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Machine Learning Model for Computational
Tracking and Forecasting the COVID-19

Dynamic Propagation
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Abstract—A computational model with intelligent ma-
chine learning for analysis of epidemiological data, is pro-
posed. The innovations of adopted methodology consist
of an interval type-2 fuzzy clustering algorithm based on
adaptive similarity distance mechanism for defining spe-
cific operation regions associated to the behavior and un-
certainty inherited to epidemiological data, and an interval
type-2 fuzzy version of Observer/Kalman Filter Identifica-
tion (OKID) algorithm for adaptive tracking and real time
forecasting according to unobservable components com-
puted by recursive spectral decomposition of experimen-
tal epidemiological data. Experimental results and com-
parative analysis illustrate the efficiency and applicability
of proposed methodology for adaptive tracking and real
time forecasting the dynamic propagation behavior of novel
coronavirus 2019 (COVID-19) outbreak in Brazil.

Index Terms—Computational model, covid-19,
epidemiological data, interval type-2 fuzzy systems, kalman
filtering, machine learning.

I. INTRODUCTION

I
N THE last years, studies involving the integration of fuzzy

systems and Kalman filters have been proposed in the litera-

ture [1]–[3]. In [4], fuzzy sets are combined with an optimization

method based on extended Kalman filter with probabilistic-

numerical linguistic information applied for tracking a maneu-

vering target. In [5], an optimization methodology of adaptive

Unscented Kalman Filter (UKF) is presented by an evolution-

ary fuzzy algorithm named Fuzzy Adaptive Grasshopper Op-

timization Algorithm, and it is efficiently applied to different

benchmark functions.

Recently, with the beginning of the Covid-19 epidemic out-

break, several researchers have proposed model based data

analysis approaches applied to novel Coronavirus 2019 [6]–[8].
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The objective of these studies is to characterize the evolution

of pandemic in certain regions and, thus, to contribute for the

requirements adopted to contain the contamination by virus and

allocation of resources. In [9], a mathematical model based on

SEIR model (Susceptible - Exposed - Infectious - Recovered)

for forecasting the transmission dynamics of Covid-19 in Korea,

is proposed. This study is able to predict the final size and the

timing of the end of epidemic as well as the maximum number

of isolated individuals using daily confirmed cases comparing

epidemiological parameters between the national level and the

Daegu/Gyeongbuk area. In [10], the role of asymptomatic carri-

ers in transmission poses challenges for control of the Covid-19

pandemic, is addressed.

Differently from aforementioned approaches and others ones

found from literature, the scope of this paper outlines a machine

learning approach based on integration of Kalman filter and

interval type-2 fuzzy systems for adaptive tracking and real time

forecasting the COVID-19 dynamic propagation. The design

of interval type-2 fuzzy Kalman filter, according to proposed

methodology, is based on spectral unobservable components and

uncertainty regions extracted from experimental data.

A. Motivation and Contributions of the
Proposed Methodology

The impacts caused by novel coronavirus pandemic has mo-

tivated the analysis of epidemiological data, for support of

political/health authorities and decision-making [11], [12]. In

this context, several modeling methodologies has been proposed

in literature for solving epidemiological problems [13]–[15].

However, the uncertainties inherent to experimental epidemi-

ological data (underreporting, lack of information, incubation

period of the virus, time to seek care and diagnosis) have open a

new research field, in which the proposed methodology belongs

to. The originality of the proposed methodology is outlined by

following main contributions:
� A new machine learning computational tool based on the

successful integration of Kalman filters and type-2 fuzzy

systems for adaptive tracking and real time forecasting

of experimental epidemiological data, which is useful for

analysis of COVID-19 dynamic propagation;
� Formulation of new interval type-2 fuzzy clustering al-

gorithm based on adaptive similarity distance mechanism
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ables to define specific operation regions in the epidemi-

ological data associated to the behavior and uncertainty

inherent to COVID-19 dynamic propagation;
� Formulation of a new computational model with intel-

ligent machine learning based on interval type-2 fuzzy

Kalman filter, for adaptive tracking and real time forecast-

ing the behavior and uncertainty inherent to COVID-19

dynamic propagation, from the specific operation regions

in the epidemiological data.

II. INTERVAL TYPE-2 FUZZY COMPUTATIONAL MODEL

In this section, the proposed methodology for designing the

interval type-2 fuzzy Kalman filter computational model from

experimental data, is presented.

A. Pre-Processing by Singular Spectral Analysis

1) Training Step: Let the initial experimental dataset refer-

ring to p time series under analysis, with Nb samples, given

by [16]:

y = [y1 y2 . . . yNb
], y ∈ R

p×Nb (1)

where yk ∈ R
p, with k = 1, . . . , Nb, is the time series vector at

instant of time k. From this initial dataset, a trajectory matrix

H is defined, for each of the dimensions of y, considering a

set of ρ delayed vectors with dimension δ, which is an integer

number defined by user with 2 ≤ δ ≤ Nb − 1 and ρ = Nb −
δ + 1, given by:

H =

⎡
⎢⎢⎢⎣

y1 y2 y3 · · · yρ
y2 y3 y4 · · · yρ+1

...
...

...
. . .

...

yδ yδ+1 yδ+2 · · · yNb

⎤
⎥⎥⎥⎦ , H ∈ R

δ×ρ (2)

and the covariance matrix S is obtained as follows:

S = HHT , S ∈ R
δ×δ (3)

Applying the Singular Value Decomposition (SVD) procedure to

matrixS, is obtained a set of eigenvalues in decreasing order such

that σ1 ≥ σ2 ≥ · · · ≥ σδ ≥ 0 with their respective eigenvec-

tors φ1,φ2, . . . ,φδ . Considering d = max{ς, such that σς >
0}, andVς = HTφς/

√
σς with ς = 1, . . . , d, the singular value

decomposition of the trajectory matrix H, can be rewritten as:

H = H1 +H2 + · · ·+Hd (4)

where the matrix Hς |ς=1,...,d is elementary (it has rank equal to

1), and is given by:

Hς =
√
σςφςVςT , Hς ∈ R

δ×ρ (5)

The regrouping of Hς |ς=1,...,d into ξ linearly independent

matrices terms Ij |j=1,...,ξ, such that ξ ≤ d, results in

H = I1 + I2 + · · ·+ Iξ (6)

where ξ is the number of unobservable components extracted

from experimental dataset. The unobservable spectral compo-

nents αj |j=1,...,ξ obtained from matrices Ij |j=1,...,ξ, are given

by:

αj
k =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
k

∑k+1

ν=1
Ijν,k−ν+1 1 ≤ k ≤ δ∗

1
δ∗

∑δ∗

ν=1
Ijν,k−ν+1 δ∗ ≤ k ≤ ρ∗

1
Nb−k+1

∑Nb−ρ∗+1

ν=k−ρ∗+1
Ijν,k−ν+1 ρ∗ < k ≤ Nb

(7)

where δ∗ = min(δ, ρ), ρ∗ = max(δ, ρ).
2) Recursive Step: The value of ρ is increased by ρ = k −

δ + 1, with k = Nb + 1, Nb + 2, . . . , and the covariance matrix

is updated, recursively, as follows:

Sk = Sk−1 +Υk, Sk ∈ R
δ×δ (8)

where Υk = ψkψ
T
k ∈ R

δ×δ with ψk = [yρ, yρ+1, . . . , yk]
T ∈

R
δ×1. Applying SVD procedure to covariance matrix Sk, the

term yk can be rewritten by:

yk = h1
k + h2

k + · · ·+ hd
k (9)

where hς
k = κς

kψ
T
kφ

ς
k, with ς = 1, . . . , d, such that κς

k corre-

sponds to the last element of the eigenvector φς
k. Finally, the re-

grouping of the terms hς
k|ς=1,...,d in ξ disjoint terms Ijk|j=1,...,ξ,

results in

yk = I1k + I2k + . . .+ Iξk (10)

such that Ijk = αj
k, with j = 1, . . . , ξ and k = Nb + 1, Nb +

2, . . . , represents the samples of extracted unobservable com-

ponents at instant k.

B. Parametric Estimation of Interval Type-2 Fuzzy
Kalman Filter

The adopted structure of interval type-2 fuzzy Kalman filter

presents the i|[i=1,2,...,c]-th fuzzy rule, given by:

R(i) : IF Zk IS W̃ i

THEN

{
˜̂xi

k+1 = Ãi
k
˜̂xi

k + B̃i
kuk + K̃i

kǫ̃
i
k

˜̂yi

k = C̃i
k
˜̂xi

k + D̃i
kuk

(11)

with n-th order, m inputs, p outputs, where Zk is the linguistic

variable of the antecedent; W̃ i is the interval type-2 fuzzy set;

˜̂xi

k ∈ R
n is the estimated interval states vector; ˜̂yi

k ∈ R
p is

the estimated interval output vector and uk ∈ R
m is the input

signal. The matrices Ãi
k ∈ R

n×n, B̃i
k ∈ R

n×m, C̃i
k ∈ R

p×n,

D̃i
k ∈ R

p×m and K̃i
k ∈ R

n×p are, respectively, state matrix,

input matrix, output matrix, direct transmission matrix and

Kalman gain matrix. The residual error ǫ̃
i
k for i-th rule is defined

as ǫ̃
i
k = yk − ˜̂yi

k, where yk ∈ R
p is the real time series and ˜̂yi

k

is the interval estimated time series by i-th interval Kalman filter.

1) Parametric Estimation of Antecedent: The interval type-

2 fuzzy version of Gustafson-Kessel clustering algorithm, is

proposed, as formulated in the sequel. Given the experimen-

tal dataset Z ∈ R
p×Nb , choose the number of clusters c such

that 1 < c < Nb; the initial partition matrix Ũ(0) ∈ R
c×Nb , the

termination tolerance E > 0 and the interval weighting expo-

nent m̃ = [m,m], where m and m correspond to, respectively,
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weighting exponent of upper and lower membership functions

of the interval type-2 fuzzy set W̃ i.

Repeat for l = 1, 2, . . .
Step 1: Compute the centers of the clusters ṽi(l) :

ṽi(l) =

∑Nb

k=1

(
µ̃i
W̃ i

(Zk)
i(l−1)

)m̃

Zk

∑Nb

k=1

(
µ̃i
W̃ i

(Zk)
(l−1)

)m̃
, 1 ≤ i ≤ c (12)

where Zk is the data at sample k and µ̃i
W̃ i

(Zk) is the interval

membership degree of Zk in the i-th cluster.

Step 2: Compute the covariance matrices F̃i of the clusters:

F̃i =

∑Nb

k=1

(
µ̃i
W̃ i

(Zk)
(l−1)

)m̃ (
Zk − ṽi(l)

)(
Zk − ṽi(l)

)T

∑N

k=1

(
µ̃i
W̃ i

(Zk)
(l−1)

)m̃
,

1 ≤ i ≤ c, 1 ≤ k ≤ Nb (13)

Step 3: Compute the distances D̃i
kF̃i

between the sample Zk

and the center ṽi(l) of the i-th cluster:

D̃i
kF̃i

=

√
(
Zk − ṽi(l)

)T
[

det
(
F̃i

)1/n (
F̃i

)−1
] (

Zk − ṽi(l)
)

(14)

Step 4: Update the interval partition matrix Ũ(l):

If D̃i
kF̃i

> 0 for 1 ≤ i ≤ c, 1 ≤ k ≤ Nb

µ̃i(l)

W̃ i
(Zk) =

[
µi
W̃ i

(Zk), µ
i
W̃ i

(Zk)
]

(15)

where

µi(l)

W̃ i
(Zk) = min

⎡
⎢⎣

1
∑c

j=1

(
Di

kFi/Di
kFi

)2/(m−1)
,

1
∑c

j=1

(
D

i

kF
i/D

i

kF
i

)2/(m−1)

⎤
⎥⎦ (16)

is the lower activation degree in i-th rule and

µi(l)

W̃ i
(Zk) = max

⎡
⎢⎣

1
∑c

j=1

(
Di

kFi/Di
kFi

)2/(m−1)
,

1
∑c

j=1

(
D

i

kF
i/D

i

kF
i

)2/(m−1)

⎤
⎥⎦ (17)

is the upper activation degree in i-th rule. Otherwise,

µ̃i(l)

W̃ i
(Zk) = [0, 0] with µi(l)

W̃ i
(Zk) ∈ [0, 1] e µi(l)

W̃ i
(Zk) ∈ [0, 1]

Until ‖Ũ(l) − Ũ(l−1)‖ < E
2) Parametric Estimation of Consequent: The interval type-

2 fuzzy OKID (Observer/Kalman Filter Identification) algo-

rithm, is proposed, as formulated in the sequel. Let the ex-

perimental dataset Z, such that Zk = [uk α∗
k]

T , where α∗
k

corresponds to spectral components extracted from the exper-

imental dataset that presents higher eigenvalue and are more

significant to represent the dynamics of experimental dataset.

Choose an appropriate number of Markov parameters q, through

the following steps:

Step 1: Compute the matrix of regressors Λ, given by:

Λ =

⎡
⎢⎢⎢⎣

uq uq+1 · · · uNb−1

Zq−1 Zq · · · ZNb−2

...
...

. . .
...

Z0 Z1 · · · ZNb−q−1

⎤
⎥⎥⎥⎦ (18)

Step 2: Compute the interval Observer Markov Parameters:

˜̂yT
=

c∑

i=1

Γ̃
i
ΛT Ỹ

iT

(19)

where Γ̃
i

is the diagonal weighting matrix of the i-th fuzzy

rule obtained from the interval type-2 Gustafson-Kessel fuzzy

clustering algorithm and

Ỹ
i

=
[
D̃i

k C̃i
kB̃

i

k C̃i
kÃ

i

kB̃
i

k · · · C̃i
kÃ

i(q−1)

k B̃
i

k

]

=

[
Ỹ

i

0 Ỹ
i

1 Ỹ
i

2 · · · Ỹ
i

q

]
(20)

are the interval observer Markov parameters of i-th rule

such that Ã
i

k = [Ãi
k + K̃i

kC̃
i
k], B̃

i

k = [B̃i
k + K̃i

kD̃
i
k,−K̃i

k]
and CAkB ≈ 0 for k ≥ q, where q is the number of observer

Markov parameters [17]. Manipulating the (19):

ΛΓ̃
i
yT = ΛΓ̃

i
ΛT Ỹ

iT

(21)

Assuming Ũ
i
= ΛΓ̃

i
ΛT and ℵ̃

i
= ΛΓ̃

i
yT , Eq. (21) is rewrit-

ing as Ũ
i
Ỹ

iT

= ℵ̃
i
. Applying QR factorization to the term Ũ

i
,

it has:

Q̃iR̃iỸ
iT

= ℵ̃
i

(22)

Because the matrix R̃i is upper triangular, Eq. (22) can be solved

by backward replacement, obtaining the observer’s Markov

parameter vector Ỹ
i

.

Step 3: Compute the observer gain and system Markov pa-

rameters:

Ỹ
i

j =

[
C̃i

k

(
Ãi

k + K̃i
kC̃

i
k

)(j−1) (
B̃i

k + K̃i
kD̃

i
k

)
,

−C̃i
k

(
Ãi

k + K̃i
kC̃

i
k

)(j−1)

K̃i
k

]
(23)

=

[
Ỹ

i(1)

j , −Ỹ
i(2)

j

]
, j = 1, 2, 3, . . . (24)

The system Markov parameters Ỹi
j are obtained as follows:

Ỹi
j = Ỹ

i(1)

j −
j∑

ι=1

Ỹ
i(2)

j Ỹi
j−ι, for j = 1, . . . , q (25)
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Ỹi
j = −

q∑

ι=1

Ỹ
i(2)

j Ỹi
j−ι, for j = q + 1, . . . ,∞ (26)

and the observer gain Markov parameters Ỹio

j are obtained by:

Ỹio

j = Ỹ
i(2)

j −
j−1∑

ι=1

Ỹ
i(2)

j Ỹio

j−ι, for j = 2, . . . , q (27)

Ỹio

j = −
q∑

ι=1

Ỹ
i(2)

j Ỹio

j−ι, for j = q + 1, . . . ,∞ (28)

Step 4: Construct the Hankel matrix H̃i(j − 1) ∈ R
γp×βm:

H̃i (j − 1) =

⎡
⎢⎢⎢⎢⎣

Ỹi
j Ỹi

j+1 . . . Ỹi
j+β−1

Ỹi
j+1 Ỹi

j+2 . . . Ỹi
j+β

...
...

. . .
...

Ỹi
j+γ−1 Ỹi

j+γ . . . Ỹi
j+γ+β−2

⎤
⎥⎥⎥⎥⎦

(29)

where γ and β are arbitrary integers defined by user.

Step 5: For j = 1, decompose the Hankel matrix H̃i(0) using

Singular Value Decomposition:

H̃i(0) = Ξ̃iΣ̃
i
Ψ̃

iT

(30)

where Ξ̃i ∈ R
γp×γp and Ψ̃

i ∈ R
βm×βm are orthogonal matri-

ces and Σ̃
i ∈ R

γp×βm is the diagonal matrix of singular values.

Step 6: Compute the observability matrix P̃
i

γ and controlla-

bility matrix Q̃
i

β :

P̃
i

γ = Ξ̃i
n

(
Σ̃

i

n

)1/2

(31)

Q̃
i

β =
(
Σ̃

i

n

)1/2

Ψ̃
iT

n (32)

Step 7: Compute the matrices that make up the consequent

proposition of interval type-2 fuzzy Kalman filter:

Ãi
k =

(
Σ̃

i

n

)−1/2

Ξ̃iT

n H̃i
n(1)Ψ̃

iT

n

(
Σ̃

i

n

)−1/2

(33)

B̃i
k = first m collumns of Q̃

i

β (34)

C̃i
k = first p rows of P̃

i

γ (35)

D̃i
k = Ỹi

0 (36)

Step 8: Compute the interval Kalman gain matrix K̃i
k:

P̃
iT

γ Γ̃
i
Ỹio

j = −P̃
iT

γ Γ̃
i
P̃

i

γK̃
i
k (37)

Assuming Ã
i
= −P̃

iT

γ Γ̃
i
P̃

i

γ and Ñ
i
= P̃

iT

γ Γ̃
i
Ỹio

j , Eq. (37)

is rewriting Ã
i
K̃i

k = Ñ
i
, which is solved by QR factorization

method being applied to Ã
i

and obtaining the interval Kalman

gain matrix K̃i
k.

Recursive Updating of Interval Type-2 Fuzzy Kalman Filter

Inference System: Considering the regressors vector λk, at in-

stant k = Nb + 1, k = Nb + 2, . . . , given by

λk =
[
uk+1 Zk Zk−1 . . . Zk−q

]T
(38)

Fig. 1. The flowchart of the proposed methodology corresponding to
computational aspects for designing the interval type-2 fuzzy Kalman
filter.

the interval observer Markov parameters Ỹ
i

k are obtained by

recursive updating of Ũ
i
Ỹ

iT

= ℵ̃
i
, as follows:

Ũ
i

k = Ũ
i

k−1 + µ̃i
W̃ i

(Zk)λkλ
T
k (39)

ℵ̃
i

k = ℵ̃
i

k−1 + µ̃i
W̃ i

(Zk)λky
T
k (40)

The consequent proposition of the type-2 fuzzy Kalman filter is

updated recursively by repeating the Step 3 to Step 7. Similarly,

the interval type-2 fuzzy Kalman gain matrix K̃i
k is obtained by

recursive updating of Ã
i
K̃i

k = Ñ
i
, as follows:

Ã
i

k = Ã
i

k−1 + µ̃i
W̃ i

(Zk)λkλ
T
k (41)

Ñ
i

k = Ñ
i

k−1 + µ̃i
W̃ i

(Zk)λkλ
T
k (42)

In the sense to illustrate the sequential steps of the com-

putational aspects for interval type-2 fuzzy Kalman filter

design, for better understanding from readers, a flowchart

of the proposed methodology is shown in Fig. 1. The

code of interval type-2 fuzzy Kalman filter algorithm,
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Fig. 2. The experimental dataset of daily deaths reports within period
from 29 of February 2020 to 18 of May 2020, in Brazil.

based on the proposed methodology, is of open ac-

cess from the link <https://drive.google.com/drive/folders/

1BvzMnaZZhtleJ1dVggJJGWISpNfwdvqD?usp=sharing>.

III. EXPERIMENTAL RESULTS

In this section, experimental results for forecasting analysis

the COVID-19 dynamic propagation, including comparative

analysis with the approaches in [18], [19] and with the ma-

chine learning models Least Absolute Shrinkage and Selection

Operator (LASSO), Autoregressive Integrated Moving Average

(ARIMA) and Long Short-Term Memory (LSTM) recurrent

neural network, taking into account the experimental dataset

of daily deaths reports caused by coronavirus disease in Brazil,

are presented.

A. Interval Type-2 Fuzzy Kalman Filtering and
Forecasting Analysis of the COVID-19 Dynamic
Propagation in Brazil

The experimental dataset corresponding to daily deaths re-

ports within the period ranging from 29 of February 2020 to 18

of May 2020, in Brazil, is shown in Fig. 2, which were extracted

from official report by Ministry of Health of Brazil.1 The Vari-

ance Accounted For (VAF) was considered for evaluating the

appropriate number of unobservable components, within a range

from 2 to 15 ones for best representation of experimental dataset.

Considering the cost-benefit balance for computational practical

application of proposed methodology, the appropriated number

of unobservable components was ξ = 10, with VAF value of

99.98%. For implementing the proposed type-2 fuzzy clustering

algorithm, the following parameters were adopted: number of

clusters c = 3, interval weighting exponent m̃ = [1.5, 2.3] and

termination tolerance E = 10−5. The implementation of interval

type-2 fuzzy OKID algorithm took into account the parameters

1Available at: https://covid.saude.gov.br/

Fig. 3. The confidence region generated by interval type-2 fuzzy
Kalman filter for tracking the experimental dataset of daily deaths re-
ports, from 29 of February 2020 to 18 of May 2020, in Brazil.

values q = 1, γ = 15 and β = 15. The confidence region, as

shown in Fig. 3, created by initial estimation of interval type-2

fuzzy Kalman filter, illustrates its efficiency for tracking the

experimental dataset of daily deaths reports in Brazil. From this

confidence region, an interval normal distribution projections

were estimated, delimiting upper and lower limits for forecasting

the further daily deaths reports in Brazil. The efficiency of inter-

val type-2 fuzzy Kalman filter based on its initial estimation by

training step from experimental dataset of daily deaths reports,

for forecasting the further (validation) experimental dataset of

daily deaths reports, is shown in Fig. 4. The results of updating of

interval type-2 fuzzy Kalman filter for tracking and forecasting

the COVID-19 dynamic propagation related to the daily deaths

reports, are shown in Figs. 4(b)–4(f). The efficiency of interval

type-2 fuzzy Kalman filter, during its recursive updating for

tracking and forecasting the COVID-19 dynamic propagation

related to daily deaths reports in Brazil, was validated through

Variance Accounted For (VAF) criterion, as shown in Fig. 5.

B. Comparative Analysis and Discussions

In this section, a more detailed discussion on the results shown

in Section III-A, according to comparative analysis of proposed

methodology with the approaches in [18], [19] as well as with the

machine learning models LASSO, ARIMA and LSTM recurrent

neural network, considering the metrics RMSE (Root Mean

Square Error), MAE (Mean Absolute Error), RMSPE (Root

Mean Square Percentage Error), R2 (coefficient of determina-

tion), MAD (Median Absolute Deviation) and MAPE (Mean

Absolute Percentage Error), is presented.

The approach in [18] is based on Wavelet-Coupled Random

Vector Functional Link (WCRVFL) network for forecasting the

COVID-19 dynamic propagation in Brazil, using normalized

data. The efficiency of interval type-2 fuzzy Kalman filter, com-

pared to approach in [18], is shown in Table I. As it can be seen,

https://drive.google.com/drive/folders/1BvzMnaZZhtleJ1dVggJJGWISpNfwdvqD{?}usp$=$sharing
https://covid.saude.gov.br/
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Fig. 4. Performance of the interval type-2 fuzzy Kalman filter for adaptive tracking and real time forecasting the COVID-19 dynamic propagation
related to daily deaths reports: (a) updating based on training data from 29 of February 2020 to 18 of May 2020; (b) recursive updating on 24 of
June 2020; (c) recursive updating on 23 of July 2020; (d) recursive updating on 28 of August 2020; (e) recursive updating on 25 of September 2020;
(f) recursive updating on 13 of October 2020.
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TABLE I
COMPARATIVE ANALYSIS BETWEEN THE INTERVAL TYPE-2 FUZZY KALMAN FILTER AND APPROACH IN [18] FOR FORECASTING THE COVID-19 DYNAMIC

PROPAGATION IN BRAZIL

TABLE II
COMPARATIVE ANALYSIS BETWEEN THE INTERVAL TYPE-2 FUZZY KALMAN FILTER AND APPROACH IN [19] FOR FORECASTING THE COVID-19 DYNAMIC

PROPAGATION IN BRAZIL

Fig. 5. Efficiency of interval type-2 fuzzy Kalman filter, in tracking and
forecasting the COVID-19 dynamic propagation within period ranging
from 18 of May to 20 of October 2020.

once that the approach in [18] uses different types of wavelets

to process non-stationarity of experimental dataset, it presents

competitive results compared to interval type-2 fuzzy Kalman

filter, but the performance is slightly inferior due to its computing

limitation from determination of the optimal number of nodes in

the hidden layer of the WCRVFL network, tuning the scaling of

the uniform randomization range for wavelet estimator and accu-

rate data availability.The approach in [19] is based on ARIMA

model for forecasting the COVID-19 dynamic propagation in

Brazil. The efficiency of interval type-2 fuzzy Kalman filter,

compared to approach in [19], is shown in Table II. The approach

in [19] is fast in processing speed but presents performance

more inferior than interval type-2 fuzzy Kalman filter due to

consider only linear characteristics for modeling the COVID-19

dynamic propagation, which tends to increase forecasting errors

in the time varying epidemiological data [20].Considering the

prediction results available in approaches [18], [19], in the sense

of clearly and intuitively illustrates the prediction performance

of each method as compared to performance of proposed interval

Fig. 6. Comparative analysis of the prediction results between ap-
proaches [18], [19] and proposed interval type-2 fuzzy Kalman filter,
according to the number of cumulative cases of COVID-19 in Brazil.

type-2 fuzzy Kalman filter, according to the number of cumu-

lative cases of COVID-19 in Brazil, a comparative analysis is

shown in Fig. 6.

The comparative analysis between the interval type-2 fuzzy

Kalman filter and the machine learning models LASSO, ARIMA

and LSTM recurrent neural network, for forecasting the COVID-

19 dynamic propagation in Brazil, within the horizon of 10 days,

is shown in the Table III.A possible limitation of the interval

type-2 fuzzy Kalman filter is the determination of some param-

eters (γ, β and q), which requires some intuition by expert and

depends on the experimental dataset. The parameters γ andβ are

related to dimension and rank of Hankel matrix in Eq. (29) so that

a good conditioning can be guaranteed for parametric estimation

of consequent proposition in interval type-2 fuzzy Kalman filter,

whose most typical values are into the interval Nb

10 < γ, β < Nb

2 ,

where Nb is the length of experimental dataset [17]. The numer-

ical value of q is related to the most representative factors of

impulse response from experimental dataset and most typical

values are into the interval 1 ≤ q ≤ 10 [21].
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TABLE III
COMPARATIVE ANALYSIS BETWEEN THE INTERVAL TYPE-2 FUZZY KALMAN FILTER AND MACHINE LEARNING MODELS LASSO, ARIMA AND LSTM

RECURRENT NEURAL NETWORK FOR FORECASTING THE COVID-19 DYNAMIC PROPAGATION IN BRAZIL

IV. CONCLUSION

The results shown the applicability of machine learning ap-

proach based on interval type-2 fuzzy Kalman filter due to

its recursive updating mechanism, for adaptive tracking and

real time forecasting the COVID-19 dynamic propagation. For

further works, the formulation and applicability of proposed

methodology in the context of evolving interval type-2 fuzzy

systems, is of particular interest.
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