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Abstract. This study describes two machine learning

techniques applied to predict liquefaction susceptibility of

soil based on the standard penetration test (SPT) data

from the 1999 Chi-Chi, Taiwan earthquake. The first

machine learning technique which uses Artificial Neural

Network (ANN) based on multi-layer perceptions (MLP)

that are trained with Levenberg-Marquardt backpropagation

algorithm. The second machine learning technique uses

the Support Vector machine (SVM) that is firmly based on

the theory of statistical learning theory, uses classification

technique. ANN and SVM have been developed to predict

liquefaction susceptibility using corrected SPT [(N1)60] and

cyclic stress ratio (CSR). Further, an attempt has been made

to simplify the models, requiring only the two parameters

[(N1)60 and peck ground acceleration (amax/g)], for the

prediction of liquefaction susceptibility. The developed

ANN and SVM models have also been applied to different

case histories available globally. The paper also highlights

the capability of the SVM over the ANN models.

1 Introduction

Liquefaction is a phenomenon whereby a granular material

transforms from a solid state to a liquefied state consequently

of the increase in pore water pressure. The effective

stress of the soil reduces, therefore, causing loss of bearing

capacity. There are three types of damage occurring

during liquefaction. First is that ground lateral spreading

and failures of dam embankment are the particular types

of landslides which could be classified as liquefaction

(Keefer, 1984). Second is that sand blows and ground

cracks are the surface manifestations of liquefaction in
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soil. Third is that building settlement and/or severe tilting

are the hazardous consequences of the liquefaction. The

Damages attributed to the earthquake-induced liquefaction

phenomenon have cost society hundreds of millions of US

dollars (Seed and Idriss, 1982). Therefore, the assessment of

the liquefaction potential due to an earthquake at a site is an

imperative task in earthquake geotechnical engineering. The

liquefaction susceptibility of soil depends on the earthquake

parameter and soil parameter. One of the most important

earthquake parameter is the maximum epicentral distance

(Papadopoulos and Lefkopoulos, 1993). Kramer (1996) has

described the different soil parameters such as fraction finer

than 0.005 mm, liquid limit, natural water content, liquidity

index, gradation, particle shape, initial state of the soil,

etc. A procedure based on standard penetration test (SPT)

and cyclic stress ratio (CSR) was developed by Seed and

his colleagues (1967, 1971, 1983, 1984) based on the use

of peck ground acceleration (PGA = amax/g) to assess the

liquefaction potential of soil, and is now in standard use

around the world. Liao et al. (1988) and Cetin (2000)

used a probabilistic framework to model the variability

and uncertainty inherent to the problem of liquefaction.

Goh (1994) successfully applied Artificial Neural Network

(ANN) for the determination of liquefaction susceptibility

of soil. However, ANN models have some limitations such

as the black box approach, arriving at local minima, slow

convergence speed and over fitting problems (Park and Rilett,

1999; Kecman, 2001).

In this paper, two machine learning techniques (ANN and

support vector machine, SVM) have been adopted to predict

liquefaction susceptibility of soil based on the standard

penetration test (SPT) data from the 1999 Chi-Chi, Taiwan

earthquake. The epicentre of the earthquake was at 23.87◦ N,

120.75◦ E (Juang et al., 2002). This earthquake caused

a lot of damage, in particular large scale liquefaction in

Central Taiwan (Juang et al., 2002). Several SPT tests were

conducted subsequent to the earthquakes in the different sites
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(Mingjian Shiang, Taiping City, Wufeng Shinag, Yuanlin

Jen, Taichung Harbour, Chiuanshing, Mingjian Shiang,

Chanbing Industrial Park, Nantou City, etc.) and the results

have been published (Hwang and Yang, 2001). The SPT

test also gives the information about fines content, depth

of water table, clay size content, D50, SPT energy ratio,

etc. Information (liquefaction, soil profile, etc) about Chi-

Chi earthquake was given by different researchers (Lin et

al., 2001; Lee et al., 2001, 2001; Wang et al., 2002,

2003, 2004; Sokolov et al., 2002; Shou and Wang, 2003;

Yuan et al., 2004; Chu et al., 2004; Ku et al., 2004;

Chua et al., 2004). ANN has been used with multi-

layer perceptrons (MLPs) that are trained with Levenberg-

Marquardt backpropagation algorithm. The Support Vector

Machine (SVM) based on statistical learning theory has been

developed by Vapnik (1995). This study employs SVM as a

classification technique. Two sets of analyses were carried

out – first by using the two input parameters, corrected SPT

[(N1)60] and CSR and the second one using (N1)60 and

amax/g. The developed models have been tested for different

case histories available globally (Goh, 1994). A comparative

study has also been carried out between the developed ANN

and SVM models.

2 Methodology

In this paper, two models (ANN and SVM) have been

adopted for prediction liquefaction susceptibility. Brief

descriptions of the two models developed for our study are

given below.

2.1 ANN model

In this study, MLPs that are trained with Levenberg-

Marquardt Backpropagation algorithm has been used (Hagan

and Menhaj, 1994). MLPs are perhaps the best-known type

of feed forward networks. It has generally three layers: an

input layer, an output layer and an intermediate or hidden

layer. In the backpropagation training process, the network

error is back propagated into each neuron in the hidden layer,

and then continued into the neuron in the input layer. The

modification of the connection weights and biases depend

on the distribution of error at each neuron. The global

network error is reduced by continuous modifications of

connection weights and biases. An error goal is set before the

network training, and if the network error during the training

becomes less than the error goal, the training has to be

stopped. Levenberg-Marquardt backpropagation algorithm

is a variation of Newton’s method and is well-suited to ANN

training. The theory and implementation of Levenberg-

Marquardt Backpropagation has been given by More (1977).

The main scope of this study is to implement the

ANN backpropgation methodology in the prediction of

liquefaction susceptibility based on the actual SPT field

data from Chi-Chi, Taiwan earthquake by developing two

models (MODEL I and MODEL II). This study uses the

database collected by Hwang and Yang (2001). Out of the

total 288 datasets, a total of 164 data are for the sites which

are liquefied and 124 are for non-liquefied sites after the

earthquake. The liquefaction susceptibility of a soil mass

during an earthquake is dependent on both seismic and soil

parameters. So, in MODEL I, the input parameters are the

corrected SPT value [(N1)60] and cyclic shear stress ratio

(CSR). To use these data for classification purpose, a value

of −1 is assigned to the liquefied sites while a value of

1 is assigned to the non-liquefied sites so as to make this

a two-class classification problem. So, the output of the

model will be either 1 or −1. The data is normalized against

their maximum values (Sincero, 2003). In carrying out the

formulation, the data has been divided into two sub-sets:

such as

– A training dataset: this is required to construct the

model. In this study, 202 data out of the 288 are

considered for the training dataset.

– A testing dataset: this is required to estimate the model

performance. In this study, the remaining 86 data are

considered as testing dataset.

Researchers have used a different percentage of the available

data as the training set for different problems. For instance,

Kurup and Dudani (2002) used 63% of the data for training;

Tang et al. (2005) used 75%; while Padmini et al. (2008)

used 80%. In this study, we have used 70% of the data for

training. The statistical consistency of training and testing

datasets improves the performance of the ANN model and

later helps in evaluating them better (Shahin et al., 2000).

CSR has been used as an input parameter in MODEL I.

CSR has been calculated from the following formula (Seed

and Idriss, 1971),

CSR = 0.65

(

σv

σ ′
v

)(

amax

g

)

(γd)
/

MSF (1)

where, σv is total overburden stress, σ ′
v is effective

overburden stress, γd is stress reduction factor and MSF is

magnitude scaling factor. Because of the difficulty and cost

constraint of obtaining high-quality undisturbed samples, it

is very difficult to get a reliable value of σv and σ ′
v. So, it

is a very difficult task to determine CSR value accurately.

The purpose of the development of MODEL II is to predict

liquefaction based on (N1)60 and amax/g. So in MODEL II,

the input variables are (N1)60 and amax/g. In MODEL II,

the same training dataset, testing dataset and normalization

technique have been used in MODEL I. MODEL II has also

been verified for the additional 85 case histories (which were

not part of training or testing dataset used earlier to develop

the model) available globally (Goh, 1994). Both programmes

(MODEL I and MODEL II) are constructed using a neural

network tool box in MATLAB (Demuth and Beale, 1999).
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2.2 SVM model

SVM has originated from statistical learning theory pio-

neered by Boser et al. (1992). Since SVM is a relatively new

technique, a brief explanation of how it works is given below.

More details can be found in many publications (Boser et

al., 1992; Cortes and Vapnik, 1995; Gualtieri et al., 1999;

Vapnik, 1998). Consider the training datasets which consists

of k training samples represented by (x1,y1),...,(xk,yk),

where xi ∈ RN is an N-dimensional data vector with each

sample belonging to either of the two classes labelled as yi ∈

{+1,−1}. In this study, for MODEL I x =
[

CSR,(N1)60

]

and for MODEL II x =
[

amax

/

g,(N1)60

]

. To use the SPT

data for classification purposes, a value of −1 is assigned to

the liquefied sites while a value of 1 is assigned to the non-

liquefied sites, so as to make this a two-class classification

problem. The equation of a hyperplane that does the

separation is

w×x +b = 0, w ∈ RN , b ∈ R (2)

Where x is an input vector, w is an adjustable weight vector,

b is a bias, RN is N-dimensional real vector space and R is

one dimensional real vector space. For the linearly separable

class, a separating hyperplane can be defined for the two

classes as

w×xi +b ≥ +1 for yi = +1 → No liquefaction

w×xi +b ≤ −1 for yi = −1 → liquefaction (3)

Sometimes, due to the noisy or mixture of classes of training

data, variables ξi > 0, called slack variable, are used to

account for the effects of misclassification. So Eq. (3) can

be written in the following way

yi (w×xi +b) ≥ 1−ξi (4)

The optimal hyperplane is located where the margin between

two classes is maximized and the error is minimized. The

support vectors of the two classes lie on two hyperplanes,

which are parallel to the optimal hyperplane and are defined

by w ·xi +b = ±1. The margin between these planes is 2
‖w‖

.

Maximization of this margin can be achieved by solving the

following constrained optimization problem,

Minimize :
1

2
‖w‖2 +C

l
∑

i=1

ξi

Subjected to : yi (w×xi +b) ≥ 1−ξi (5)

The constant (called capacity factor) 0 < C < ∞, a parameter

defines the trade-off between the number of misclassification

in the training data and the maximization of margin. This

optimization problem (5) is solved by Lagrangian Multipliers

(Vapnik, 1998). According to the Karush-Kuhn-Tucker

(KKT) optimality condition (Fletcher, 1987), some of the

multipliers will be zero. The nonzero multipliers are called

support vectors (see Fig. 1). In conceptual terms, the
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Fig. 1. Support vectors with maximum margin.

support vectors are those data points that lie closest to the

optimal hyperplane and are, therefore, the most difficult to

classify. The value of w and b are calculated from w =
l

∑

i=1

yiαixi and b=− 1
2
w

[

x+1 +x−1

]

, where x+1 and x−1 are

the support vectors of class labels +1(No liquefaction) and

−1(liquefaction), respectively. The classifier can then be

constructed as:

f (x) = sign(w×x +b) (6)

where sign is the signum function. It gives +1(No

liquefaction) if the element is greater than or equal to zero

and −1(liquefaction) if it is less than zero.

In case linear supporting hyper plane is inappropriate, the

SVM maps input the data into a high dimensional feature

space through some nonlinear mapping (Boser et al., 1992).

This method easily converts a linear classification learning

algorithm into a nonlinear one, by mapping the original

observations into a higher-dimensional nonlinear space so

that linear classification in the new space is equivalent to

nonlinear classification in the original space. Kernel function

has been introduced instead of feature space (8(x)) to

reduce computational demand (Cortes and Vapnik, 1995;

Cristianini and Shwae-Taylor, 2000). To get the Eq. (6), same

procedures have been applied as in the linear case.

Radial basis function has been used as kernel function

in this study. In SVM, For MODEL I and MODEL II,

the same training dataset, testing dataset, input variables

and normalization technique have been used as in the ANN

model. The application of SVM for this study requires the
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Fig. 2. ANN architecture for MODEL I.

proper selection of C value. The identification of optimal

value of C is largely a trial and error process. However, there

are guidelines that can be used for selecting C. A large C

assigns higher penalties to errors so that the regression is

trained to minimize error with lower generalization while

a small C assigns fewer penalties to errors; this allows

the minimization of margin with errors, thus, a higher

generalization ability. If C goes to infinitely large, SVM

would not allow the occurrence of any error and result in

a complex model, whereas when C goes to zero, the result

would tolerate a large amount of errors and the model would

be less complex.

3 Results and discussion

For predicting liquefaction susceptibility, the two input

variables (CSR and (N1)60) are used for ANN model for

MODEL I. Hence, the input layer has two neurons. The only

output is the 1 or −1 and, therefore, the output layer has only

one neuron. In ANN model, the optimum backpropagation

networks that can be obtained in the present study are a

three-layer feed forward network. Figure 2 shows the final

architecture of the ANN model with one hidden layer. In this

study, the transfer function used in the hidden layer is logsig.

The expression of logsig is given below:

logsig(x) =
1

1+exp(−x)
(7)

The tansig transfer function has been used in the output layer.

The expression of tansig is given below:

tansig(x) =
2

1+exp(−2x)
−1 (8)

The number of neurons in the hidden layer is determined by

training several networks with different numbers of hidden

neurons and comparing the predicted results with the desired

output. Using too few hidden neurons could result in huge
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Fig. 3. MSE vs. Epochs for ANN models.

training errors and errors during testing, due to underfitting

and high statistical bias. On the other hand, using too many

hidden neurons might give low training errors but could still

have high testing errors due to overfitting and high variance.

In this study, the hidden layer with 4 neurons has been used.

For ANN model, the converged results have been achieved

at 382 epochs (an epoch is one complete presentation of the

entire set of training patterns during the training process).

The value of mean square error (MSE) for the ANN model

has been computed and monitored during training. Figure 3

shows how the MSE for ANN model reduces as training

proceeds. Training and testing performance (%) has been

calculated by using the following formula:

Training performance (%) or Testing performance (%)

=

(

No of data predicted accurately by ANN

Total data

)

·100 (9)

The performance of training data is 94.55%. According to

the results of network training, the network has successfully

captured the relationship between the input parameters and

output. In order to evaluate the capabilities of the ANN

model, the model is validated with new data that are not part

of the training dataset. In this case, the performance of ANN

model is 88.37%. Figures 4 and 5 illustrate the plot between

CSR and (N1)60 for training and testing dataset, respectively.

These figures provide a design assessment chart that can be

used to estimate the liquefaction resistance of soils.

In MODEL II, the input variables are amax/g and (N1)60.

So, the input layer has only two neurons. The output of

the model is 1 or −1. Hence, the output layer has only

one neuron. MODEL II uses three layer feed forward

network with 5 neurons in the hidden layer and it has been

shown in Fig. 6. The variation of MSE with epochs has

been shown in Fig. 3. For MODEL II, the converged

results have been achieved at 295 epochs (see Fig. 3). The

performance of training and testing dataset is 94.05 and

87.20, respectively. So, there is a marginal reduction of
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Fig. 4. Plot between CSR and (N1)60 for MODEL I using training

dataset for ANN model.
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Fig. 5. Plot between CSR and (N1)60 for MODEL I using testing

dataset for BP model.

performance of MODEL II compare to MODEL I. The

value of (N1)60 represents the different properties of the

soil. CSR is a function of different soil properties and

earthquake parameters. Therefore, (N1)60 partly represent

CSR value. For this reason, the performance of MODEL I

and MODEL II are almost same. Figures 7 and 8

demonstrate the plot between PGA and (N1)60 for the

training and testing dataset, respectively. The user can use

these figures for separating liquefiable and non-liquefiable

soil. This study indicates that the two input parameters

[PGA and (N1)60] are sufficient to determine liquefaction

susceptibility of the soil. There is no need to calculate the

value of CSR. For global data, the performance of ANN

model is 70.58%. Figure 9 depicts the plot between PGA and

(N1)60 for global data using the ANN model. The separation

between liquefiable and non-liquefiable soil is quite the same

for these three figures (7, 8 and 9).
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Fig. 6. ANN architecture for MODEL II.
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Fig. 7. Plot between PGA and (N1)60 for MODEL I using training

dataset for ANN model.
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Fig. 8. Plot between PGA and (N1)60 for MODEL I using training

dataset for ANN model.
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Fig. 9. Plot between PGA and (N1)60 for global data using ANN

model.

 

Fig. 10. Variation of Testing Performance (%) and Number of

Support Vectors with C values for MODEL I using radial basis

function kernel.

Since there is no rule in selecting the C value of SVM,

it is necessary to investigate the impact of C on testing

performance (%) as well as the number of support vectors

for each kernel. The training and testing performance

(%) of SVM has been determined by using the following

9 but for SVM. Figure 10 depicts the effect of C on

testing performance (%) and the number of support vectors

for MODEL I using radial basis function. Figure 10

demonstrates that the testing performance (%) attains

maximum value at C = 10. Generally it can be seen, from

Fig. 10, that the number of support vectors is decreasing

when C < 120 and tend to flatten after C ≥ 120. For

the best model, a high testing performance (%) as well

as less support vectors is desirable. The design value of

C and width of radial basis function (σ ) is 30 and 0.4,

respectively. The number of support vector is 37. Training

and testing performance of MODEL I are 96.04% and
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Fig. 11. Plot between CSR and (N1)60 for MODEL I using radial

basis function for training dataset.
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Fig. 12. Plot between CSR and (N1)60 for MODEL I using radial

basis function for testing dataset.

94.19%, respectively. Hence, this study indicates that SVM

model has the ability to predict liquefaction susceptibility of

soil based on SPT data. Figures 11 and 12 illustrate the plot

between CSR and (N1)60 for training and testing dataset,

respectively.

For MODEL II, Fig. 13 demonstrates the effect of C on the

testing performance (%) and the number of support vectors

using radial basis function. It can be seen from Fig. 13

that testing performance (%) is not affected by C value

for radial basis function. For radial basis function kernel,

C value does not affect the number of support vectors as

observed in Fig. 14. The design value of C and σ is 10

and 0.02, respectively. The number of support vector is 196.

Training and testing performance of MODEL II is 98.02%

and 95.35%, respectively. For SVM model, the performance

of MODEL II is slightly better than the MODEL I. The

reason is that the value of CSR creates lot of uncertainty in
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Fig. 13. Variation of Testing Performance (%) and Number of

Support Vectors with C values for MODEL II using radial basis

function kernel.
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Fig. 14. Plot between PGA and (N1)60 for MODEL II using radial

basis function for testing dataset.

MODEL I. The uncertainty arises from rd, unit weight, water

table depth, etc. Figures 14 and 15 represent the plot between

PGA and (N1)60 for training and testing dataset, respectively.

The developed MODEL II has been verified for the different

85 case histories (which were not used either training or

testing) available globally (Goh, 1994). In this case, the

model performance is 74.12%. So, SVM can be used as a

practical tool for the prediction of liquefaction susceptibility

of soil based on PGA and (N1)60. Figure 16 depicts the plot

between PGA and (N1)60 for global data using SVM model.

A comparative study has been done between developed

ANN and SVM model and it has been shown in Table 1.

For training dataset, the performance of ANN and SVM

model is comparable. But for testing dataset and global

data, SVM model outperforms ANN model. The use

of the structural risk minimization principle in defining

the cost function provided more generalization capacity

with the SVM compared to the ANN, which uses the
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Fig. 15. Plot between PGA and (N1)60 for MODEL II using radial

basis function for testing dataset.
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Fig. 16. Plot between PGA and (N1)60 for global data using radial

basis function.

empirical risk minimization principle. SVM uses only

two parameters (σ and C). In ANN, there are a larger

number of controlling parameters, including the number

of hidden layers, number of hidden nodes, learning rate,

momentum term, number of training epochs, transfer

functions, and weight initialization methods. Obtaining

an optimal combination of these parameters is a difficult

task. Another advantage of the developed SVM is its

optimization algorithm, which includes solving a linearly

constrained quadratic programming function leading to

a unique, optimal and global solution compared to the

ANN. ANN model uses all training data for the final

prediction. Whereas, SVM model employs only the support

vector for final prediction. Therefore, the developed SVM

produces a sparse solution. Sparseness means that a

significant number of the weights are zero (or effectively

zero), which has the consequence of producing compact,

computationally efficient models, which in addition are

simple and, therefore, produce smooth functions. This study
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Table 1. Comparison between ANN and SVM model.

Input variables ANN SVM ANN SVM ANN SVM

[Training performance] [Testing performance] [Global data]

(%) (%) (%)

CSR, (N1)60 94.55 96.04 88.37 94.19

PGA, (N1)60 94.05 98.02 87.20 95.35 70.58 77.65

shows that SVM is a powerful computational tool to

analyse the complex relationship between soil and seismic

parameters in liquefaction analysis. As further field case

records become available, the performance of the SVM can

be improved. The developed SVM is simpler to apply than

the method by Seed et al. (1971). Only minimal processing

of the data are required, essentially to obtain values of

(N1)60, for a given amax/g.

4 Conclusions

ANN and SVM models have been developed for predicting

liquefaction susceptibility of soil based on SPT data. For

ANN model, the procedures to determine data division,

data normalizing technique, network architecture selection,

transfer function and the number of epochs are outlined.

For SVM, The effect of C on testing performance (%)

and the number of support vectors has been investigated.

The MODEL II presented clearly that only two parameters

[(N1)60 and amax/g] are sufficient input parameters for

predicting liquefaction susceptibility of a site with depth.

The performance of the developed models is encouraging for

global dataset. The user can use the developed models (SVM

and ANN) as accurate and quick tools for the determination

of liquefaction susceptibility of soil without any manual

work such as using tables or charts. Comparison between

SVM and ANN model indicates that SVM is a better model

than ANN for predicting liquefaction susceptibility of soil

based on SPT data.

Edited by: M. E. Contadakis

Reviewed by: two anonymous referees
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