

Neurons 500 1000 2000 5000 2000 1000 500 20 1

The size of the SDNN architecture can be considered small, especially by modern
standards, where applications in computer vision or natural-language processing use
architectures with billions of learnable parameters. On the other hand, the present LDNN
architecture can be considered a medium-sized network. Due to the simple nature of
our application, we rely on small-to-medium network sizes. Our architectures provide a
reasonable basis for benchmarking against splines since it would be unfair to compare a
simple technique, such as splines, with a vast, complicated neural network. Furthermore,
substantially increasing the network’s size would increase the computational training
cost and the training data required to optimize all parameters’ θ. However, this study
focuses on training under sparsity. Note that the model size is usually chosen empirically.
Depending on the complexity of a problem, we can design networks, often through a
trial-and-error process. However, it is established that deeper neural networks tend to have
more modelling capacity [27,28].

2.2. Cubic Splines

A spline is a piecewise polynomial function S : [a, b]→ R. Since we want the spline S
to be piecewise-defined, the interval [a, b] is broken into disjoint subintervals,

[a, b] = [x0, x1) ∪ [x1, x2) ∪ · · · ∪ [xn−1, xn) ∪ [xn], (5)

where
a = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ xn = b (6)

Points xi are called knots. If knots are equidistantly distributed in the interval [a, b],
then the spline is called a uniform spline.

Y(x) =


S0(x), if x0 ≤ x < x1
S1(x), if x1 ≤ x < x2
...
Sn−1(x), if xn−1 ≤ x < xn

(7)

where Si are 3rd order polynomials when referring to cubic splines, defined as

Si = αi(x− xi)
3 + βi(x− xi)

2 + γi(x− xi) + di, (8)

for i = 0, 1, 2, n− 1.
Given a set of coordinates C = (x0, y0), (x1, y1), . . . , (xn, yn), in this case, training data,

we compute a set of n splines si(x) which must satisfy six conditions:

1. Si(xi) = yi = Si−1(xi), i = 1, . . . , n− 1
2. S0(x0) = y0
3. Sn−1(xn) = yn

4. S
′
i(xi) = S

′
i−1(xi), i = 1, . . . , n− 1

5. S
′′
i (xi) = S

′′
i−1(xi), i = 1, . . . , n− 1

6. S
′′
0 = S

′′
n−1 = 0
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The above conditions mean that all data points will be interpolated and that S(x), S′(x),
S′′(x) are all continuous functions on the interval [x0, xn]. Moreover, since S′i(xi) = S′i−1(xi),
the curve will be smooth across the interval.

Splines have been extensively used in engineering, statistics, and science [16,17,32].

2.3. MARS

Multivariate adaptive regression splines (MARS), first proposed by [33], represent an
approach for multivariate non-parametric regression. The interpolation interval is broken
into subregions, with the connecting points, called knots, automatically determined by
the data. MARS work by computing piecewise curves (splines) of various and differing
polynomial degrees. These piecewise curves are called basis functions (BF). The number
of basis functions Si, and the polynomial degree of each, are determined by a two-step
search procedure. A MARS model is of the form,

f̂ = a0 +
M

∑
m=1

am

Km

∏
k=1
{skm[xu(k, m)− tkm]}+. (9)

In the above equation, a0 is the coefficient of the constant basis function BF1, while the sum
is over the basis functions Bm, each of which has a coefficient am. M represents the number
of basis functions that make up the MARS model, while Km is the number of knots. The
knot’s location is defined by tkm and skm is a sign variable that takes the values {−1,+1}.

Each function Bm can take on three forms. The intercept B0 is the constant 1. The rest
of the basis functions can either be hinge functions or a product of multiple hinge functions.
Hinge functions take the form

H(x) =


max(0, x− C)
or

max(0, C− x)
(10)

where C is a constant value called a knot. With the help of the max() term in the hinge
functions, BFs are zeroed out in regions that do not fit the data well.

MARS models are generated through a two-step forward and backward process. Dur-
ing the first step, a forward stepwise algorithm generates many basis functions that overfit
the data. Then, a greedy search algorithm, starting with the intercept term B0, executes
an exhaustive search and adds pairs of hinge functions with the maximum reduction in
the sum of squares residual error. The addition of new terms (BFs) continues until the
maximum number, M, is reached or until the residual is reduced to negligible values.

A backward elimination occurs during the second step. This pruning process aims
to reduce the number of basis functions used, limit overfitting on the training dataset and
produce models with better generalization ability. During the backward pass, the least
effective basis function is removed in each step. Effectiveness is usually calculated with the
GCV and the generalized cross-validation criterion [34], described by the formula:

GCV =

1
N ∑N

i

[
f (xi)− f̂ (xi)

]
N
[
1−

(
M + p M−1

2

)] (11)

where N is the number of observations, M is the number of basis functions, and p is a
penalty term usually chosen as 2 or 3. The term (M− 1)/2 is the number of knots, so the
GCV criterion penalizes the addition of basis functions and knots. We can observe the
reduction in the GCV value to remove a variable.

MARS has been used extensively in many areas of engineering, economics, and
science [10–13].
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2.4. Producing Ground Truth, Sparse And Noisy Data

For the benchmark used here, we utilize two different functions, f ∗1 and f ∗2 . Both
target functions f ∗ are sinusoidal with quickly changing behaviour and multiple local
extrema. The exact form of the functions was arbitrarily chosen. However, we bear in
mind that fast-paced changes in the signal’s value are more difficult to model; hence,
including more high-frequency sinusoidal terms increases the complexity of the function
under investigation.

f ∗1 = sin(2πx)− cos
(

2π
x
4

)
+ cos(πx), (12)

f ∗2 = sin(2πx)− cos
(

2π
x
4

)
+ cos(πx)− cos

(
2π

5x
2

)
+ sin

(
2π

3x
2

)
, (13)

Training data points were produced by sampling f ∗ with varied timesteps. We simu-
late sparsity by linearly sampling N points from f ∗ with a steady timestep ts in the range
[0, 5]. To simulate noisy data, we add random noise to every training sample. The noise
value was sampled from the noise distribution

l(z) =
(

1√
2π

e−z2/2
)
× (max{ f ∗} −min{ f ∗}) p, (14)

where p is a parameter that controls the noise intensity in each sample. N takes the
values {50, 100, 200, 300, 400, 500, 700, 900}, while p {0%, 1%, 5%, 10%}. We combine N and
p values to create 32 training scenarios.

Other noise distributions were also tested on a few training scenarios. The results
showed no apparent correlation between the type of noise and the models’ performance,
but this issue deserves further investigation.

For testing, we sample 1000 noiseless data points from f ∗ (Figure 3). We use noiseless
data for testing because we evaluate how well the methods approximate the true function
f ∗ from noisy data. Finally, the 1000 testing points remain the same across all experiments
for a fair and unbiased performance evaluation.

Figure 3. Training scenario with noise p = 10% and N = 100 training data points. Data is sampled
linearly from f ∗1 in the [0, 5] range, and then the noise is added. Training noisy data is on the left,
while noiseless test data is on the right.

2.5. DNN Training Parameters

Training neural networks come with a plethora of hyperparameter decisions. These
hyperparameters can substantially affect performance. To create a fair basis for our compar-
ison, we modify only the training dataset’s parameters, namely the sparsity N and noise
level p, while keeping the network hyperparameters unaltered among different experi-
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ments. However, to decide on the final set of hyperparameters used, a few trial-and-error
experiments with a random training dataset were conducted to ensure that convergence of
the learning algorithm is possible.

Table 2 summarizes the hyperparameter set we decided to use. The optimizer hyper-
parameter refers to the optimization method used during back-propagation [35] to update
the network’s weights and biases. Among the seven optimizers tested, we decided to
continue with the Adamax [36] optimizer since it produced the most promising results,
offering fast convergence without getting trapped in constant trivial solutions. The learning
rate controls the magnitude of each optimization update, with smaller values equating to
smaller changes in the network’s parameter after each epoch. The learning rate was set to
0.03 since it provides the learning algorithm with large enough gradient updates without
becoming unstable, providing a fast and accurate convergence. We trained all models for
25,000 epochs and applied an exponential learning rate decay with γ = 0.99998 to facilitate
accurate convergence to a global minimum. The exponential decay is used to reduce the
learning rate gradually and is formulated as

lrt = lr0 × eγt, (15)

where t is, the iteration number and γ is the decay factor.
Since we aim to regress the true function f ∗, we use mean squared error, MSE, as the

loss function. Hence, the Adamax optimizer updates parameters θ so that the MSE between
the training labels y∗ and model predictions y is minimized. The learning goal is to find
the optimal network parameters (weights and biases), formulated as

θ∗ = argminθi

{
1
N
[ f ∗(x)− f (x; θi)]

2
}

(16)

We also employ an early stopping mechanism, terminating training if validation loss has
not improved for 1000 epochs. Finally, we save the model’s best state during each training
epoch with the lowest validation error instead of the last epoch.

Table 2. List of the hyperparameters tested. The final choices used across all experiments are written
in bold.

Optimizer Learning Rate Epochs Learning Rate Decay

Adam 0.3 6000 yes
Adamax 0.03 7000 no
Adadelta 0.01 15,000 -

SGD 0.003 25,000 -
RMSprop - 30,000 -
Nadam - - -
LBFGS - - -

3. Results and Discussion

We created 32 different sparsity and noise scenarios. These included four levels of
noise and eight different levels of sparsity ranging from 50 to 900 training data points. The
exact values of the training data are {50, 100, 200, 300, 400, 500, 700, 900}. The noise level p
was set as {0%, 1%, 5%, 10%} to recreate both low- and high-noise scenarios. We conducted
five experiments for every combination of N and p. We present the average values for each
training scenario over five experiments to avoid correlation with the noise generator.

For each experiment, we trained four models:

• SDNN.
• LDNN.
• MARS.
• Cubic Splines.
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We tracked three metrics: MSE, the Rsq (coefficient of determination) and SNR,
defined as:

MSE =
1
N
‖ f ∗(x)− f (x; θi)‖ (17)

Rsq = 1− ∑N
i=1(y

∗
i − ŷi)

2

∑N
i=1(y

∗
i − ȳi)2

(18)

SNR = 10 log10

(
P2

signal

P2
noise

)
(19)

where Pnoise = Py∗−ŷ.
Figure 4 presents the MSE and SNR values attained from all models for all training

scenarios. Concerning MSE, the MARS model has the most outlier values, followed by
SDNN. On the other hand, the cubic splines model does not have any outliers since
all values fall into the range [−1.5 IQR,+1.5 IQR], where IQR represents the difference
between the 1st and 3rd quantiles, i.e., the range where 25% to 75% of observations fall:

IQR = q3− q1 (20)

Figure 4. Boxplots for MSE and SNR values attained from all experiments. The average of five runs
is presented. The first row shows the MSE for the SDNN, LDNN, splines and MARS test sets. The
second row shows the respective SNR values. The box represents the 1st and 3rd quantiles, while
the middle line represents the median value. The left vertical line represents the value Q1− 1.5 IQR,
while the right line is Q3 + 1.5 IQR. Values outside of the vertical lines are outliers.

The splines model has three separate regions in which most observations are gathered.
These regions could coincide with the three noise scenarios: low (0%, 1%), medium (5%)
and high (10%). As a result, LDNN presents a relatively steady distribution of MSE without
outliers, but with high variance.

The above findings suggest that cubic splines are very sensitive to either noise or
sparsity. The SDNN and MARS models are also susceptible to either factor, but less so,
since most observations are gathered around the median value, as shown in Figure 4.
Finally, the LDNN model is the most insensitive.

Concerning SNR (Figure 4, row 2), the cubic splines model presents the most variance,
with values ranging from 20 to 140 dB. We also observe some outlier values above 120 dB.
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However, these outlier values demonstrate excellent performance in contrast to MSE.
MARS also present many outliers, but its variance is generally low. DNNs seem to have a
Gaussian-like distribution of values.

The above findings suggest that DNNs are robust to noise and their performance
remains relatively steady even under high-noise scenarios. We infer similar conclusions
for the MARS models, which, despite the presence of outliers, concentrate most of their
values in a small range of around 27 dB in length. Finally, cubic splines seem very sensitive
to noise since the SNR values capture a considerable range (≈120 dB).

3.1. MSE

Figure 5 shows the relationship between MSE and training data noise levels. We
present MSE vs. noise for all eight different sparsity scenarios. The noise level, in the x axis,
is measured as a percentage (Equation (14)).

The results reveal that splines are overly sensitive to noisy data. The gap between MSE
at 0% noise and 10% noise, irrespective of the training dataset’s size, is the largest observed
for any model by a significant margin. This verifies our initial hypothesis that traditional
spline techniques are susceptible to noise and that their performance deteriorates as the
noise level in the training samples increases.

Moreover, the MSE vs. noise function for SDNN, LDNN and MARS is not always a
strictly increasing function, even if it has an increasing trend, as we would expect. This is
due to the stochastic nature of the learning algorithms, such as gradient descent. Therefore,
initial conditions (weights and bias values) are critical and impact the final convergence of
these algorithms. Often, these learning algorithms can get stuck into local minima, especially
when the loss function has many local extrema due to a bad weight initialization [37–39].
On the other hand, a good initialization, coupled with an optimal hyperparameter set, can
provide convergence to a close-to-optimal solution. This explains why we observe unexpected
results that break the increasing trend, such as LDNN’s MSE at 400 training samples with a 5%
noise level.

Continuing the analysis of Figure 5, we make another important discovery. The variation
in MSE values for noise levels for the SDNN, LDNN and MARS models tends to contract as
the number of training samples increases. Therefore, the numerical experiments show that the
negative effect of noise in the training dataset tends to be eliminated as the training dataset’s
size increases. This holds for neural networks and multivariate adaptive regression splines
(MARS). These methods are data-driven—the more training data we utilize to train these
models, the less error we can expect. However, in some cases, this rule is broken because of the
stochastic nature of the learning algorithms.

Our results show that cubic splines outperform all ML methods under low noise (0%,
1%), irrespective of the training dataset’s size. However, the cubic spline performance
deteriorated sharply after the 5% noise mark. For higher noise, SDNN and MARS are the
best-performing techniques, each challenging the performance of the other.

Figure 6 describes the effect of sparsity on the MSE error of the four models for different
noise levels (Appendix A). We can infer some critical conclusions from these graphs. Specifically,
cubic splines preserve a steady performance irrespective of the training data used. This confirms
that the spline performance is not strongly correlated with sparsity and that splines perform
almost equally well under sparse-data restrictions and for non-sparse data. In contrast, DNN
and MARS show a strong correlation between the quantity of training data used and their test
MSE. It is important to note that increasing the number of training points improves higher
noise levels (5%, 10%). The above suggests a saturation point exists, after which using more
training data has diminishing returns. This saturation point tends to increase as the noise level
increases. However, the trend sometimes breaks due to weight initialization in DNNs. The
importance of initialization is even more prominent for larger and deeper DNNs, reflected in
more unstable behaviour for LDNN rather than SDNN. The above may cause problems when
designing explainable engineering, physics or medical applications solutions.
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Figure 5. Test mean squared error vs. noise level (0%, 1%, 5%, 10%) for eight different levels of
sparsity (sample training points). The average values over five runs are presented. Blue represents
SDNN, red LDNN, green cubic splines, and yellow MARS.

Finally, we make some critical discoveries by observing the crossover points, i.e., the
points at which other methods meet or outperform cubic splines’ performance. First, we
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observe that cubic splines perform best for low noise (0 %, 1%), irrespective of sparsity
levels. However, when training data are noisy, splines are outperformed after a threshold of
100 training samples by MAR, and after 200 training samples by SDNN. LDNN needs more
than 500 training data points to outperform splines. For very high (10%) noise, splines are
outperformed for as few as 50 training data points, indicating their inefficiency in handling
noisy observations.

We conclude that cubic splines are more accurate, efficient and less computationally
costly when dealing with noiseless or low-noise data. However, ML methods outperform
cubic splines when dealing with noisy data, mainly as more training samples are used to
train these models. Finally, SDNN exceeds LDNN performance in most cases. A possible
explanation is that LDDN is over-parameterized for this problem and is, hence, more prone
to overfitting the noise or other irrelevant features instead of the true function. Another
explanation is that larger and deeper networks are often more difficult to optimize and a
more suitable set of hyperparameters may improve performance.

Figure 6. Test mean squared error vs. the total number of training samples for four different noise
levels. The average values over five runs are presented. Blue represents SDNN, red LDNN, green
cubic splines, and yellow MARS.

3.2. SNR

We examined the results regarding the signal-to-noise ratio (SNR), Equation (19). In
Figures 7 and 8, the y axis is in log scale and is measured in dB (decibels). The noise level is
measured in percentage (Equation (14)) and training data samples are in absolute numbers.

Splines present a lot of variance in their SNR values from zero to high noise, reaffirming
our hypothesis that they are susceptible to noisy data. In contrast, MARS models have
the lowest variance, with noise affecting their SNR performance only slightly. This effect
tends to limit itself as the number of training samples reduces. Furthermore, the variance
for the neural network models also tends to shrink as the number of training examples
increases, suggesting that the noise effect is mitigated when many samples are used to train
the algorithms (Figure 7). All models follow a descending trend. However, the relation
between SNR and noise is strictly decreasing only for the deterministic cubic splines model.

Cubic splines outperform all other methods by a considerable margin when noise
levels are low (0%, 1%), but their performance sharply deteriorates above these noise
levels. The SNR of cubic interpolation for very sparse data, e.g., 50 or 100, is on par with
or outperforms ML methods. The performance of the other models is quite similar. All
ML methods are less sensitive to noise and provide almost steady SNR as the number of
training samples increases (Figure 7).
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Figure 7. SNR vs. noise level (0%, 1%, 5%, 10%) for eight different levels of sparsity (sample training
points) computed on the test set predictions and ground truth. The average values over five runs are
presented. Blue represents SDNN, red LDNN, green cubic splines, and yellow MARS.

In Figure 8, we present the effect of different training dataset sizes on the test set SNR
value. Once again, we observe the dominance of cubic splines in the low noise (0%, 1%)
scenarios and their insufficient performance under high noise.

SNR is almost independent of the number of training data used for cubic splines.
In contrast, we observe a positive correlation between the number of training samples
and SNR for DNNs. MARS only evidences such a correlation in higher noise scenarios,
suggesting again the existence of saturation points which increase with noise.
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The relatively poor performance of LDNN has been attributed to overfitting the noise
in the training dataset rather than the true function. The absolute values do not offer any
additional conclusions concerning the R-squared coefficient of determination. All models
achieve a very high Rsq > 0.98%, implying that they follow the trends accurately, but this
is only sometimes indicative of their precision. Similar conclusions to MSE can be drawn
for R-squared as well.

Figure 8. SNR vs. the total number of training samples for four different noise levels. The aver-
age values over five runs are presented. Blue colour represents SDNN, green cubic splines, and
yellow MARS.

4. Conclusions

The effort and cost of performing expensive numerical simulations and laboratory ex-
periments could be reduced if we train ML models that use coarse-grained data to produce
fine-grained predictions. However, this requires understanding the models’ limitations
regarding sparsity conditions. Moreover, non-linear problems in science and engineering
entail noise. These factors adversely affect the precision of interpolation methods and
surrogate models. Therefore, the present work sheds light on the limitations of various
ML and cubic spline methods when data are sparse and noisy. Several conclusions can be
drawn from the present study:

• ML methods (DNN and MARS) are significantly more robust to noise than cubic
splines. As a result, they can discover the true function hidden under the noise, thus
making ML a valuable tool in practical applications.

• Using more data reduces the effect of noise on the interpolation precision. Hence,
noisy data should be best modelled using ML models instead of traditional methods,
such as splines.

• Cubic splines provide precise interpolation when the data have low noise or are
noiseless; they are inaccurate when data is noisy. Under noiseless conditions, splines
consistently perform better, irrespective of the number of training samples used, since
they are efficient even when data is sparse. Therefore, the cubic spline interpolation
can significantly outperform ML models for sparse and noiseless data.

• DNN requires a complicated training procedure that is more time-consuming than
splines and MARS. Moreover, DNN’s stochastic nature and sensitivity to hyperparam-
eters increase the uncertainty until an optimal model is discovered. However, a good
initialization coupled with an optimal hyperparameter set can provide convergence to
a close-to-optimal solution.
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• MARS models have the lowest variance regarding SNR, with noise affecting their SNR
performance only slightly. Using more data alleviates this effect.

• The importance of initialization is more important for larger and deeper DNNs re-
flected in more unstable behaviour for LDNN rather than SDNN.

• SDNN exceeds LDNN performance. This is probably due to the over-parametrization
of LDDN. Thus, LDNNs are more prone to overfitting the noise.

• Increasing the quantity of training data makes DNN a more attractive option. Further
work, however, is required to understand the limitations of the DNN models.

• DNN’s low explainability remains problematic for engineering and medical applica-
tions. Thus, further work is required in this area as well.

The present work focused on a hypothetical generalized function with and without
noise. However, the conclusions from this study are valuable in guiding further research
regarding the splines and ML modelling of pressure-fluctuation histories arising from
high-speed aerodynamics and acoustics.
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Abbreviations
The following abbreviations are used in this manuscript:

NN Neural network(s)
DNN Deep neural network
FNN Feedforward neural network
FFC Feedforward fully connected
RNN Recurrent neural network
CNN Convolutional neural network
ReLU Rectified linear unit
ELU Exponential linear unit
GELU Gaussian linear unit
BF Basis function
MARS Multivariate adaptive regression splines
GCV Generalized cross-validation
SNR Signal-to-noise ratio
MSE Mean squared error

Appendix A

Four scenarios show the effects of increased noise and more training samples. We
observe an excellent improvement in the neural networks and MARS when training samples
are increased from 50 training samples (Figures A1 and A3) to 900 (Figures A2 and A4),
compared. In contrast, splines perform similarly (Figure 6), but predictions tend to be more
random when more noisy samples are fed as training input.
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Figure A1. Predictions’ of all tested methods on the test set for noise = 0%, trained on 50 samples.
Blue represents SDNN, red LDNN, green cubic splines, and yellow MARS.

Figure A2. Predictions’ of all tested methods on the test set for noise = 0%, trained on 900 samples.
Blue represents SDNN, red LDNN, green cubic splines, and yellow MARS.
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Figure A3. Predictions’ of all tested methods on the test set for noise = 10%, trained on 50 samples.
Blue represents SDNN, red LDNN, green cubic splines, and yellow MARS.

Figure A4. Predictions’ of all tested methods on the test set for noise = 10%, trained on 900 samples.
Blue represents SDNN, red LDNN, green cubic splines, and yellow MARS.
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