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ABSTRACT ML (Machine Learning)-based artificial neural network (ANN) model is proposed to estimate

the LER (line edge roughness)-induced performance variation in Fin-shaped Field Effect Transistor

(FinFET). For a given LER features such as rms amplitude(1), correlation length along x-direction (3X),

and correlation length along y-direction (3Y), the metrics for device performance such as on-state drive

current, off-state leakage current, threshold voltage, and subthreshold swing can be computing-efficiently

estimated with the ANN model.

INDEX TERMS Line edge roughness, process-induced random variation, FinFET, machine learning,

artificial neural network.

I. INTRODUCTION

For the last a few decades, complementary metal oxide

semiconductor (CMOS) technology has been successfully

evolved with the adoption of new techniques such as stress

engineering in 90 nm technology node and beyond [1],

high-k/metal-gate in 45 nm technology node and beyond [2],

and 3-D advanced device structure in 22 nm technology node

and beyond [3]. In every new CMOS technology platform,

the physical dimension of metal oxide semiconductor field

effect transistor (MOSFET) has been scaled down not only

to increase the density of devices in integrated circuit (IC)

but also to improve the functions of IC per cost. However,

process-induced random variations (i.e., transistors’ electri-

cal characteristics such as threshold voltage, on-state drive

current, and off-state leakage current, are randomly fluc-

tuated/affected while fabricating transistors in FAB), have

negatively affected the manufacturability of CMOS devices,

and thereby, it would significantly hinder the evolution of

CMOS technology [4]. The root-causes of process-induced

random variation are classified as (i) line edge rough-

ness (LER), (ii) random dopant fluctuation (RDF), and

(iii) work function variation (WFV) [5]. Especially, LER

would degrade the device performance but also indirectly

affect the other random variation sources (i.e., RDF and
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FIGURE 1. A bird’s-eye view of FinFET with a 3-D LER on its sidewall.
LER parameters used in this example are as follows: 1 = 0.5 nm,
3x = 20 nm, 3y = 50 nm, α = 1, 2 = 0.

WFV) because it induces structural variations in device [6].

With the most radical shift in device structure in the year

of 2011, i.e., from planar bulk MOSFET to 3-D MOSFET

(i.e., FinFET), the process-induced technical issues become

much more severe [7]. Therefore, as the device architec-

ture becomes more complicated (in reality, multiple bridge

channel field effect transistor (MBCFET), stacked nano-wire

FET, stacked nano-slab FET, etc. for 3 nm CMOS technology

node [8] and beyond), understanding the impact of LER on

device performance is desperately required in developing

variation-robust silicon device at 3 nm technology node and

beyond [9].
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FIGURE 2. Examples of roughness amplitude when (a) 3 = 10, α = 1, (b) 1 = 0.5, α = 1, and (c) 1 = 0.5, 3 = 10.

TABLE 1. Device parameters of The FinFET used in simulation [8].

TABLE 2. Performance metrics.

A few studies have reported to understand, quantify,

and analyze the impacts of LER on device characteristics

[10]–[12]. TCAD (Technology Computer Aided Design)-

based method has been adopted to propose model for

finely and accurately predicting the impact of LER [13].

However, the TCAD-based approach is fundamentally very

time-consuming and computationally-inefficient when pre-

dicting thousands of LER-induced input transfer character-

istics of MOSFETs in integrated circuit. Thus, a few studies

[14], [15] have tried to compactly model the impact of LER

on the device performance. Nevertheless, due to many techni-

cal barriers in developing a new compact model, the compact

model for analyzing the impact of LER [14], [15] would

not be timely developed, even though the LER on the fin

sidewall of FinFET should bemodeled for two-dimensionally

characterizing/understanding the sidewall surface [7], [13].

Therefore, using Machine Learning (ML) technique, simple

but eye-catching novel approach with reasonable accuracy

is proposed in this work, to provide an alternative device

solution for predicting the process-induced variation.

II. DEVICE DESIGN AND DATA GENERATION

A. LINE EDGE ROUGHNESS PARAMETERS

Generally, 2 or 3 parameters (e.g., 1, 3, and α) are used

to describe the LER profile in planar MOSFETs, and 3 or 4

parameters (e.g., 1, 3x, 3y, and α) are used in 3-D

MOSFETs. The impact of each parameter in LER profile

FIGURE 3. The flow chart how to build/train/test the ANN model.

is comparatively described in Fig. 2. The details of each

parameter used in Fig. 2 are as below [16]:

(i) Amplitude (1): the root-mean-square(rms) value of

roughness amplitude. The smaller 1 is, the smoother the

surface is.

(ii) Correlation length (3): how closely the correlated edge

is associated to its neighboring edge. The larger 3 is, the

smoother the surface is.
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FIGURE 4. Artificial neural network (ANN) structure: The model has 3 input variables and 4 output variables which are randomly sampled from
probability distribution function. The probability distribution function is determined by the mean vector and covariance matrix.

(iii) Roughness exponent (α): the high frequency

component of roughness. The larger α is, the smoother the

surface is.

B. DEVICE DESIGN WITH LINE EDGE ROUGHNESS

A three-dimensional (3-D) bird’s-eye view of FinFET with

a 3-D LER on its sidewall fin is shown in Fig.1. The device

design parameters of nominal FinFET device are summarized

in Table 1. To reconfigure the surface roughness on the

sidewall fin of FinFET, the quasi-atomistic model [13] was

used. The steps to generate a rough surface are as below:

Step I: Define key parameters such as 1, 3x, 3y, α, 2

of 2-D ACVF [see (1) below].

Step II: Obtain the 2-D power spectrum by taking the fast

Fourier transformation (FFT).

Step III: Obtain the amplitude spectrum by taking the

square root of the result in Step II.

Step IV: Obtain the 2-D impulse response by taking the

inverse fast Fourier transformation (IFFT) on the result in

Step III.

Step V: Generate the white Gaussian noise (wgn) and take

the 2-D convolution of the result in Step IV and wgn.

Step VI: Once the steps above are done, import the

generated surface coordinates to TCAD with Sentaurus

Structure Editor.

ACVF (x, y)

= 12exp



−

{

(xcos2+ysin2)2

32
x

+
(−xcos2+ysin2)2

32
y

}
α
2





(1)

In (1), 3x and 3y are the correlation length along

x-direction and y-direction of surface, respectively.

2 determines the relation between x and y direction.

C. DATA GENERATION

To build and verify the Artificial Neural Network (ANN)

model, 100 different data sets (note that each data set consists

of 50 different FinFETs with identical LER parameters) were

FIGURE 5. Training, validation loss, and time vs. training epochs.

TABLE 3. Time comparison between TCAD and ANN.

first created. To generate those data sets of FinFET device,

three LER parameters (i.e.,1,3x,3y) should be determined.

Herein, based on the previous experimental data [16]–[19],

a reference LER parameter set was first chosen;1 = 0.5 nm,

3x = 20 nm, 3y = 50 nm, α = 1, 2 = 0. Afterwards,

the value of three LER parameters (1, 3x, 3y) are ran-

domly chosen from a given range for each LER parameter,

as follows: 1 from 0.2 nm to 0.8 nm, 3x from 10 nm to

100 nm, and 3y from 20 nm to 200 nm. The distribution

of each LER parameter in the limited range follows the

uniform distribution. Note that α is set to 1, and 2 is set

to 0. In fact, in order to take account into the impact of α on

a LER profile, a very small sampling distance is necessary.
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FIGURE 6. (a) Mean and standard deviation of Ion by amplitude(1) when 3x = 20 and 3y = 50, (b) standard deviation and (c) mean of Ion by correlation
length X(3x) and Y(3y) when 1 = 0.5.

TABLE 4. Mean and standard deviation of the performance metrics.

However, the small sampling distance should cause the

tremendous amount of computational works in TCAD sim-

ulation runs. In real, α is usually out of sight in many other

studies on LER [11], [14], [15], [20]. Regarding 2, we set

2 as 0, for simplicity. This means that the roughness along

x-direction is independent of that along y-direction. Then,

Id-vs.-Vg characteristic of all FinFETs in 100 different data

sets were simulated using the TCAD, and thereafter, the per-

formance metrics (e.g., Ioff, Vt, Ion, SS) were extracted out

[see Table 2 ].

Those data sets were separated into three groups: training

data sets, validation data sets, and test data sets. The training

data sets are used to update the ANN model components

such as weight matrices and bias vectors. The validation data

sets are used to monitor if the ANN model is well trained or

over-fitted in the training process. After the training process

is finished, the test data sets are used to verify if the ANN

model is well trained or not [see Fig. 3].

III. ARTIFICIAL NEURAL NETWORK MODELING

A. FULLY CONNECTED LAYERS

This ANN model has 1 input layer, 1 output layer and

3 hidden layers with 3 activation functions (ϕ), [see Fig. 4].

The hyperbolic tangent (tanh) is used for activation functions.

It is mathematically defined as follows:

tanh =
e2x − 1

e2x + 1
(2)

Weight matrices (W1, W2, . . . , W4) and bias vectors

(b1, b2, . . . , b4) of ANNmodel can determine outputs. When

training the ANN model, those matrices and vectors are
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FIGURE 7. Test data set from TCAD vs. data set predicted by ML model. For the given LER profile (i.e., 1 = 0.246 nm, 3x = 79.43 nm, 3y = 159.69 nm),
(a) log10(Ioff)-vs.-Vt, (b) Ion-vs.-Vt, (c) SS-vs.-Vt. For the other LER profile (i.e., 1 = 0.715 nm, 3x = 30.47 nm, 3y = 164.03 nm), (d) log10(Ioff)-vs.-Vt,
(e) Ion-vs.-Vt, (f) SS-vs.-Vt. Note that black-colored square, red-colored circle, and blue-colored triangle indicates TCAD sample, ML sample 1, and ML
sample 2, respectively.

updated in order to be fit to the training data sets for specified

number of iterations.

B. GRAFTING PROBABILITY DISTRIBUTION

In this study, we assumed that the distribution of performance

metrics follows the multi-variate Gaussian distribution to

securely build the model for estimating the LER-induced

performance variation of device. It is known that the

LER-induced variation of Vt, Ion, SS, and log10Ioff approx-

imately follows the Gaussian distribution in various devices

[11], [21], [22].

To train the ANN model with probabilistic layer, we used

Maximum likelihood estimation (MLE) method. Based on

the observation (e.g., Y ), the MLE method is a technique for

estimating parameter θ , when there is the input X. In other

words, the final goal in this method is to find θ that maximizes

P(Y|X; θ ) or can be mathematically rewritten as in (3):

θML = argmax
θ

P (Y |X; θ) (3)

The parameters such as X , Y , and θ can be redefined in our

model as follows:

X : 1, 3x, and 3y (LER parameters)

Y : {y1, y2, . . . y50}, yi: observed Ioff, Vt, Ion, and SS

θ : mean vector and covariance matrix

To train the probability-grafted ANN, we used ‘‘Negative log

likelihood’’ (negloglik) as a loss function. Negloglik notifies

how much two other distributions are different from each

other.

Using Adam Optimizer [23], the training process was exe-

cuted for 200,000 epochs (776 sec) with learning rate of 10−5.

The model was trained without overfitting [see Fig. 5].

IV. RESULTS AND EVALUATION

Fig. 6 shows how Ion is varied with modifying the LER

parameters. Table 4 and Fig. 7 show the comparison between

the TCAD data (=test data set) and the prediction data by the

ANNmodel. Based on the probability density function deter-

mined by the mean vector and covariance matrix, the predic-

tion data was ‘‘randomly’’ extracted. Hence, they are slightly

different from TCAD samples, but they can never be identical

to TCAD samples. Thus, the accuracy of prediction data

was evaluated using the confidence interval calculated by the

standard error of mean and standard deviation [24]. Herein,

the predicted values of population mean and standard devia-

tion by the ANN model are considered as the true population

mean and standard deviation.

Standard error of mean =
σ

√
n

(4)

n : number of samples in 1 set of data.

Standard error of standard deviation ≈
σ

√
2 (n− 1)

(5)
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Table 3 shows the comparison of simulation time of

TCAD vs. ANN. It is noteworthy that the advantage of using

the ANN model becomes conspicuous when the number of

data (or the size of data) is bigger than 10,000 or more. Note

that the ANN model was built using the Tensorflow 2.0 and

Tensorflow-probability python library [25], [26].

V. CONCLUSION

Line edge roughness (LER) is one of key sources inducing

undesirable variation in transistor performance. These unde-

sirable fluctuations affect the operation of circuit, and

thereby, they can cause unexpected errors. Therefore, it is

important to understand the factors causing the random varia-

tion in an accurate manner within reasonable time. In FinFET,

the structural deformation by LER appears not as a shape of

line but plane. Thus, the compact modeling method would

not be the right option for solving a problem with increased

complexity. To avoid these difficulties, we used the ANN

model and suggest alternatives to predict the process-induced

random fluctuations. With accurate predictions (which meets

the confidence interval of 99%), our method is expected to

help analyze the effects of LER in fabrication process and to

evaluate yield of integrated circuit (IC).
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