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Abstract

Background

The Coronavirus disease 2019 (COVID-19) pandemic has affected millions of people across

the globe. It is associated with a high mortality rate and has created a global crisis by strain-

ing medical resources worldwide.

Objectives

To develop and validate machine-learning models for prediction of mechanical ventilation

(MV) for patients presenting to emergency room and for prediction of in-hospital mortality

once a patient is admitted.

Methods

Two cohorts were used for the two different aims. 1980 COVID-19 patients were enrolled for

the aim of prediction ofMV. 1036 patients’ data, including demographics, past smoking and

drinking history, past medical history and vital signs at emergency room (ER), laboratory val-

ues, and treatments were collected for training and 674 patients were enrolled for validation

using XGBoost algorithm. For the second aim to predict in-hospital mortality, 3491 hospital-

ized patients via ER were enrolled. CatBoost, a new gradient-boosting algorithm was

applied for training and validation of the cohort.

Results

Older age, higher temperature, increased respiratory rate (RR) and a lower oxygen satura-

tion (SpO2) from the first set of vital signs were associated with an increased risk of MV

amongst the 1980 patients in the ER. The model had a high accuracy of 86.2% and a nega-

tive predictive value (NPV) of 87.8%. While, patients who required MV, had a higher RR,
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Body mass index (BMI) and longer length of stay in the hospital were the major features

associated with in-hospital mortality. The second model had a high accuracy of 80% with

NPV of 81.6%.

Conclusion

Machine learning models using XGBoost and catBoost algorithms can predict need for

mechanical ventilation and mortality with a very high accuracy in COVID-19 patients.

Introduction

The number of infections related to the severe acute respiratory syndrome coronavirus-2

(SARS-CoV-2) and causing coronavirus disease 2019 (COVID-19) has increased exponentially

with over 4 million cases reported in the US alone. Many states and hospital systems have

experienced considerable challenges with the unexpected number of cases with a strain on an

already fragile health system, causing multiple hospitals to reach or exceed capacity [1]. The

majority of patients experience mild disease but approximately 15% -20% of symptomatic

patients progress to severe pneumonia requiring hospitalization [2]. Current evidence suggests

important derangements within the immune system and the coagulation cascade in COVID-

19 patients [3, 4].

Observational studies have shown several features, associated with increased risk of hospi-

talization in COVID-19 including older age, male sex, obesity, admission oxygen saturation

(SpO2) less than 88%, respiratory rate greater than 24/minute, comorbid conditions such as

diabetes, hypertension, chronic kidney disease and lab values like, elevated troponin level, C

reactive protein level> 200 and D-dimer level> 2500 [5–7]. All these studies also point to a

high mortality in intubated patients over 50%. Other reports suggest that patients over the age

of 65, and those with co-morbid conditions are at a higher risk of mortality, ranging from

4.3%–7.5% [8–10].

There is an urgent need for disease stratification during the pandemic and several statistical

models are being developed based on observational studies. However, despite various retro-

spective associations, it is still unclear if an individual patient in the emergency room (ER)

with mild to moderate disease is at risk of progression to severe disease. Machine learning

(ML) algorithms are designed to scrutinize big data from both structured and unstructured

data and gather information without bias. Real time efficient management of patient and hos-

pital resource allocation would require development of a predictive model, which can accu-

rately classify COVID-19 patients at risk of invasive mechanical ventilation (MV) and death.

We hypothesized a parsimonious model with fewer parameters including vital signs and

demographics at the time of presentation would be helpful in the ER for determining need for

intubation and mechanical ventilation, while a complicated profile with laboratory values will

be beneficial for hospitalized patients to prognosticate mortality.

Methods

This is a retrospective multicenter study of all patients with COVID-19 patients, who pre-

sented to the ER at Beaumont Health, Michigan’s largest health care system, consisting of eight

hospitals. We developed two separate decision-tree-based, ensemble ML algorithm with two

aims of study: 1. prediction of MV, and 2. Mortality. This study was approved by Beaumont
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Health Institutional Review Board 2020–125 and all data were fully anonymized. The patients’

COVID-19 infection was confirmed by a positive SARS-CoV-2 nucleic acid by real-time fluo-

rescent RT-PCR test of respiratory tract or blood specimens.

Participates

a. Prediction of MV: A total of 1,980 COVID-19 patients who were evaluated at ER between

2/20/2020 and 5/5/2020 were enrolled. The patients who visited an ER department between

2/20/2020 and 4/17/2020 were used as the training and testing cohort. COVID-19 patients

who visited ER between April 18 and May 5, 2020 were enrolled as the prospective valida-

tion cohort.

b. Prediction of Mortality. A total of 3,491 hospitalized COVID-19 in-patients were enrolled.

They visited ER departments of Beaumont Health and were subsequently admitted between

2/1/2020 and 5/4/2020. Survivors were hospitalized for 8.4 days on average; demised

patients were hospitalized for 11.1 days on average. More clinical and laboratory data were

collected on these patients.

Data collection

Information including demographics, past smoking and drinking history, past medical history

and vital signs at ER, laboratory values, and treatments were used as independent features of

the prediction models. They were collected from EPIC EMR system at Beaumont Health using

Structured Query Language (SQL) queries.

Data cleaning

Prediction of MV: Same technique of data cleaning was applied to both the cohort between 2/

20/2020 and 4/17/2020 and the cohort between 4/18/2020 and 5/5/2020. Missing information

of smoking and alcohol information was replaced with “Not Asked”. Subsequently the categor-

ical values of smoking and alcohol history were converted into ordinal discrete values as fol-

lows: ‘Never’, 0; ’Quit’, 1; ’Not Asked’, 2, Passive’, 3, ’Yes’, 4. Missing value of alcohol history

was substituted by “Not Asked”. The categorical values of alcohol history were changed into

ordinal discreate values as follows: ’No’, 0; ’Never’, 0, ‘Not Currently’, 1; ’Not Asked’, 2, ’Yes’,

3. The missing values of BMI, oxygen saturation (spO2), systolic blood pressure (sBP), diastolic

blood pressure (dBP), pulse, RR, and temperature were replaced by their corresponding mean

values.

Prediction of Mortality: 34 clinically important features having valid values in more than

3,000 out of 3,491 patients were selected. They included demographic information: Age, Sex,

Race, BMI; past history of hypertension (HTN), hyperlipidemia (HLD), diabetes mellitus

(DM), cardiovascular disease (CAD), heart failure (HF), peripheral artery disease (PAD), atrial

fibrillation (AF), cerebrovascular accident and transient ischemic attack (CVA/ITA), venous

thromboembolism (VTE), pulmonary hypertension (PH), chronic respiratory failure, chronic

lung disease, chronic kidney disease (CKD), GI bleeding, Immunocompromised/suppressed,

connective tissue disease/autoimmune disease (CTD/AI disease), malignancy (Cancer); vital

signs taken at ER: temperature (Temp), systolic blood pressure (sBP), diastolic blood pressure

(dBP), pulse, respiration rate; course and treatment: length of stay in days (LOS), therapeutic

anticoagulation (tAC), therapeutic anticoagulation duration in days (tAC_dur), Steroids, ste-

roid treatment duration in days (steroid_dur), mechanical ventilation (vented), need for vaso-

pressors (pressors), need for ICU admission (ICU_adm). Missing values of numerical features,
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including BMI, spO2, sBP, dBP, pulse, respiration rate, and temperature, were replaced by

their corresponding mean values. Categorical features are not encoded because of CatBoost’s

default ability handling categorical features.

Statistic

In baseline characteristics, continuous features are presented as means with standard devia-

tions (SDs), and comparisons between groups were analyzed by performing two-sided Stu-

dent’s t-test. Categorical variables were represented as frequencies and percentages and they

were compared using Chi-square test (if cell counts equal to or more than 5) or Fisher’s exact

test (if cell counts below 5). Statistics analysis was conducted by SAS (version 9.4, SAS Insti-

tute, Cary, NC).

Machine leaning algorithms

For prediction of mechanical ventilation, we implemented a classification algorithm based on

XGBoost (https://github.com/dmlc/xgboost/). Designed for speed and performance, XGBoost

is decision-tree-based ensemble Machine Learning algorithm [11]. It uses an ensemble method

that fits each iteration of the new model with residuals from previous prediction in both

regression and classification trees. Since its introduction in 2016, it has been credited for win-

ning numerous data science competitions and improving industry applications [12]. We uti-

lized k-fold cross-validation during training and hyperparameter optimization to prevent

overfitting. Prediction of mortality was performed using CatBoost (https://catboost.ai/), a new

gradient-boosting algorithm. It manages categorical features out-of-box and outperforms

state-of-the-art machine-learning algorithms on popular publicly available data sets. In imple-

mentation, categorical features were indicated explicitly and CatBoost encodes them one-hot

encoding.

Accuracy and AUC (Area Under the Curve) ROC (Receiver Operating Characteristics)

curve were used to evaluate the performance of prediction models. Our algorithms were devel-

oped in Python (3.6.3) for data collection, data cleaning, feature engineering, machine learning

training and testing. The development environments included PyCharm and Jupyter Note-

book. The key libraries included Numpy, Pandas, Sklearn, Scipy, XGBoost, catBoost, imLearn,

and matplotlib. The last decade has witnessed the rapid progress in machine learning and AI.

Their adoption in medicine lags behinds other industries. Unexplainability is one of the major

criticisms. In this study, we attempted to shed light on ML models in predicting COVID-19

patients’ clinical outcome using SHAP (SHapley Additive exPlanations). SHAP is a game theo-

retic approach to explain the output of any machine learning model [13]. It connects optimal

credit allocation with local explanations using the classic Shapley values from game theory and

their related extensions. SHAP values are the average of the marginal contributions across all

permutations, providing global view of feature ranking and individual force view.

Results

Prediction of mechanical ventilation

A total of 1,980 unique patients were analyzed (Table 1). The average age was 63.2 ± 17.1 years

old and 1,013 (51.2%) were male. 1,306 patients visited an ER department in Beaumont Health

system between 2/20/2020 and 4/17/2020 and 674 of them between 4/18/2020 and 5/6/2020

for a COVID-19 related symptom. There are significant statistical differences in sex, race,

BMI, smoking history, history of DM, lung disease and heart disease between those who were

mechanically ventilated and those who were not.
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Performance of the model. The patient cohort of 1,306 patients (between 2/20/2020 and

4/17/2020) was used for training and validation of XGBoost model. After the model was

trained and its hyperparameters were optimized in a k-fold cross-validation fashion, the per-

formance of the model on a 20% randomly selected patients is summarized in Table 2. The

Table 1. Clinical characteristics of patients in prediction of mechanical ventilation.

Total Patients (n = 1,980) No Mechanical Ventilation (n = 1,649) Mechanical Ventilation (n = 331) Significance

Age 63.2 ± 17.1 63.2 ± 17.6 63.2 ± 15.0 0.969

Sex Male: 1,013 (51.2%) Male: 813 (49.3%) Male: 200 (60.4%) 0.001

Female: 967 (48.8%) Female: 836 (50.7%) Female: 131 (39.6%)

Race Asian 32 (1.6%) Asian 28 (1.7%) Asian 4 (1.2%) 0.023

AA: 1,117 (56.4%) AA: 930 (56.5%) AA: 187 (56.8%)

Caucasian: 725 (36.6%) Caucasian: 615 (37.4%) Caucasian: 110 (33.4%)

Other: 101 (5.1%) Other: 73 (4.4%) Other: 28 (8.5%)

BMI 32.0 ± 9.0 31.7 ± 8.8 33.9 ± 10.0 0.001

Smoking Never: 974 (49.2%) Never: 830 (50.3%) Never: 144 (43.5%) 0.002

Not Asked: 412 (20.8%) Not Asked: 346 (21.0%) Not Asked: 66 (19.9%)

Passive: 5 (0.3%) Passive: 3 (0.02%) Passive: 2 (0.6%)

Quit: 507 (25.6%) Quit: 399 (24.2%) Quit: 108 (32.6%)

Yes: 82 (4.1%) Yes: 71 (41.3%) Yes: 11 (3.3%)

Alcohol Never: 97 (4.9%) Never: 82 (5.0%) Never: 15 (4.5%) 0.934

No: 787 (39.7%) No: 651 (39.5) No: 136 (41.1%)

Not Asked: 471 (23.8%) Not Asked: 389 (23.6%) Not Asked: 82 (24.8%)

Not currently: 136 (6.9%) Not currently: 114 (6.9%) Not currently: 22 (6.6%)

Yes: 489 (24.7%) Yes: 413 (25.0%) Yes: 76 (23.0%)

DM 0: 1,428 (72.1%) 0: 1209 (73.3%) 0: 219 (66.2%) 0.008

1: 552 (27.9%) 1: 440 (26.7%) 1: 112 (33.8%)

Lung 0: 1,867 (94.3%) 0: 1563 (94.8%) 0: 304 (91.8%) 0.035

1: 113 (5.7%) 1: 86 (5.2%) 1: 27 (8.2%)

Heart 0: 1,742 (88.0%) 0: 1462 (88.7%) 0: 280 (84.6%) 0.038

1: 238 (12.0%) 1: 187 (11.3%) 1: 51 (15.4%)

Kidney 0: 1,889 (95.4%) 0: 1577 (95.6%) 0: 312 (94.3%) 0.276

1: 91 (4.6%) 1: 72 (4.4%) 1: 19 (5.7%)

Liver 0: 1977 (99.8%) 0: 1647 (99.9%) 0: 330 (99.7%) 0.423

1: 3 (0.2%) 1: 2 (0.1%) 1: 1 (0.3%)

BMI: body mass index. Smoking: smoking. Alcohol: alcohol history. DM: history of diabetes mellitus. Lung: history of lung disease. Heart: history of heart disease.

Kidney: history of kidney disease. Liver: history of Liver disease.

https://doi.org/10.1371/journal.pone.0249285.t001

Table 2. Confusion matrix of prediction of mechanical ventilation in patients before 4/17 (accuracy: 82.4%).

Non-MV MV

Predicated 210 36

Non-MV

Predicated 10 5

MV

Non-MV: patients who were not mechanically vented. MV: patient who were mechanically vented. Predicted Non-

MV: patients predicated to need mechanical ventilation. Predicated MV: patients predicated not to need mechanical

ventilation.

https://doi.org/10.1371/journal.pone.0249285.t002
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accuracy of the model is 82.4% (95% CI: 0.047) with a negative predicative value (NPV) of

85.4% and specificity of 95.5%. The model was further tested on 674 COVID-19 patients, who

visited ER departments between 4/18/2020 and 5/6/2020. The confusion matrix is shown in

Table 3. The prediction accuracy is 86.2% (95% CI: 0.026) with a NPV of 87.8%, and specificity

of 97.6%. AUC of ROC was 68% (Fig 1).

Table 3. Confusion matrix of prediction of mechanical ventilation in patients between 4/17 and 5/5 (accuracy:
86.2%).

Non-MV MV

Predicated 572 79

Non-MV

Predicated 14 9

MV

Non-MV: patients who were not mechanically vented. MV: patient who were mechanically vented. Predicted Non-

MV: patients predicated to need mechanical ventilation. Predicated MV: patients predicated not to need mechanical

ventilation.

https://doi.org/10.1371/journal.pone.0249285.t003

Fig 1. ROC curves mechanical ventilation prediction (AUC 68%).

https://doi.org/10.1371/journal.pone.0249285.g001
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Feature importance

The features are ranked in descending order of their impact on prediction outcomes in Figs 2

and 3. Fig 2 shows the overall impact of the clinical features. In addition, contribution of each

individual datapoint to prediction is demonstrated in Fig 3. Age was the most significant pre-

dictor of mechanical ventilation in COVID-19 patients. Increasing age was associated with a

Fig 2. Feature Importance Ranking in mechanical ventilation prediction. This ranking measures impacts of features on prediction in descending order. Alcohol:
alcohol history. BMI: body mass index. Smoking: smoking. dBP: first measurement of diastolic blood pressure at ER. DM: history of diabetes mellitus. Heart: history
of heart disease. Kidney: history of kidney disease. Liver: history of Liver disease. Lung: history of lung disease. Respiration: first measurement of respiration rate at
ER. Pulse: first measurement of pulse at ER. sBP: first measurement of systolic blood pressure at ER. Smoking: smoking history. SpO2: first measurement of blood
oxygen saturation at ER. Temp: first measurement of temperature at ER.

https://doi.org/10.1371/journal.pone.0249285.g002

PLOS ONE Machine learning algorithm to predict outcomes in COVID-19

PLOSONE | https://doi.org/10.1371/journal.pone.0249285 April 1, 2021 7 / 18

https://doi.org/10.1371/journal.pone.0249285.g002
https://doi.org/10.1371/journal.pone.0249285


higher chance of MV. Patients with elevated temperature and an elevated RR had a higher

chance of requiring MV. Likely, lower SpO2, history of DM and smoking were related to

increased chance of MV.

Fig 3. Global view of feature impact on mechanical ventilation prediction. Features are ranked in descending order of their accountability for the prediction.
Each dot in the visualization represents one datapoint of a feature. Its color is related to the real data value: high value in red and low value in blue. The impact of
each value is associated with higher or lower prediction, represented by SHAP values on x-axis. BMI: body mass index. Smoking: smoking. dBP: first measurement
of diastolic blood pressure at ER. DM: history of diabetes mellitus. Heart: history of heart disease. Kidney: history of kidney disease. Liver: history of Liver disease.
Lung: history of lung disease. Respiration: first measurement of respiration rate at ER. Pulse: first measurement of pulse at ER. sBP: first measurement of systolic
blood pressure at ER. Smoking: smoking history. SpO2: first measurement of blood oxygen saturation at ER. Temp: first measurement of temperature at ER.

https://doi.org/10.1371/journal.pone.0249285.g003
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Prediction of mortality

This cohort included 3,491 COVID-19 patients, who visited ER departments of Beaumont

Health and were subsequently hospitalized between 2/1/2020 and 5/4/2020 (Table 4). Their

average age was 62.3 ± 17.5 years old and 51.4% were females. As with the MV cohort, the

mortality cohort also had significant statistical differences among deceased and surviving

patients in several categories including age, sex, race, BMI, smoking history, alcohol history,

history of DM, history of lung disease, history of heart disease, and history of kidney disease

(Table 4).

Performance of the model

The patient cohort was randomly split into training (80%) and testing (20%) groups to train

and test CatBoost model. The confusion matrix is shown in Table 5. The accuracy of the

model reached 88.3% (95% CI + 0.024) (Table 5) and the AUC of ROC is 90% (Fig 4). Because

of the unbalanced nature of mortality in the COVID-19 patients, population of survived

Table 4. Clinical characteristics of COVID-19 patients for mortality prediction.

Total Patients (n = 3,491) Survivors (n = 2,985) Non Survivors (n = 506) Significance

Age 62.3 ± 17.5 62.6 ± 17.5 74.2 ± 14.3 <0.001

Sex Female 1,796 (51.4%) Female 1,564 (52.4%) Female 232 (45.8%) 0.006

Male 1,695 (4.6%) Male 1,421 (47.6%) Male 274 (54.2%)

Race Asian: 69 (2.0%) Asian: 62 (2.1%) Asian: 7 (1.4%) 0.001

African American: 1,823 (55.2%) African American: 1,595 (53.4%) African American: 228 (45.1%)

Caucasian: 1,415 (40.5%) Caucasian: 1,166 (39.1%) Caucasian: 249 (49.2%)

Other: 184 (5.3%) Other: 162 (5.4%) Other: 22 (4.4%)

BMI 31.7 ± 8.8 31.8 ± 8.7 30.9 ± 9.2 0.023

Smoking Never: 1664 (47.7%) Never: 1463 (49.0%) Never: 201 (39.7%) <0.001

Quit: 886 (25.4%) Quit: 714 (23.9%) Quit: 172 (34.0%)

Yes: 151 (4.3%) Yes: 132 (4.4%) Yes: 19 (3.8%)

Not Asked: 786 (22.5%) Not Asked: 672 (22.5%) Not Asked: 114 (22.5%):

Passive: 4 (0.1%) Passive: 4 (0.1%) Passive: 0 (0.0%)

Alcohol No: 1412 (40.4%) No: 1178 (39.5%) No: 234 (46.2%) 0.007

Yes: 790 (22.6%) Yes: 700 (23.5%) Yes: 90 (17.8%)

Not Currently: 284 (8.1%) Not Currently: 240 (8.0%) Not Currently: 44 (8.7%)

Never: 158 (4.5%) Never: 140 (4.7%) Never: 18 (3.6%)

Not Asked: 847 (24.3%) Not Asked: 727 (24.4%) Not Asked: 120 (23.7%)

DM 0: 2,483 (71.1%) 0: 2,144 (71.8%) 0: 339 (67.0%) 0.027

1: 1,008 (28.9%) 1: 841 (28.2%) 1: 167 (33.0%)

Lung 0: 3,309 (94.8%) 0: 2,840 (95.1%) 0: 469 (92.7%) 0.022

1: 182 (5.2%) 1: 145 (4.9%) 1: 37 (7.3%)

Heart 0: 3082 (88.3%) 0: 2,668 (89.4%) 0: 414 (81.8%) <0.001

1: 409 (11.75) 1: 317 (10.6%) 1: 92 (18.2%)

Kidney 0: 3,329 (95.4%) 0: 2,858 (95.7%) 0: 471 (93.1%) 0.009

1: 162 (4.6%) 1: 127 (4.3%) 1: 35 (6.9%)

Liver 0: 3,484 (99.8%) 0: 2,980 (99.8%) 0: 504 (99.6%) 0.269

1: 7 (0.2%) 1: 5 (0.2%) 1: 2 (0.4%)

BMI: body mass index. Smoking: smoking. Alcohol: alcohol history. DM: history of diabetes mellitus. Lung: history of lung disease. Heart: history of heart disease.

Kidney: history of kidney disease. Liver: history of Liver disease.

https://doi.org/10.1371/journal.pone.0249285.t004
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patients were randomly down-sampled to achieve a new balanced patient cohort, consisting of

506 survived patients and 506 deceased patients. The sample was then randomly split into

training (80%) and testing (20%) to retrain CatBoost model. Its performance on testing group

was shown in the confusion matrix in Table 6. The accuracy remained high at 80.3% (95% CI

+ 0.025). The NPV was 81.6%, and PPV was 79.0% with the balanced model. The AUC of

ROC is 85% (see Fig 5).

Table 5. Confusion matrix for mortality prediction in COVID-19 patients (accuracy: 88.3%).

Survived Deceased

Predicated 574 43

survived

Predicated 24 58

Deceased

https://doi.org/10.1371/journal.pone.0249285.t005

Fig 4. ROC curve of mortality prediction (AUC: 90%).

https://doi.org/10.1371/journal.pone.0249285.g004

PLOS ONE Machine learning algorithm to predict outcomes in COVID-19

PLOSONE | https://doi.org/10.1371/journal.pone.0249285 April 1, 2021 10 / 18

https://doi.org/10.1371/journal.pone.0249285.t005
https://doi.org/10.1371/journal.pone.0249285.g004
https://doi.org/10.1371/journal.pone.0249285


Feature importance

The top-20 predictors using the CatBoost model are ranked in descending order by feature

importance, as shown in Figs 6 and 7. Requirement of MV is the most important predictor of

survival. Other important features included admission to the ICU, need for vasopressors, ele-

vated respiration rate and pulse rate.

Table 6. Confusion matrix of prediction of mortality in COVID-19 patients (downsampled for balanced patient
cohort) (accuracy: 80.3%).

Survived Deceased

Predicated 79 21

survived

Predicated 19 84

Deceased

https://doi.org/10.1371/journal.pone.0249285.t006

Fig 5. ROC of mortality prediction in balanced patient cohort (AUC: 86%).

https://doi.org/10.1371/journal.pone.0249285.g005
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Fig 6. Feature importance ranking in mortality prediction. This ranking measures impacts of features on prediction in descending order. BMI: body mass index.
Cancer: history of cancer. dBP: first measurement of diastolic blood pressure at ER. DM: history of diabetes mellitus. Heart: history of heart disease. HTN: history of
hypertension. ICU_adm: whether a patient was admitted into ICU or not. LOS: length of stay in hospital. Pulse: first measurement of pulse at ER. Pressors: if a patient
received vasopressor treatment. Respiration: first measurement of respiration rate at ER. sBP: first measurement of systolic blood pressure at ER. Steroid: whether a
patient received steroid treatment. Steroid_dur: duration of steroid treatment. tAC: if a patient received anticoagulation treatment. tAC_dur: duration of anti-
coagulation treatment. Temp: first measurement of temperature at ER. Vented: where a patient was mechanically vented or not.

https://doi.org/10.1371/journal.pone.0249285.g006
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Fig 7. Global view of feature impact on mortality prediction. Features are ranked in descending order of their accountability for the prediction. Each dot in the
visualization represents one datapoint of a feature. Its color is related to the real data value: high value in red and low value in blue. BMI: body mass index. Cancer:
history of cancer. dBP: first measurement of diastolic blood pressure at ER. DM: history of diabetes mellitus. Heart: history of heart disease. HTN: history of
hypertension. ICU_adm: whether a patient was admitted into ICU or not. LOS: length of stay in hospital. Pulse: first measurement of pulse at ER. Pressors: if a
patient received vasopressor treatment. Respiration: first measurement of respiration rate at ER. sBP: first measurement of systolic blood pressure at ER. Steroid:
whether a patient received steroid treatment. Steroid_dur: duration of steroid treatment. tAC: if a patient received anticoagulation treatment. tAC_dur: duration of
anti-coagulation treatment. Temp: first measurement of temperature at ER. Vented: where a patient was mechanically vented or not.

https://doi.org/10.1371/journal.pone.0249285.g007
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Discussion

The highlight of this study is three-fold. First, we used a parsimonious ML algorithm to predict

hard end points, such as mechanical ventilation with high specificity and NPV. The model is

reliant on initial triage vitals in the ER, such as temperature and minimum oxygen saturation,

and basic demographics such as age and BMI. Thus, it can assist physicians during the pan-

demic with making critical decisions of discharging home versus hospital admission. The

model may also help with resource allocation and flow of operations for crisis management

teams, especially with scarcity of ventilators. Secondly, the mortality prediction algorithm uses

several key laboratory and other features in addition to patient characteristics and has consis-

tent accuracy of over 85%. The major features were whether patient was receiving MV, had a

high initial respiratory rate, longer length of stay and increased BMI. From a clinical stand-

point, daily mortality assessment is crucial to determine the need for escalation of therapy, site

of care decisions and goals of care discussion. The model may provide an avenue for dynamic

deployment in the hospitals across the country to give “at a time risk of mortality” among

admitted patients. Finally, ML algorithms used in model development are rigorous and can

account for missing data and categorical nature of real-world data.

Arvind et.al. studied predictors of MV among 4087 patients from New York City, using

random forest classifier, a supervised ML algorithm and demonstrated an AUC of 0.84, similar

to our findings [14]. Unlike our model, they used 24-hour data to predict 72-hour risk of intu-

bation in a time serious manner. But interestingly the highest weight in their model was ele-

vated RR, again one of the major features in our initial predictive model. Compared to their

study, we wanted to risk predict those at risk of intubation from the time of admission. Yan

and colleagues fromWuhan, China predicted mortality from different biomarkers using ML

and AI algorithms [15]. They had studied patients with COVID-19 from January 2020 to Feb-

ruary 2020 even before the pandemic hit United States. They used XGBoost classifier as a pre-

dictor model. In their model high lactate dehydrogenase (LDH), low lymphocyte count

(lymphopenia) and high levels of high sensitivity C-reactive protein (hs-CRP) were found to

be predictors of mortality. Their model has high level of accuracy (90%) in predicting mortality

10 days in advance but their sample size was small (n = 485). Compared to our study, Yan only

studied biomarkers, while we included all parameters including demographics, vitals, comor-

bidities, and other variables like need for MV and need for vasopressors. Therefore, biomark-

ers were not ranked high in our prediction model. In another study, Wu et.al, studied COVID

19 patients from China, as well as, other countries like Italy and Belgium to train and validate a

clinical prediction model for severity of pneumonia [16]. Non-severe patients were treated at

home or mobile hospitals, while severe patients required higher level of care including ICU

care. They did not use machine learning instead they used clinical scoring system with all avail-

able demographics, comorbidities and investigational data. During validation of model they

achieved high accuracy with AUC ranging from 0.84 to 0.89. Age was one of the important

predictors. Similar to their results our machine leaning algorithms found similar significance

for age in mortality prediction.

Cheng and colleagues used a random forest model to predict ICU admission within 24

hours among 1987, COVID-19 patients admitted to non-ICU units of a large hospital system

in NY [17]. Their model had good specificity of 76.3% with an accuracy of 76.2% (95% CI:

74.6–77.7%). However, the population included majority of women and patients younger than

65. They used 9639 feature vectors with data from each day of non-ICU hospital stay. The final

model in the study found strongest predictors of ICU admission to be respiratory rate and

white blood cell count. Other features included markers of respiratory failure, systemic inflam-

mation, shock, and renal failure. Paradoxically patients older than 65 years had lower ICU
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transfer rate despite high mortality. Compared to Cheng’s study, our first algorithm predicted

the need for MV during the pandemic. The boundaries for ICU were not clear during the surge

in our hospital system with many patients admitted to progressive care units, which were

equipped and staffed to function as ICU. Further, we included all ER patients at the time of eval-

uation and not admitted patients. Our aim was to develop a model using minimal features to

practically predict, who is not at risk of MV to determine who may be safely discharged.

Yadaw and associates examined mortality predictors in a large cohort of 5,051 COVID-19

patients using XGBoost similar to our study [18]. Of the initial 20 features that were selected

the consistent features in a SHAP model that showed reliable mortality prediction were mini-

mum oxygen saturation, age, type of encounter, maximum body temperature, and use of

hydroxychloroquine during treatment. Their model performed similarly to ours with an AUC

of> 0.9. The findings in the Yadaw study are similar to ours and reiterates the robustness of

ensemble-based ML classification algorithm. Although, we used XGBoost for MV prediction,

we felt CatBoost was a superior technique for mortality prediction in its ability to handle cate-

gorical and numerical data.

We acknowledge out study had some limitations. Although, we had a large number of

patients with several important features, our dataset for MV and mortality were unbalanced

affecting the sensitivity of the results. Since our goal was to have a high accuracy and NPV in

the ER, we kept the same sample. We did down sample the mortality data to balance the group

with similar accuracy. We used admission vitals instead of time series data. Consistent with

our decision on using admission vitals for disease stratification, Fernandes and colleagues used

ML and natural language processing algorithm to predict ICU admission among patients pre-

senting to ER [19]. As with our results in COVID-19 patients, they noted initial vitals includ-

ing heart rate, oxygen saturation, RR and sBP to be highly correlated to ICU admission. We

also did not use time-series data for mortality prognostication for patients in the ICU, although

length of stay was one of the major predictive features for mortality in our model. In future

studies, we will further strengthen the model by using time-series data.

Lastly, one very important point we want to highlight is contextual factors. Overall mortal-

ity in mortality prediction model was around 14%. At the time of this study state of Michigan

had significant number of cases of COVID 19 compared to other states in United States. Sci-

ence about COVID-19 is still not clearly understood but during early part of pandemic under-

standing about the disease was negligible. Crisis, fear amongst healthcare workers, lack of

resources and lack of understanding might have contributed to higher need for mechanical

ventilation and/or mortality. These contextual factors are very important while comparing

data from one study to other. It is not possible to conclude meaningfully without putting these

global factors in to consideration which might be limitation of our study as well as limitation

of most of the studies we have cited.

Conclusion

Machine learning models using XGBoost for need for MV and catBoost for prediction of mor-

tality amongst COVID-19 patients are accurate with high specificity and NPV. Simple factors

like age and vitals can predict need for mechanical ventilation, thus helping ER physicians to

decide the need for admission to hospital versus discharging patient home. Patients requiring

mechanical ventilation, higher respiratory rate and BMI were amongst the top predictors for

mortality.
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