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Abstract

Tuning cell shape by altering the biophysical properties of biomaterial substrates on which cells operate would
provide a potential shape-driven pathway to control cell phenotype. However, there is an unexplored dimensional
scale window of three-dimensional (3D) substrates with precisely tunable porous microarchitectures and geometrical
feature sizes at the cell’s operating length scales (10–100 μm). This paper demonstrates the fabrication of such high-
fidelity fibrous substrates using a melt electrowriting (MEW) technique. This advanced manufacturing approach is
biologically qualified with a metrology framework that models and classifies cell confinement states under various
substrate dimensionalities and architectures. Using fibroblasts as a model cell system, the mechanosensing response
of adherent cells is investigated as a function of variable substrate dimensionality (2D vs. 3D) and porous
microarchitecture (randomly oriented, “non-woven” vs. precision-stacked, “woven”). Single-cell confinement states are
modeled using confocal fluorescence microscopy in conjunction with an automated single-cell bioimage data analysis
workflow that extracts quantitative metrics of the whole cell and sub-cellular focal adhesion protein features
measured. The extracted multidimensional dataset is employed to train a machine learning algorithm to classify cell
shape phenotypes. The results show that cells assume distinct confinement states that are enforced by the prescribed
substrate dimensionalities and porous microarchitectures with the woven MEW substrates promoting the highest cell
shape homogeneity compared to non-woven fibrous substrates. The technology platform established here constitutes
a significant step towards the development of integrated additive manufacturing—metrology platforms for a wide
range of applications including fundamental mechanobiology studies and 3D bioprinting of tissue constructs to yield
specific biological designs qualified at the single-cell level.

Introduction

Cells sense physical aspects of their local micro-

environment and respond accordingly by acquiring spe-

cific phenotypes over time that are tightly related to their

function, indicating that an intimate link exists between

cell shape and function1–3. The existence of an “inside-

out” mechanism has been demonstrated, whereby global

cell shape distortion produces increased tension in the

cell’s internal scaffolding that, in turn, feeds back to drive

local changes in the assembly of shape-bearing adhesion

proteins, i.e., focal adhesions (FAs)4. FAs function not

only as anchors that structurally link cells to the material

matrix, but also as signal transduction elements that relay

signals from the local microenvironment into the

cytoplasm5,6.

The principle of controlling cell function through cell

shape manipulation has led to the development of engi-

neered culture models made from natural or synthetic
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polymers7–11. In general, hydrogel-based systems with

tunable stiffness parameter are considered the gold stan-

dard for three-dimensional (3D) cell culture12,13. Biolo-

gical gels composed of in vivo proteins have indeed

yielded significant dimensional and architecture-

dependent differences with concomitant alterations in

cellular responses14–18. However, the non-reproducible

nature of these systems due to the local substrate remo-

deling associated with cell migration renders them non-

ideal as culture models for cellular mechanosensing stu-

dies19. One possible method involves the fabrication of

functionalized non-woven gel electrospun fiber meshes

followed by in situ cross-linking for stiffness control20.

However, the chaotic nature of the electrospinning pro-

cess dynamics, which is responsible for uniaxial fiber

stretching and the formation of high surface to volume

ratio meshes, does not offer precision control over the

fibrous architecture. Thus, there is a need for 3D culture

models with well-defined cellular-relevant geometrical

feature sizes that can decouple stiffness from the archi-

tecture of the substrate as well as provide tight control

over the porous architecture at the single cell level.

To address this need, the method of melt electrowriting

(MEW), a structured fibrous substrate fabrication process,

inspired by the direct writing of solution electrospun

fibers21,22 is introduced to provide the precision-stacking of

highly stiff microscale fibers (made from polycaprolactone

(PCL))23–25. The biological relevance of the fabricated

substrates is demonstrated by culturing human adherent

cells on stiff substrates with varying dimensionality and

architecture. The resultant cell morphologies are compared

for different substrate geometries. The ability of MEW to

induce natural cell morphologies, owing to their confine-

ment and suspension states within the local 3D porous

microenvironment of the fabricated substrates, is demon-

strated. Furthermore, a machine learning-based metrology

framework is developed and applied to probe the effects of

substrate architectures on cell shape and FA protein dis-

tributions. This framework enables metrics to be defined

based on cell and sub-cellular FA protein features as mea-

sured using confocal fluorescence microscopy in conjunc-

tion with an automated single-cell bioimage data analysis

workflow. Single-cell confinement states are implemented

as a multi-dimensional metric composed of the previously

extracted metrics to train and design a classifier. This

strategy allows quantitative inference that the observed

confinement states directly map to each substrate dimen-

sionality and architecture.

Results

Fabrication of polymeric substrates with fibrous

architecture

The first part of the study is aimed at engineering

substrates with fiber-based structural features. Substrates

of variable dimensionality and architecture are fabricated

on flat glass coverslips using solution electrospinning

(SES) and MEW. Concept schematics of both fabrication

processes are depicted in Fig. 1.

The SES technique has been widely used in tissue

engineering applications26–32 and is also used in this

study to generate PCL fibrous meshes with random fiber

topography (“non-woven”). The operating principle

underlying the widely used conventional electrospinning

process is extruding and electrostatically drawing a

polymer solution or melt between a positively charged

needle tip and a grounded stationary or mobile collector.

The independent process parameters are the volumetric

flow rate (Q), voltage potential (Vp), tip to collector

distance (TCD), and temperature at the needle tip (T)

(Fig. 1a). Generally, trial and error methods are utilized

for the determination of suitable operating conditions

which are systematically varied until the electrostatic

stresses acting at the polymer solution–air interface can

overcome the surface tension and the elasticity of the

polymer, leading to the formation of a stable Taylor cone

and the generation of fibers with targeted diameters

(Fig. 1a, b).

The stability of the Taylor cone combined with the

chaotic motion of the fiber upon release from the Taylor

cone (Fig. 1a) allows the fabrication of non-woven fibrous

meshes with relatively uniform fiber diameters and with

typically high surface to volume ratios. The typical condi-

tions used for the generation of solution electrospun

meshes are as follows: Q= 10 μL/min, Vp= 15 kV, and

TCD= 15 cm (see Materials and methods for details). For

the current study, the implemented strategy and process

parameter settings have previously been described33,34.

Initially, the applied voltage potential (Vp—[kV]) is tuned in

combination with the needle TCD (d—[cm]) in order to

achieve jet formation for the prescribed PCL concentration

(12% in hexafluoroisopropanol (HFIP)). After obtaining a

Taylor cone jet, the volumetric flow (Q—[mL/h]) rate is

tuned in order to stabilize the jet and generate fibers,

eliminating the well-known “beading phenomenon” (irre-

gularities across the fiber length characterized by non-

stretched material). While performing this tuning proce-

dure assures a stable cone-jet for a short length, there is a

secondary chaotic process regime of much larger length.

During this regime, the jet experiences high-frequency

whipping instabilities undergoing bending and excessive

stretching35. To overcome this, studies have demonstrated

that using a more conductive solvent can lead to more

uniform charge distribution along the spinning jet and thus

more uniform stretching of the fiber jet36. Tuning the

electrospinning time provides control over the collected

fiber density. It is observed that when an electrospinning

time of 1min is prescribed, thin substrates (hereafter

designated as SES-1min) exhibiting discontinuous patches
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without any fiber coverage are obtained (Fig. 2a). On the

other hand, when the spinning time is increased to 3min,

substrates (hereafter designated as SES-3min) exhibit uni-

form fiber coverage (Fig. 2b). Thus, with these two experi-

mental runs, electrospun meshes with random pore

microarchitectures possessing different pore size distribu-

tions are fabricated.

3D PCL fibrous meshes with precision-stacked fiber

topographies (“woven”) are fabricated using an in-house

developed MEW process design. MEW is a two-stage
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Fig. 1 Electrohydrodynamics (EHD)-based fabrication methods employed in this study. a Solution electrospinning (SES) vs. melt
electrospinning (MES). The main differentiating feature between the two processes is the extent of the jet instabilities that arise from the electrostatic

forces acting at the polymer jet-air interface. For MES, the chaotic jet regime is limited close to the grounded collector plate due to the high viscosity

and dielectric properties of the pure polymer melt. b Direct melt electrowriting (MEW) and its operating principle. (i) 3D conical fiber structures are

obtained by the layered deposition of fibers in circular patterns due to jet instabilities close to the stationary collector plate. (ii) The jet instabilities can
be eliminated by moving the grounded collector plate at prescribed translational stage speeds. (iii) Micrograph depicting various fiber topographies

that are obtained by tuning the translational stage speed (UT [SI: mm/s)]. Coiling fiber structures are obtained for the lowest UT setting. Coiling

frequency of these fiber structures can be gradually eliminated by gradually increasing UT to achieve aligned fibers at the critical UT setting
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hybrid materials processing technique that integrates the

melt electrospinning process with melt extrusion-based

additive manufacturing (3-D printing) methods25. During

melt electrospinning, the instabilities arising from the

electrostatic nature of the process are limited to a much

smaller regime (Fig. 1b) compared to that observed during

SES (Fig. 1a). This arises due to the high viscosity and low

electrical conductivity of the polymer melt. We have

shown earlier that the printing of fibrous mesh structures

with precise geometries can be achieved provided that the

process parameters are properly optimized37. MEW pro-

vides the capability of generating precision-stacked

fibrous meshes with fiber diameters as low as 10 μm,

which is not possible with the conventional 3-D printing

methods.

In the present study, a similar parameter tuning pro-

cedure is used to determine the optimum printability

conditions. The objective is to achieve straight charged

jets (whipping constrained to the vicinity of the collecting

plate) during melt electrospinning so that the subse-

quently applied second component of the hybrid process,

i.e., the 3-D printing, can generate precisely-stacked

fibrous structures. In this procedure, it is important to

balance the downstream pulling on the fiber with the

upstream resistive forces. This process parameterization,

in tandem with the tuning of the translational stage speed

at its critical value, yields a steady equilibrium printing

state characterized by precise fiber placement of aligned

fibers. At the optimum MEW settings (Vp= 11 kV,

Q= 15 μL/h, UT= 60mm/s, T= 78 °C), precisely stacked

fibrous meshes with well-defined pore architectures can

be printed. The specific toolpaths followed by the trans-

lational x–y stage of the printing system are patterned to

generate two types of precisely-stacked meshes designated

as either MEW|0–90° (Fig. 2c) and MEW|0–45° (Fig. 2d).

The readily evident precise nature of the stacking of the

fibers should be noted.

The geometrical features of the randomly oriented

meshes from SES and the precision-stacked fibrous sub-

strates obtained by way of MEW are quantitatively char-

acterized using scanning electron microscopy (SEM) and

stereo microscopy (SM) followed by image analysis with

respect to the fiber diameter and the effective pore size

distributions (Fig. 3a–d). SES meshes spun for 1 and

3min exhibit mean fiber diameters of 1 and 0.8 μm,

respectively (Fig. 3e). The fiber diameter variation is

observed when high-magnification SEM images that focus

on small areas (20 × 20 μm) of the fiber mesh like the

insets in Fig. 2a, b are reported. However, the morpho-

logical characterization results using SEM images across

the whole sample area (25 × 25 mm) demonstrate a stan-

dard deviation of fiber diameter around ±0.5 μm (Fig. 3e)

corresponding to a coefficient of variation (CV) equal to

20–30% (Fig. 3i). These results are consistent with other

published studies of optimized electrospinning processes

using either PCL or other polymeric material systems38,39.

This similarity of mean values of the fiber diameters for

the two cases is expected since the material formulation

ba

c d

1 mm 1 mm

200 µm 200 µm 

20 µm 20 µm 

2 µm 2 µm 

Fig. 2 Fibrous mesh morphologies employed in this study. a 2D non-woven fibrous mesh fabricated with solution electrospinning (SES) and a

prescribed spinning time set of 1 min. The sample is designated as SES-1 min. b 2D non-woven fibrous mesh fabricated with SES and a prescribed

spinning time set of 3 min. The sample is designated as SES-3 min. c 3D woven fibrous mesh with “0–90°” pore microarchitecture fabricated with

direct melt electrowriting (MEW). The sample is designated MEW|0–90°. d 3D woven fibrous mesh with “0–45°” pore microarchitecture. The sample is
designated as MEW|0–45°
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and the process parameters are maintained and only the

spinning time is altered. However, the effects of the

spinning time on the pore size distributions of the fibrous

topographies diverge for SES-1 vs. SES-3. The SES-1 min

mesh exhibits significantly greater pore sizes and size

variance in comparison to that of the SES-3 min substrate

(Fig. 3f), commensurate with the increment in thickness

of the randomly oriented fibers deposited continuously on

top of each other with increasing processing time.

The fiber diameters and the pore size distributions of

the MEW meshes are shown in Fig. 3g, h. The mean fiber

diameter is maintained at 14 μm for the two types of

precisely-stacked MEW meshes (Fig. 3g). The MEW|

0–45° meshes exhibit approximately four times smaller

effective pore sizes compared to the MEW|0–90° meshes

(Fig. 3h). This is because two additional layers at relative

angle offsets of 45° are deposited between the perpendi-

cular fiber layers for the MEW|0–45° meshes while the

inter-fiber distance is maintained for both substrates.

The CV of pore size area and fiber diameter is com-

puted for all substrates and plotted in Fig. 3i. Using this

metric allows us to categorize all samples and

conceptually depict the main goal of the following part of

this study, which is to identify if the different type of

substrates can yield distinct biological cell confinement

conditions (Fig. 3j). This is achieved by modeling single

cell confinement states and using them to design a clas-

sifier and testing its classification accuracy.

Effects of substrate architecture on cell confinement

To characterize the effects of the substrate geometry on

cell confinement states, neonatal human dermal fibro-

blasts (NHDFs) are seeded directly on flat glass surfaces

(to serve as controls) as well as on solution electrospun

substrates (SES-1 min and SES-3 min) and the precision-

stacked microarchitectures (MEW|0–90° and MEW|

0–45°). The details of the cell culturing procedures are

provided in the Materials and methods section. The

shapes of the fibroblasts are characterized at 24 h after

seeding.

It is observed that the cells seeded directly on the flat

glass surfaces develop typical fibroblast morphologies

exhibiting elongated shapes and distinct actin-based

motility structures (Fig. 4a)40. It is expected that the
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areas (red color). e–h Bar graphs depicting the mean fiber diameter ([μm], SI) and the mean effective pore size area along with standard deviation
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cells seeded on the SES-1 min would develop a wider

distribution of well-spread lamellar morphologies and this

is indeed observed (Fig. 4a). The cells are seen to be at

different motility stages at the 24-h mark after seeding.

The adoption of variant cell morphologies that are

observed in Fig. 4b can be attributed to the non-uniform

coverage of the glass substrate by the fibers. There are

significant differences at the islands at which fibers are not

deposited vs. areas covered by fibers. Cells associated with

the SES-1 min substrate are observed to develop punctate

vinculin-rich adhesion sites, known as FAs41 as shown in

Fig. 4b, respectively. The observed FAs are distributed

throughout the cell body forming an elongated shape at

the end of branched cellular protrusions that extend the

broad actin-rich lamellipodia that are ribbon-like broad

flat cellular protrusions formed at the leading edge of a

migrating cell42. This is a typical morphological char-

acteristic observed in cells cultured on flat surfaces (glass

or plastic)15. In contrast, cells seeded on SES-3 min

demonstrate significantly smaller spreading with less actin

stress fibers traversing the cytoplasm and micro-spikes

that protrude marginally beyond the cell front and rear

edge and are composed of actin bundles together with

FAs (Fig. 4c). Lastly, a common characteristic that is

observed with cells seeded on flat glass surfaces and SES

substrates is the development of an actin-enriched

lamellipodium.

It is observed that the cells seeded on MEW|0–90° are

mainly attached along single fibers and at the intersection

of layered fibers. In the former case, cells adopt thin

elongated shapes dictated by the curvature of the fiber,

since they “grab” the exposed areas of the fiber at different

planes (Fig. 5a–c). In the latter case, cells adopt uniform

shapes and demonstrate spreading, the degree of which

depends on the number of fibers at the intersection point.

Cells seeded on MEW|0–45° are confined and sus-

pended at various levels across the thickness of the sub-

strate and within the porous microenvironments defined

by layered fibers (Fig. 6a, b). All imaged cells develop

triangular lamellar shapes consistent with the enforcing
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Fig. 4 Cell morphology of representative neonatal human dermal fibroblasts (NHDFs) for each mesh. NHDFs are stained for vinculin (green),

actin microfilament (red), and nucleus (blue) 1 day after seeding. a(i) Concept drawing illustrating attached cells on glass coverslips used as a control

culture substrate. a(ii–iii) Immunofluorescent images of representative cell morphologies obtained for the control culture substrate. b(i) Concept
drawing illustrating attached cells on the SES-1 min culture substrate. b(ii–iii) Immunofluorescent images of representative cell morphologies

obtained for the SES-1 min substrate. c(i) Concept drawing illustrating attached cells on the SES-3 min culture substrate. c(ii–iii) Immunofluorescent

images of representative cell morphologies obtained for the SES-3 min culture substrate. 3D renderings of all depicted cell morphologies are

provided in Supplemental Information
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triangular microarchitecture of the substrate. The cell

shapes are characterized by relative few actin stress fibers

that traverse the cytoplasm and terminate in distinct

filopodia, with elongated FAs sequestered to the tips of

the protrusions.

Taken together, these findings qualitatively suggest that

randomly stacked (SES) and precisely-stacked (MEW)

fibrous substrates exhibit topographies that are different

and the resulting cell morphologies depend on the geo-

metry of the topography of the substrate. Different

structures impose different cell confinement states. First,

the cellular and subcellular morphological features of cells

seeded on SES and MEW substrates give rise to different

confinement states that are different with respect to the

ones observed in the unconfined cells cultured on glass

coverslips. Second, there exist important qualitative dif-

ferences in cell shapes and FA distributions, dependent on

whether randomly-oriented solution electrospun mesh

substrates or the precision-stacked woven mesh sub-

strates fabricated via the MEW process are used.

Machine learning-based metrology

Image-based feature extraction

The imaged cell shapes are modeled using machine-

learning frameworks. The aim is to quantitatively

characterize and classify the observed multiscale mor-

phological differences. The details of the machine learning

framework are described in the Experimental section. In

this framework, the single cell maximum intensity

projections of each fluorescent channel (red, green, blue)

are employed to detect the cellular (cytoskeleton) and

sub-cellular features of interest (FAs, nucleus). An algo-

rithmic workflow of image processing tasks is developed

to provide the segmentation and subsequent morpho-

metric and distribution analysis of these features. The

image-based feature extraction procedure is described in

detail in the Material and methods section. Typical out-

comes of this procedure are depicted in Fig. 7. The figure

shows the colorized max projection of a representative

cell of the 3D microscale fibrous substrates (Fig. 7a) along

with its raw grayscale channel images. Each channel

image is overlaid with contours of the following seg-

mented features of interest: (a) the cell body (Fig. 7b), (b)

the nuclei body (Fig. 7c), and (c) mature FAs (Fig. 7d).

Of importance is the rationale behind the term “mature

FAs” and their automatic sorting from the initially-seg-

mented, vinculin-rich adhesion sites within each imaged

cell. Adhesions have been previously classified into nas-

cent adhesions, focal complexes and FAs based on their

size (~0.1–10 μm2) and localization within the cell body41.

It is known that during FA maturation, nascent adhesions

assemble soon after the integrin receptors engage with the

extracellular matrix (ECM) at the edge of the lamellipo-

dium41. At this point, they are either undergoing fast

turnover during active protrusions or are evolving into

focal complexes within the lamellipodial dendritic actin

network41. These adhesions grow and elongate into FAs

connected by bundles of actin stress fibers at the
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Fig. 5 Cell morphology of representative neonatal human dermal fibroblasts (NHDFs) at distinct locations on the MEW|0–90° culture

substrate. NHDFs are stained for vinculin (green), actin microfilament (red), and nucleus (blue) 1 day after seeding. a(i) Concept drawing illustrating

an attached cell at a specific location within the 3D mesh. a(ii) Immunofluorescent image of the previously illustrated attached cell. b(i) Concept
drawing illustrating an attached cell at a specific location within the 3D mesh. b(ii) Immunofluorescent images of the previously illustrated attached

cell. c(i) Concept drawing illustrating an attached cell at a specific location within the 3D mesh. c(ii–iii) Immunofluorescent images of the previously

illustrated attached cell
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lamellipodium–lamella interface41. Masks of all the

adhesion sites detected in a representative cell from the

control substrate are illustrated in Fig. 7e.

In the present study, the detected adhesion sites are

sorted into two bins based on their surface area (below or

above 0.2 μm2) following previous experimental FA

characterization studies in mesenchymal stem cells

(MSCs) cultured on flat substrates43. MSCs and the

fibroblasts are considered to be similar cell model types

for adhesion studies20. The following categorization is

adopted in the present study. Detected adhesion sites with

individual surface areas that are smaller than 0.1 μm2 are

considered as cytosolic background and are excluded

from the analysis. Nascent adhesions are those with an

individual surface area that is smaller than 0.2 μm2

(Fig. 7g). Adhesions with an individual size larger or equal

to 0.2 μm2 are considered to be mature FAs (focal com-

plexes and FAs). It is the mature FAs that are the subject

of our metrology studies (Fig. 7h) the results of which are

presented next.

Morphometric analysis

Typical metrology results obtained for describing the

statistics of cell size and shape are shown in Fig. 8. As

expected, cell areas computed for cells cultured on the

SES-1 min substrate demonstrate substantial variance

(Fig. 8a). This can be explained by the substrate’s high

degree of topographical heterogeneity that is consistent

with the relatively high CV of its pore sizes. Cells cultured

on SES-3 min substrates demonstrate the smallest cell

area across all analyzed groups. This is in line with pre-

vious observations of characteristic cell morphologies in

Section B. The remaining cell population groups do not

demonstrate any statistical significance with respect to the

mean cell area despite the topographically different

underlying substrates. However, the negative statistical

results indicate a high statistical probability that cells

cultured on the 3D microscale fibrous substrates (MEW|

0–45°) will not reside on the 14 μm fibers (leading to

smaller cell areas), but rather migrate inwards through the

pores to assume a suspended state. This expectation is in

line with the previous observations of representative cells

(Fig. 6) assuming a triangular shape with different orien-

tations and attachment points at various levels across the

thickness of the substrate.

Cellular shape descriptors based on moment invariants

are directly accessible via the MIPAR software (Fig. 8).

Such descriptors reveal global cell shape differences

across the cell population groups44,45. The MEW|0–45°

cell population group demonstrates the smallest mean

ellipticity (Fig. 8b) and rectangularity (Fig. 8d), as expec-

ted based on initial observation of the cell shapes depicted

in Figs. 4 and 6. It is evident here that all cells seeded on

MEW substrates exhibit a triangular cell shape that will

yield smaller rectangularity values compared to cells

seeded on flat and SES meshes that are elliptical and more

rectangular in nature. The small standard deviations

obtained for the MEW|0–45° cell population with respect

to both metrics are indicative of relatively high cell shape

homogeneity associated with the homogeneous structure
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Fig. 6 Cell morphology of representative neonatal human dermal fibroblasts (NHDFs) at different locations on the MEW|0–45° culture

substrate. NHDFs are stained for vinculin (green), actin microfilament (red), and nucleus (blue) 1 day after seeding. a(i) Concept drawing illustrating

an attached cell at a specific location within the 3D mesh. a(ii–iii) Immunofluorescent image of the previously illustrated attached cell. b(i) Concept
drawing illustrating an attached cell at a specific location within the 3D mesh. b(ii–iii) Immunofluorescent images of the previously illustrated

attached cell. c(i) Concept drawing illustrating an attached cell at a specific location within the 3D mesh. c(ii–iii) Immunofluorescent images of the

previously illustrated attached cell. 3D renderings of all depicted cell morphologies are provided in Supplemental Information
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of the MEW woven meshes. This is further reinforced

based on the understanding that most of the cultured cells

reside at the triangular intersections of the porous

microenvironments provided by the MEW|0–45° sub-

strate. Lastly, solidity is employed as a representative

metric with the triangular and concave observed in the

MEW|0–45° substrate demonstrating smaller solidity

values compared to the more elliptic cells across the

controls and the electrospun (SES) fibrous substrates

(Fig. 8c).

The second part of the morphometric analysis focuses

on the statistics for the detected mature FAs. Similar to

the observations for cell area, the SES-3 min group

demonstrates the smallest mean FA number (Fig. 8e)

across all cell population groups implying that the num-

ber of mature FAs correlates with the degree of cell

spreading. Furthermore, the level of mature FAs coverage

appears to be the same across all groups with the SES-

3 min group demonstrating the smallest one (Fig. 8f). FA

shape is quantified based on the FA aspect ratio metric.

The controls and the MEW|0–45° group exhibit the

highest and lowest aspect ratios, respectively, i.e., the most

and least elongated mature FAs, respectively (Fig. 8f). The

degree of individual FA elongation correlates positively
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Fig. 7 Single-cell bioimage analysis for feature extraction. a–d Performance demonstration of the proposed automated image processing

algorithmic workflow using a representative cell cultured in the MEW|0–45° and SES-1 min for panels (a–d) and (e–h), respectively. a Colorized multi-

channel maximum projection image obtained by combining three different single channel maximum projections. Single channel maximum
projections are obtained by processing the Z-stack raw images. Red channel: cytoskeleton, blue channel: nucleus, green channel: vinculin. b Grayscale

maximum projection of the red channel image overlaid with the contour of the segmented cell body. c Grayscale maximum projection of the blue

channel image overlaid with the contour of the segmented nucleus. d Grayscale maximum projection of the green channel image overlaid with the
contour of the segmented FAs. e Maximum projection of the green channel image of a representative cell cultured on SES-1 min. f–i Performance

demonstration of the proposed automated image processing algorithmic workflow for mature (f, g) and nascent (h, i) FA detection and

segmentation based on individual FA area ([μm2], SI). The images in (f) and (h) are overlaid with the contour of all the segmented adhesion sites

colorized based on their index number
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with the ellipticity of the global cell shape (Fig. 8g) ver-

ifying the shape-bearing role of mature FAs. On the other

hand, the mean individual FA size metric demonstrates an

inverse pattern with the MEW|0–45° group demonstrat-

ing the highest mean value (Fig. 8h).

FA distribution analysis

It is then tested, whether the cell population groups

demonstrate any differences concerning the spatial dis-

tribution of mature FAs. The relative location of indivi-

dual mature FAs with respect to the nuclei centroid

(E-function) and their nearest neighbor (G-function) are

plotted at the single cell level using cumulative frequency

distribution functions (Fig. 9a, c). Based on the definition

of these spatial distribution metrics, mean metrics are

computed to identify differences at the cell population

level (see Materials and methods for a detailed explana-

tion of these metrics). The results indicate that the MEW|

0–45° substrate is characterized by cells that tend to

develop more clustered mature FAs (Fig. 9d, e) with the

higher number of them being closer to the nucleus

(Fig. 9b, e) compared to cells residing on flat surfaces

(controls). This is consistent with the observed cells being

suspended and attached at distinct points across the 3D

MEW|0–45° substrates, as opposed to cells on the flat

surfaces or on randomly oriented electrospun meshes,

where the cell–substrate contact interface is larger

resulting in the presence of mature FAs formation across

the whole cell body (Fig. 9e).

Learning and classifying cell shape phenotypes

While the initial assessment of the discriminatory

information of each metric provides valuable insights

concerning the cell shape phenotypic differences across

and within each cell population group, the ability to infer

the substrate dimensionality and architecture directly
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from single cell morphologies remains to be validated. To

accomplish that, the single-cell multi-dimensional data

sets are used to train a machine learning algorithm (see

Materials & Methods section) with the aim of distin-

guishing between four different classes by considering all

features simultaneously. The seven features computed

during the metrology part and used for the machine

learning tasks in this section are defined on the basis of

non-interdependence with respect to computing (there

isn’t any feature that is needed to compute another fea-

ture) and biological relevance. The class declaration is

depicted in the legend of Fig. 10, where all substrate

dimensionalities and topographies are depicted along with

the cell confinement states that were previously implied.

Three different classification tasks are performed. Com-

binations of the scaled metrics are plotted to allow easier

assessment of the results (Fig. 10a, d, g). The capability of

the classifier to operate satisfactorily with data outside the

training set for each classification task is assessed based

on the classification accuracy (Fig. 10c, f, k).

Initially, the multi-class classification problem is

attempted by taking into account cell morphologies

across all the fabricated substrates (Fig. 10a). The classifier

demonstrates a low classification accuracy (67%), which

can be explained by the large intra-class variance of Class

B (Fig. 10b). It is important to mention that among all

four different classes, Class D has a higher classification

accuracy since the features of Class D have a separable

distribution with tighter variance from the features of

classes A, B, and C (also evident in Fig. 10a, b) (Fig. 10c).

By removing Class B, the classification accuracy increases

to 90.6%, demonstrating that the trained classifier can

predict with high accuracy the substrate from which a cell

originates based strictly on its feature vector identity.

Remarkably, when the binary classification task is run by

combining all classes corresponding to the flat or elec-

trospun SES substrates, including the “noisy” Class B

against Class D, the classification accuracy level remains

around 93%. Thus, it is demonstrated that the 3D

microscale precision-stacked substrates promote a con-

fined and suspended state that morphologically stands out

both at the cellular as well as the sub-cellular FA level.

Cell shape heterogeneity in fibrous substrates

Lastly, the substrate structural heterogeneity with

respect to fiber diameter and pore size distribution dic-

tates the variance of the defined morphometric and pro-

tein distribution metrics with the MEW|0–45° and SES-

3 min substrate demonstrating the most and least

homogeneous population of single cell morphologies,

respectively.

To provide a quantitative estimate of MEW hetero-

geneity vs. SES heterogeneity, a univariate feature selec-

tion implemented that can inform which features were

used by the classifier to separate Class C (SES-3 min) from

Class D (MEW-0–45°) during the first classification task

A vs. B vs. C vs. D (Fig. 10a–c). The results demonstrate

that the most significant features whose variation across

classes is higher relative to their variation within each

class are the following: “cell area”, “cell G-function” and

600

a b e

c d

400

200

0

F
re

q
u
e
n
c
y
(#

 o
f 

F
A

s
)

600

400

200

0

F
re

q
u
e
n
c
y
(#

 o
f 

F
A

s
)

0

0 0 1 2 3 42 4 46 8 10

E-function

(individual cell)

G-function

(individual cell)

100 200 300 400 0.0 0.5 1.0 1.5 2.0 2.5

***

***

**
*

*

Cell E-slope

D
e
c
re

a
s
in

g

c
e
ll 

E
-s

lo
p
e

D
e
c
re

a
s
in

g

c
e
ll 

G
-f

u
n
c
ti
o
n

FA formation

closer to the nuclei

FA formation further

away from the nuclei

Non-aggregated

FA pattern

Aggregated FA pattern

Cell G-function (mm)

Controls

Radial euclidean distance (µm)

Nearest-neighbour distance (µm)

SES - 1 min

SES - 3 min

MEW

Controls

SES - 1 min

SES - 3 min

MEW

Fig. 9 Distribution analysis results. a Cumulative frequency distribution graph plotting the frequency of mature FAs detected within an individual

cell as a function of the respective radial Euclidean distances computed based on the detected nucleus and FAs centroids. b Cell E-slope; mean ±

standard deviation, total of n= 88 cells analyzed, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. c Cumulative frequency distribution graph plotting
the frequency of mature FAs detected within an individual cell as a function of the respective nearest neighbor distances computed based on the

detected FAs centroids. This is defined as the G-function. d Cell G-function metric; mean ± standard deviation, total of n= 88 cells analyzed, *P ≤ 0.05,

**P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. e Visual illustration of the spatial distribution metrics for mature FAs

Tourlomousis et al. Microsystems & Nanoengineering            (2019) 5:15 Page 11 of 19



Class A vs B vs C vs D

Class A vs C vs D

Class ABC vs D

Class A: Glass coverslips I: Ellipticity

I

I II III IV V VI VII

1

1

–1

–1

–1

–2

2

2

0

6
4

4

2

2
0

2
1
0

0

3
2

2

1
0

–1

00.5 0 0 20 2 224 46 –1 10 2000

I II III IV V VI VII

200.5 0 0 2 0 2 2224 4–1 1 000

I II III IV V VI VII

200.5 00 0 2 0 2 2224 6 4–1 1 000

3
2
1
0

–1

0

3

0
Class A

20

31.3% 4.7% 1.6%

1.6% 1.6%28.1%

3 1

11

0 0 20

90.9%

9.1% 9.4%

90.6%

14.3%

85.7%95.2%

4.8%

0.0% 0.0% 31.3% 0.0%

100%

10.0%

90.0%

16.7%

83.3%

18

63

1 17

1.2% 19.8%

94.4%

93.0%

7.0%22.7%1.6%

98.4% 77.3%

5.6%

73.3% 5.8%

92.6%

7.4%

5

11

11

19

9 3 2

2

1

1

1 173

6 0

0

52.4%

47.6% 50.0%

50.0% 81.0% 86.4% 67.4%

64.7%

35.3%

44.0%

56.0%

77.3%

32.6%13.6%19.0%

0

12.8%

12.8% 3.5% 2.3%10.5%

1.2% 3.5% 19.8%

0.0% 2.3% 1.2% 22.1% 13.6%

86.4%

1.2% 22.7%

7.0% 0.0% 0.0%

Class A

Class B

Class B

Class C

Class C

Target class

Confusion matrix

Confusion matrix

Confusion matrix

Target class

Target class

Class D

Class A

Class ABC

Class ABC

Class D

Class D

Class A

Class C

Class C

Class D

Class D

O
u
tp

u
t 
c
la

s
s

O
u
tp

u
t 

c
la

s
s

O
u
tp

u
t 

c
la

s
s

Class D

I

1

–1

2

0

0

II
II

II
I

1

–1

2

0

3

II
I

IV

4

4

2

0

IV
V

–1

2

2

1
0

0

V
V

I
V

I
V

II
I

1

1

–1

–1

–1

–2

2

2

0

6
4

4

2

2
0

2
1
0

0

3
2
1
0

–1

0

3

0

II
II
I

IV
V

V
I

V
II

V
II

II: Rectangularity

III: Cell area

IV: FA size

V: FA aspect ratio

VI: Cell E-slope

VII: Cell G-function

Class B: SES - 1 min

Class C: SES - 3 min

Class D: MEW | 0 – 45°

a b

c d

e f

Fig. 10 Classifier design and accuracy evaluation results for 3 different classification tasks. Support vector machines are used for all the
machine learning tasks. a Multi-class classification task taking into consideration all classes. Scatter plot for the combination of metrics. Blue, red, pink,

and green points represent processed cells from Class A, B, C, and D, respectively. 88 cells are processed whereby the computed are normalized and

then plotted to assess the classifier design results. b Confusion matrix with average classification accuracy outlined with yellow color (64.4%). c Multi-

class classification task taking into consideration only Class A, B, and C. d Confusion matrix with average classification accuracy outlined with yellow
color (90.6%). e Binary classification task by combining Classes A, B, and C in one class designated as Class ABC against Class D. f Confusion matrix

with average classification accuracy outlined with yellow color (93%)

Tourlomousis et al. Microsystems & Nanoengineering            (2019) 5:15 Page 12 of 19



the least significant ones, whose variation within each

class is higher relative to their variation across classes are

the following: “cell E-slope”, “rectangularity”. Reporting

only the most important features might exclude other

features that did not play an important role during the

multi-class classification task (A vs. B vs. C vs. D) but

whose heterogeneity is of significant biological impor-

tance. As a last step, the CV [%] of the two most and least

significant features is computed and plotted in Fig. 11.

The results demonstrate that the MEW substrates provide

tighter control over both the most and the least significant

features that the SVM machine learning algorithm used

for the classification task.

Discussion

Although the modulation of cellular phenotype with

biochemical regulatory factors is well-known, structural

and mechanical inputs from the ECM have been identified

as key regulators of measurable cell phenotypic attributes.

To investigate the effects of the physical properties of the

matrix microenvironment on cellular phenotype, micro-

fabrication technologies and 3D cell encapsulation tech-

nologies have enabled the identification of previously

ignored structural and dimensional parameters, respec-

tively, that are crucial for precisely engineered biomaterial

substrates.

In order to independently modulate these substrate

parameters within a coherent experimental model, we

have demonstrated the marriage between electrospinning

and additive manufacturing towards the 3D fabrication of

high-fidelity biomaterial fibrous substrates with geome-

trical feature sizes at cell operating length scales. Fur-

thermore, we have advanced a machine learning-based

metrology framework that can quantitatively assess and

classify the effect of geometrical confinement on human

adherent cells across different fibrous substrates dimen-

sionalities and architectures. To measure this effect, we

have demonstrated a quantitative confocal imaging

workflow that reveals distinct confinement states both at

the cellular and subcellular FA protein level. The classi-

fication results demonstrate that cells assume distinct

confinement states that are enforced by the prescribed

substrate dimensionalities and porous microarchitectures.

It is noteworthy to mention that the reproducibility and

biological relevance of the advanced system may be fur-

ther augmented by coating the fibrous substrates with

ECM proteins (fibronectin, vitronectin, collagen)46–48 or a

conjugated RGD-peptide used in PEG-hydrogels49. To be

sure, the poly-l-lysine (PLL) prescribed in this study to

promote cell attachment in an integrin-independent

manner could affect the overall metrology described

herein. Therefore, further experimentation would serve to

validate whether the programming of downstream cell

morphology with precision substrate geometry design

parameterization may be similarly observed using native

ECMs that promote integrin-dependent attachment to

the substrates. Lastly, de novo production of ECM pro-

teins may also play a role in adhesion organization and

possibly diverge from the metrology results reported here.

The latter was not tested experimentally due to the short

time course examined between cell seeding and screening

(24 h post-seeding), which, according to previous fibro-

blast culture studies represents a smaller time window

compared to that required before the earliest appearance

of collagen formation50.

In the context of our study, the demonstrated PCL

substrate material system is not advanced with the

intention to replace biological gels for studying
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mechanosensing in an in vivo context. Based on the

specific aim of this paper to fabricate substrates where

precision geometries can be reproduced and isolated as an

independent variable and tested with seeded cells, the

MEW substrate offers a highly controllable 3D system

with respect to porous microarchitecture at cellular-

relevant length scales. The metrology and classification

results show that there is a tight link between the porous

architecture and the induced cell shape phenotypes. Using

these substrates, cell biologists could study mechan-

otransduction phenomena for different cell shapes that

are induced geometrically in a 3D environment where

ECM remodeling (fibrous architecture variation as cells

migrate) is decoupled from resultant local stiffness var-

iations. The use of simpler biomaterial systems with tight

control over certain characteristics may help understand

which characteristics of more complex systems such as

biological gels are important for proper mechanosensing

in vivo.

We have established a technology platform that serves

as a major step towards the development of

bioinformatics-guided additive manufacturing systems,

one that promises insight into cellular interactions beyond

the reach of current phenotypic control and analysis. The

combination of advanced fabrication and metrology tools

paves a new avenue for the systematic engineering of

functional biomaterial systems that can reliably guide

distinct, uniform, and predictable cell responses for a wide

range of biomedical applications. The need for tighter

control over cell function is a major roadblock for getting

tissue engineering products to the clinic42. Currently, the

noise in cell phenotype makes it harder to detect positive

outcomes during a clinical trial. Therefore, any measures

taken to tighten specifications on the substrate, and

thereby also tighten the variance in cell phenotype, is

much needed by this industry51.

For example, we have preliminarily shown that there

exists an operational window of geometrical parameters

attributed to an ordered fiber-based material matrix

substrate that map to unique states of biophysical cell

confinement characterized by homogeneous cell shape

phenotypes. Therefore, we expect that there exists gran-

ularity in the geometric confinement states that will yield

the phenotypic spectrum of whole cell and subcellular

morphometric features, along with different functional

outcomes for various model cell types, including differ-

entiation in stem cells. The range and sensitivity of this

operational parameter space will determine the extent to

which cellular phenotype can be controlled. Advancing a

technology platform that leverages a shape-driven control

pathway to create and maintain a desired phenotype at the

single cell and population level is potentially far-reaching

for fundamental cell biology and regenerative medicine,

respectively.

Materials and methods

Biomaterial substrate

Pure PCL (Capa6500) pellets (with number average

molecular weight of 45,600 g/mol and polydispersity of

1.219) that are obtained from Perstorp UK Ltd. (UK) is the

biomaterial substrate that was used for the experimental

study in this paper. PCL has been extensively used in the

biomaterials field due to its biocompatibility, long-term

biodegradability, and relatively low and wide melt proces-

sing range (60–90 °C). Furthermore, PCL’s tunable viscoe-

lastic properties make it amenable for melt extrusion-based

additive manufacturing techniques towards the fabrication

of scaffolds for tissue engineering applications52.

Non-woven fibrous substrate fabrication

A custom-built SES apparatus is employed for the fab-

rication of two-dimensional (2D) non-woven PCL

microfibrous meshes. A volume of 5 mL PCL working

solution with 12% [w/v] final concentration is prepared by

mixing PCL pellets with HFIP by gentle overnight mag-

netic stirring at 1000 RPM. A stainless-steel needle tip (21

gauge) with blunt end is attached on a plastic Luer-lock

syringe (3 mL). 1 mL of final PCL working solution is

slowly loaded in the syringe barrel without introducing

any bubbles. The loaded syringe is clamped on a pro-

grammable syringe pump (Harvard Apparatus). The

positive lead of a high DC voltage power supply is

attached on the needle tip and the ground lead on an

aluminum collector vertically placed at a distance equal to

12–13 cm. PLL coated glass coverslips are taped on the

grounded aluminum collector. Non-woven fibrous

meshes are collected on the glass coverslips at a volu-

metric flow (Q) rate equal to 10 μL/min (Q= 10 μL/min)

and voltage potential (Vp) equal to 15 (Vp= 15 kV) for

different spinning times. Samples obtained for spinning

time equal to 1 min and 3min are designated as “SES-

1 min” and “SES-3 min”, respectively.

Woven fibrous substrate fabrication

A custom-built high-resolution additive manufacturing

system, whose operating principle is based on the direct

writing of melt electrospun fibers (also known as “melt

electrospinning writing—MEW”) is employed for the

fabrication of 3D woven PCL microfibrous meshes. The

design and experimental modeling of the established

MEW system configuration has been previously described

in detail37. Prior to printing, PCL pellets are loaded in a

glass Luer-lock syringe that is vertically placed into a

vacuum convective heat oven overnight to remove any

bubbles that may affect the process stability and down-

stream structural formability of the melt electrospun

fibers. After assuring the temperature homogeneity of the

polymer melt, a stainless-steel needle tip at a prescribed

diameter (Dt= 21 G) is adapted onto the syringe. The
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syringe with the attached tip is then placed in the material

head of the system, which is kept at 78 °C at a melting

temperature (Tm) equal to 78 °C. The volumetric flow

rate (Q) is set and controlled at 25 μL/h using a pro-

grammable syringe pump (Harvard Apparatus, USA). The

voltage potential (Vp) between the needle tip and a

grounded aluminum collector is set equal between 10 and

12 kV (10 kV ≤Vp ≤ 12 kV) using a high DC voltage

source (Gamma, USA). The aluminum collector is

mounted on a x–y programmable stage (ASI Applied

Scientific Instrumentation, USA) with high positional

accuracy (~10 μm) at a wide dynamic range of transla-

tional speeds (1 <UT < 80mm/s). Custom translational

patterns are written in Python 2.7 guiding the stage to

move at various patterns and speeds. Rectangular

microscope glass coverslips (25 × 25 mm and thickness

range: 0.13–0.17 mm—Fisher Scientific, USA) are

attached on the aluminum grounded collector and used as

the collection substrates of the MEW fibers. The TCD (d)

is set equal to 12mm (d= 12mm). 3D woven fibrous

substrates (10 layers of fiber and 100 fibers/layer) with

uniform fiber diameter and two different lattice micro-

architectures are fabricated in a layer by layer manner by

controlling the inter-fiber distance and relative fiber

deposition angle for the prescribed set of process para-

meters. Samples with 90° and 45° inter-layer fiber orien-

tation are designated as “MEW|0–90°” and “MEW|

0–45°”, respectively.

Fibrous substrate characterization

SES-1 min and SES-3 min samples are examined using

SEM. MEW|0–90° and MEW|0–45° are examined using

SM. The structural formability of all the fibrous substrates

is quantitatively characterized with respect to fiber dia-

meter and effective pore size area. The fiber diameter is

measured directly from the acquired micrographs by

randomly sampling regions (n= 100) across three repli-

cates of each type of fibrous substrate for statistical sig-

nificance using Fiji software53. The apparent pore size

distributions were measured directly from the acquired

micrographs using the MIPAR image processing soft-

ware54. A custom semi-automatic segmentation recipe

was developed based on contrast and brightness pre-

processing steps, the application of classical thresholding

algorithms (based on the grayscale intensity difference

between the background and the printed fibers), and the

subsequent manual correction of erroneous segmented

areas. The mean fiber diameter and mean effective pore

size are reported along with their standard deviation for

each type of fibrous substrate under investigation.

Biological materials

NHDFs (Coriell Institute) were cultured in high-glucose

Dulbecco’s modified Eagle’s medium (DMEM) containing

1% penicillin/streptomycin and 10% fetal bovine serum in

basal media. Rectangular microscope glass coverslips

(25 × 25 mm and thickness range: 0.13–0.17 mm—Fisher

Scientific, USA) and the fabricated PCL meshes with

prescribed feature sizes are implemented as the control

and experimental substrates, respectively. Both substrates

were placed inside sterilized, non-treated 6-well plates for

all biological studies. Both groups of substrates are seeded

with NHDFs at the P8 generation. NHDFs are cultured on

the different substrates for 24 h at incubating conditions

(37 °C, 5% CO2). Cell seeding densities were kept at 2000

cells/coverslip (2D controls) and 5000 cells/fibrous sub-

strates (3D) to allow single cell morphology observation.

Prior to seeding, both controls and fibrous substrates are

placed inside Petri dishes, sterilized with 70% ethanol,

dried under the exposure of UV light for at least 1 h, and

then transferred to sterile 6-well plates where they were

coated with sterile filtered PLL (0.01%, P4707 Sigma

Aldrich, USA) to promote cell attachment according to

manufacturer’s protocol. Specifically, 0.5 mL of that

solution is aseptically transferred to all substrates. After

5 min in room temperature, the excess solution is

removed, and the surface is thoroughly rinsed with sterile

water and allowed to dry for at least 2 h inside the bio-

safety cabinet hood. The coated substrates are then

exposed to UV light overnight for sterilization. Right

before cell seeding the substrates are thoroughly rinsed

with final media formulation. Cell morphology is observed

using immunofluorescent staining at day 1 (24 h after cell

seeding).

Immunofluorescent staining

Attached NHDFs are fixed in 4% paraformaldehyde (in

PBS) for 5 min at room temperature, permeabilized with

0.2% (v/v) Triton-X and blocked with 4% BSA. To

examine FA distribution, samples are incubated with

primary antibodies (vinculin: 1:200 mouse monoclonal

antibody (Abcam)) and secondary antibodies (1:200,

Alexa Fluor 488 donkey anti-mouse IgG (H+L)

(Abcam)). To examine actin cytoskeletal organization,

the samples are stained with Texas Red-X phalloidin

(1:400, Invitrogen). Prior to imaging, droplets of Fluor-

oshield mounting medium with DAPI (0.0002%, Abcam)

are applied to the samples to allow cell nuclei observa-

tion and to prevent photobleaching. Excess medium is

then removed by touching the edges of the slide against

a paper towel. The samples are set to stand at room

temperature for about 5 min and a coverslip is carefully

on top of them avoiding air bubbles. The edges of the

coverslip are sealed with nail polish to avoid the for-

mation of bubbles over time. The majority of all samples

were imaged directly after the immunostaining proce-

dure is done or within 24 h during which there were

stored in the dark at 2–8 °C.
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Quantitative confocal microscopy

3D confocal microscopy raw data are employed to

detect cellular (actin microfilaments) and sub-cellular

morphometric features (FAs, nuclei) using image pro-

cessing. The analysis followed for detecting and quanti-

fying the features of interest is performed with the open

source software Fiji53 and MIPAR software54. Samples are

imaged at ×40 magnification on an inverted motorized

microscope (IX83 Olympus, USA). The samples are also

imaged with a confocal laser-scanning microscope (Zeiss

LSM 510) equipped with a ×63 oil immersion objective.

The samples are scanned across their thickness with a

step size of 0.1 μm. Z-stack images with 488-, 543-, and

633-nm laser wavelengths were acquired corresponding

to the green, red, and blue channels, respectively. Raw

Z-stack images are post-processed using the ImageJ

software and, unless otherwise specified, are presented as

maximum intensity projections.

Image-based cell feature extraction procedure

The analysis followed for detecting and quantifying the

features of interest is performed with the open source

software Fiji53 and the beta version of the MIPAR soft-

ware54. A fully automated procedure was developed to

determine cell body and nuclei contours using the red and

blue fluorescent channel images, respectively. In this

procedure, fluorescent images are transformed to 8-bit

grayscale images and pre-processed to ease the automated

segmentation procedure, explained hereafter. Initially,

brightness and contrast are equalized across the image by

performing a uniform histogram scaling using the Con-

trast Limited Adaptive Histogram Equalization (CLAHE)

algorithm55. Then, the image is denoised using an

advanced filtering algorithm known as Non-Local Means

(NLM)56. During that step, each pixel’s local window is

compared to windows around it and then the windows’

center pixels are averaged together with weights

depending on the variations between the windows. This

step is crucial for the accuracy and objectivity of

the segmentation since it allows for noise reduction while

preserving the edges of the features of interest. The

phalloidin and DAPI signals are mostly present on

the actin microfilaments and on the border of the nuclei,

respectively. Thus, segmentation using thresholding

results in incomplete cell body and nucleus mask, in

which the center is not filled and the border is not con-

tinuous. Following the NML step, segmentation is per-

formed using thresholding during which the image is

binarized based on a certain pixel threshold value. The

threshold value is obtained automatically using Otsu’s

method57. Despite the effectiveness of the NLM step into

preserving the borders of the segmented feature, high

gradient values in the cytoskeleton or the nucleus caused

by non-homogeneous content, require an additional

erosion step. During that step, black pixels are removed if

they are surrounded by white pixels, whose number is

greater than or equal of a user-specified value. It was

determined that a value of 5 was suitable for all the

images. The binarized image is inverted resulting in an

image with white background and a black mask of the

feature of interest. The algorithmic workflow is completed

by adding an additional “hole filling” step that ensures the

removal of any redundant white pixel features that might

cause discontinuities within the black mask of the seg-

mented features of interest. The detection and segmen-

tation of FAs is performed using the same algorithmic

workflow with the addition of some extras filtering steps

that allowed the removal of noisy signal due to cyto-

plasmic background and the isolation of the mature FAs

with respect to nascent adhesions. The former one is

achieved by adding an extra dilation step before the ero-

sion step. The latter one is achieved by adding an extra

filtering step that removes all the black pixel features with

an area equal or smaller to 0.2 μm2. The image processing

workflow is described in detail (Supplemental Document)

with critical settings used for each filtering step along with

the image outcome after each filtering step.

Definitions of size-, shape-, and distribution-related

metrics

Metrics of the segmented features of interest are

defined hereafter. The “Cell Area” metric is defined as

the spreading area of individual cells. The “Ellipticity” is

defined based on moment invariants58 as previously

described45. The moment invariants are directly

obtained from the MIPAR software after the image-

based cell feature extraction procedure is completed.

The “Ellipticity” metric range over [0,1] peaking at 1 for

a perfect ellipse. The “Rectangularity” metric is defined

as the ratio of cell’s area against the area of its minimum

bounding rectangle as previously described44. The MBR

area is computed using the length of each feature’s

bounding box in the x and y direction. The lengths in

both directions are directly obtained from the MIPAR

software after the image-based cell feature extraction

procedure is completed. The value of the “Rectangu-

larity” ranges over [0,1] peaking at 1 for a perfect rec-

tangle. “The “Solidity” metric is defined as the ratio of

the area of each cell over the area of the tightest fitting

convex hull. It takes values between 0 and 1 with the

ratio approaching to 1 as the cell area increases to match

the fitted convex hull. Thus, solidity is an indicator of

how “ruffled” or concave the cell periphery of the cell is.

The “FA size” metric is defined as the area of individual

mature FAs. FA shape metric is quantified based on the

“FA Aspect Ratio”, which is defined as the ratio of the

major to the minor axis length of an ellipse fitted into

each detected FA.
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The Cartesian data of the nuclei and FA masks are

leveraged to extract the centroids of the detected nuclei

and individual FAs, respectively. Using these data, two

functions are defined: (a) the E-function and (b) the

G-function. The E-function is defined as the cumulative

frequency distribution of the radial Euclidean distance of

each FA centroid from the nuclear centroid within each

cell. Straight lines constrained on the origin of the Car-

tesian axes are fitted on the E-function curves using linear

regression. This procedure incorporates fitted slopes

(denoted as “Cell E-slope”) as metrics to compare indivi-

dual cells with respect to the tendency of FAs to form

either nearer to or distant from the nuclei. Averaging all

the fitted “Cell E-slopes” obtained from the fitting of

E-functions of cells cultured under identical substrate

conditions enables a “mean E-slope” value as a metric to

compare different cell populations. Moreover, the

G-function is defined as the distance of each detected FA

to its nearest detected FA neighbor. Averaging the dis-

tance values within each cell enables a metric denoted as

“Cell G-function” to compare the degree of FA clustering

between individual cells. Averaging the “Cell G-function”

values obtained for cells cultured under the same sub-

strate conditions, a “mean G-function” value can be used

as a metric to compare the degree of FA clustering

between different cell populations.

Statistical analysis

Based on the experimental design, the mean difference

for each defined metric and between each of the four cell

population groups corresponding to the glass coverslip

(controls) and the three fibrous substrates (SES-1 min,

SES-3 min, and MEW|0–45°) were compared using one-

way ANOVA and Tukey’s multiple comparisons tests.

The sample size of each group was chosen with respect to

the maximum number of individual cells that can be

imaged efficiently on each substrate using confocal

microscopy (n= 20–22 cells/group). Two-tail P-values

with 95% confidence intervals (CI) for the computed

mean difference obtained from the Tukey’s multiple

comparison tests are considered.

Classification scheme

A 7-D Cartesian coordinate system of cell shape phe-

notypes, in which each axis represents each feature

metric, is developed for the 7-metrics computed from the

various measures of cell shapes, i.e., the “morphometric”

analysis and the spatial distributions of FAs. The metrics

included (a) Ellipticity (“I”), (b) Rectangularity (“II”), (c)

Cell Area (“III”), (d) FA Size (“IV”), (e) FA Aspect Ratio

(“V”), (f) E-Slope (“VI”), (g) Mean G-function (“VII”).

Within this representation, each point represents one

single-cell feature-vector with 7 elements corresponding

to the computed metrics for the specific cell. All metrics

are normalized using a Z-score function, which centers

and scales all metric values to have zero mean and unit

standard deviation, respectively59.

The transformed metric vectors for each cell popula-

tion are multidimensional data sets to train a support

vector machine (SVM) with a linear kernel using the

classification learner package in Matlab60. The linear-

kernel SVM is a supervised machine learning algorithm

that can classify the data by determining the best

hyperplane that distinguishes all data points into the

defined classes59. The best hyperplane for the SVM

algorithm is considered the one with the largest margin

between the two classes with the margin being the

maximum width of the slab parallel to the hyperplane

that has no interior data points. The predictive accuracy

of the linear-kernel SVM is assessed using a 5-fold

cross-validation scheme to protect against overfitting

and to assure the generalization performance of the

classifier61,62. Here, the data are randomly partitioned in

5 folds where, for each fold, the scheme trains the linear

SVM using the out-of-fold observations and assesses the

model performance using the in-fold data. The classifi-

cation accuracy is defined as the average percentage of

the correctly classified data for each fold and used as a

metric for the classifier’s predictive performance.
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