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Abstract

Background

Chagas disease is a neglected tropical disease (NTD) caused by the eukaryotic parasite

Trypanosoma cruzi. The current clinical and preclinical pipeline for T. cruzi is extremely

sparse and lacks drug target diversity.

Methodology/Principal Findings

In the present study we developed a computational approach that utilized data from several

public whole-cell, phenotypic high throughput screens that have been completed for T. cruzi

by the Broad Institute, including a single screen of over 300,000 molecules in the search for

chemical probes as part of the NIH Molecular Libraries program. We have also compiled

and curated relevant biological and chemical compound screening data including (i) com-

pounds and biological activity data from the literature, (ii) high throughput screening data-

sets, and (iii) predicted metabolites of T. cruzimetabolic pathways. This information was

used to help us identify compounds and their potential targets. We have constructed a Path-

way Genome Data Base for T. cruzi. In addition, we have developed Bayesian machine

learning models that were used to virtually screen libraries of compounds. Ninety-seven

compounds were selected for in vitro testing, and 11 of these were found to have EC50 <

10μM. We progressed five compounds to an in vivomouse efficacy model of Chagas dis-

ease and validated that the machine learning model could identify in vitro active compounds

not in the training set, as well as known positive controls. The antimalarial pyronaridine

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003878 June 26, 2015 1 / 18

a11111

OPEN ACCESS

Citation: Ekins S, Lage de Siqueira-Neto J, McCall

L-I, Sarker M, Yadav M, Ponder EL, et al. (2015)

Machine Learning Models and Pathway Genome

Data Base for Trypanosoma cruzi Drug Discovery.

PLoS Negl Trop Dis 9(6): e0003878. doi:10.1371/

journal.pntd.0003878

Editor: Frederick S Buckner, University of

Washington, UNITED STATES

Received: March 27, 2015

Accepted: June 5, 2015

Published: June 26, 2015

Copyright: © 2015 Ekins et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: Data is available in the

paper, Supporting Information, and at CDD Public:

https://app.collaborativedrug.com/register. The

datasets used for model building are available in

PubChem. The T. cruzi PGDB can be accessed at

http://node2.csl.sri.com:1555/.

Funding: This study was funded by NIH National

Institute of Allergy and Infectious Diseases grant R41-

AI108003-01 “Identification and validation of targets

of phenotypic high throughput screening”. LIM

acknowledges receiving a postdoctoral fellowship

from the Fonds de Recherche Santé-Québec (29361,

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0003878&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://app.collaborativedrug.com/register
http://node2.csl.sri.com:1555/


possessed 85.2% efficacy in the acute Chagas mouse model. We have also proposed

potential targets (for future verification) for this compound based on structural similarity to

known compounds with targets in T. cruzi.

Conclusions/ Significance

We have demonstrated how combining chemoinformatics and bioinformatics for T. cruzi

drug discovery can bring interesting in vivo active molecules to light that may have been

overlooked. The approach we have taken is broadly applicable to other NTDs.

Author Summary

Chagas disease is a neglected tropical disease (NTD) caused by the eukaryotic parasite Try-

panosoma cruzi. The disease is endemic to Latin America but is increasingly found in

North America and Europe, primarily through immigration, and the spread of this disease

is bringing new attention to the need for novel, safe, and effective therapeutics to treat T.

cruzi infection. We have used data from a phenotypic screen to build Bayesian models to

predict anti-parasitic activity against T. cruzi in vitro. These models were used to score var-

ious small libraries of molecules. We selected less than 100 compounds for testing and

found in vitro actives, some of which were tested in an in vivo efficacy model. We identi-

fied the antimalarial pyronaridine as having in vivo efficacy and provides us with a new

starting point for further investigation and optimization.

Introduction

In the 1980’s the pharmaceutical industry took advantage of advances in molecular biology/

genetic engineering and began replacing phenotypic, whole-cell HTS with target-based screen-

ing assays [1]. Target-based screens using simple recombinant protein enzymatic assays offer

advantages in terms of cost and scalability. Nonetheless, in the last decade, there has been a

shift back towards using phenotypic screens as a starting point for drug discovery, especially

for infectious diseases where drug targets are poorly understood or target-based approaches

have been unsuccessful in the past [1]. In fact, analysis of the origin of first-in-class small mole-

cules found that phenotypic screens identified more novel inhibitors than any other approach

between 1999 and 2008 [2,3].

One such disease area, where target-based drug discovery has largely failed, is in the field of

neglected tropical diseases (NTDs). NTDs are a collection of infectious diseases that dispropor-

tionately affect marginalized or poor populations in the developing world [4]. Many of these

pathogens are eukaryotic parasites with complex life cycles and diverse approaches for evading

the host immune system. Furthermore, many of these parasites are not genetically tractable in

the laboratory and receive only a small amount of research investment from scientists and

pharmaceutical companies in the developed world [5]. The trend towards using phenotypic

screens over target-based screens is particularly strong for NTDs as well as bacterial and fungal

pathogens. For these infectious diseases, it is generally considered more difficult to convert a

strong targeted hit into a cell permeable, non-toxic drug than it is to identify the target of a

non-toxic compound with phenotypic, whole-cell activity [6], especially in the case of intracel-

lular parasites in which the compound has to cross an extra membrane of the host cell to hit its

final target.
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Chagas disease is an NTD caused by the eukaryotic parasite Trypanosoma cruzi [7]. The dis-

ease is endemic to Latin America but is increasingly found in North America and Europe, pri-

marily through immigration [8–11] and the spread of this disease is bringing new attention to

the need for novel, safe, and effective therapeutics to treat T. cruzi infection. The current clini-

cal and preclinical pipeline for T. cruzi is extremely sparse and lacks drug target diversity (cur-

rently focused on 3 targets, CYP51, cruzain and genes associated with DNA damage) [12–14].

Pre-clinical development of oxaboroles is being led by a partnership between DNDi and Ana-

cor [15]. The most advanced product is the re-evaluation of a toxic general DNA damage agent

benznidazole, approved for use in Chagas disease outside the U.S but not by the US FDA. It

requires dosing of sixty days or more and has significant toxicity [16,17]. The remaining prod-

ucts in clinical development (Phase I and II) target a single enzyme, CYP51, which has been

the focus of Chagas disease drug development to date [18–23]. Recent results from Phase II tri-

als demonstrated that repurposed drugs targeting fungal CYP51 did not eliminate recrudescent

parasites at 6 months post therapy as determined by PCR [24]. Attention has therefore shifted

to drug development targeting the parasite CYP51 itself [20,22] such as fexinidazole [25,26].

The only additional novel drug target with a single compound in preclinical development is

cruzain, a T. cruzi cysteine protease and there is considerable literature surrounding this class

of inhibitors [27,28] as well as overlap with CYP51 [29].

There have been some target-based high throughput screens for inhibitors of CYP51 [23]

and cruzain [28] as well as virtual screening of inhibitors for cruzain [27]. Several whole-cell,

phenotypic high throughput screens have been completed for T. cruzi, including most recently

a screen of 1.8 million compounds at GlaxoSmithKline in Spain [30], another of over 300,000

molecules at the Broad Institute [31–34] and a proprietary screen by the Genomics Institute of

the Novartis Research Foundation (GNF) [35]. Therefore more HTS is leading to new hits [31–

39] from academia [40], industry, and the non-profit sector, primarily with the support of

NIAID and the Drugs for Neglected Diseases Initiative (DNDi). However, there is a disconnect

between the currently identified targets and outcomes obtained in clinical trials [41]. The latest

HTS hits are also early in the pipeline. Methods for identifying and prioritizing novel targets of

phenotypic screening hits will become increasingly important as well as approaches to screen

vast libraries of molecules using computational approaches prior to in vitro testing.

In the past we have used a used a combined bioinformatics-cheminformatics approach to

compile, analyze, and prioritize novel metabolic enzyme targets fromMycobacterium tubercu-

losis (Mtb), then suggest compounds that might interact with these targets [42]. One study

identified 12 enzymes that are in vivo essential enzymes inMtb, absent in humans, have known

reactions in TBCyc (http://tbcyc.tbdb.org/index.shtml; anMtb-specific metabolic pathway

database), and are not targets of known TB drugs. These targets and their metabolites were

used with a 3D pharmacophore approach to screen vendor libraries [43–45] before filtering

with additional computational models [43,46,47]. Ultimately novel inhibitors were identified

showing moderate minimal inhibitor concentration values againstM. tuberculosis in vitro [42].

These are currently undergoing further validation. In contrast to tuberculosis, there are signifi-

cantly fewer public, curated, and compiled data on metabolic pathways and computational

drug screening efforts in T. cruzi [48–50].

In the current study we have compiled and curated relevant biological and chemical com-

pound screening data including (i) compounds and biological activity data from the literature,

(ii) high throughput screening datasets, and (iii) predicted metabolites of T. cruzimetabolic

pathways. To this end, we identified and extracted associated biological data for 584 com-

pounds with activity data against T. cruzi in the published literature and made this available as

a public dataset in CDD Public. In addition we have created a BioCyc database for T. cruzi,

which complements other sources of related metabolic pathway data (including KEGG T. cruzi
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pathways [51], BioCyc databases for the closely related pathogens Leishmania major [52] and

Trypanosoma brucei [28], and the PathCase Metabolic Workbench dataset for T. cruzi [53])

and can be used in future drug discovery efforts. We have also compiled public screening data

for the over 300,000 additional compounds screened against T. cruzi and the related pathogen

Trypanosoma brucei [54,55]. Subsets of these data have been used to build machine learning

models for compound selection as we have previously done withMtb datasets [43,46,47,56–

61]. All of these efforts and curated information on T. cruzimay be used for target inference

[62,63] which combines cheminformatics and bioinformatics capabilities. Ultimately we high-

light how our approach lead to in vivo testing of compounds and the discovery of a promising

lead candidate.

Methods

CDD database and Chagas datasets

An analysis of the Chagas disease literature was performed resulting in the curation of over 500

molecules with associated target information (when available). The Broad Chagas screening

data [31–34] were also collected and both datasets were uploaded into the CDD database (Col-

laborative Drug Discovery Inc. Burlingame, CA) [64] from sdf files and mapped to custom pro-

tocols [65]. All public datasets used in model building are available for free public read-only

access and mining upon registration in the CDD database [66]. The Broad dataset (TRY-

PANOSOME: Broad Primary HTS to identify inhibitors of T. Cruzi Replication) used in this

study is also available in PubChem (AID 2044). In addition we curated Chagas compounds

from the literature and made these public (TRYPANOSOME: Chagas Disease Literature

Compounds).

Data annotation and Pathway Genome Data Base construction

By using a combination of genetic validation from the literature, bioinformatic analyses, and

available assays, we prioritized T. cruzi targets for experimental validation as the binding tar-

gets of screening hits. Furthermore, SRI has developed “choke point” analyses to assess the like-

lihood that a particular metabolic pathway step is essential for an organism [67,68]. In order to

use such approaches we constructed a Pathway Genome Data Base (PGDB) for T. cruzi (which

we coined as “TCruCyc”) using the complete genome sequence of the Dm28c strain. The

Dm28c strain was chosen over the more common CL-Brener strain since it is a model organ-

ism for studying Chagas disease and its recently assembled genome sequence [69] is more com-

plete than CL-Brener (whose repeat sequences have hindered complete assembly). This was

completed by using the “Pathologic” workflow within the Pathway Tools suite [70,71]. The

existing workflow imports the complete genome sequence and then assigns proteins from

annotated sequences. A patch to Pathologic to enable proteins to be searched by Uniprot/

TrEMBL identifiers was used. This process will not assign proteins unless they are annotated in

the genome sequence, which will miss some obvious sequence-based homologies (e.g. the tubu-

lin gene is not annotated in the Dm28c sequence). We also explored workflows that would

enable the automatic import of protein annotations from a closely related organism (e.g.

CL-Brener), but ended up manually annotating a number of orphan proteins for our current

dataset. The underlying genome sequence consisted of 5,287 contigs assembled into 1,378 scaf-

folds of 30,716,540 base pairs. Pathologic found 11,349 distinct gene products, at least 880 of

which were found to be enzymes and at least 16 of which are transporters. Pathologic was able

to infer 1030 enzymatic reactions and 122 pathways from these assignments as well as the exis-

tence of 806 metabolic compounds. This set was filtered to 358 molecules after removal of com-

pounds with R- groups and small nuisance molecules. This dataset was then used to infer
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potential targets by comparing the Tanimoto similarity with a phenotypic screening hit [42].

The T. cruzi PGDB can be accessed at http://node2.csl.sri.com:1555/.

Building and validating dual-event machine learning models with novel
bioactivity and cytotoxicity data

In our previous publications we have described the generation and validation of the Laplacian-

corrected Bayesian classifier models developed with bioactivity and cytotoxicity data to create

dual-event models [72–74] using Discovery Studio versions 3.5 and 4.1 (Biovia, San Diego,

CA) [75–79]. We have now applied this approach to the Broad Chagas dose response data

(AID 2044) [31–33] using the EC50 data, where values less than 1 μM are classed as actives and

were used for the single event models. We further refined the actives using the cytotoxicity data

when a greater than 10 fold difference with cytotoxicity was observed and these compounds

were considered active. The models were all generated using the following molecular descrip-

tors: molecular function class fingerprints of maximum diameter 6 (FCFP_6) [80], AlogP,

molecular weight, number of rotatable bonds, number of rings, number of aromatic rings,

number of hydrogen bond acceptors, number of hydrogen bond donors, and molecular frac-

tional polar surface area which were all calculated from input sdf files.

The resulting single- and dual-event datasets were validated using leave-one-out cross-vali-

dation, 5 fold validation and by leaving out 50% of the data and rebuilding the model 100 times

using a custom protocol to generate the receiver operator curve area under the curve (ROC

AUC), concordance, specificity and selectivity as described previously [72–74].

These models were used to score the following drug libraries; Selleck Chemicals (Houston,

TX) natural product library (139 molecules), GSK kinase library (367 molecules) [81], Malaria

box (400 molecules) [82], Microsource (Gaylordsville, CT) Spectrum (2320 molecules), CDD

FDA drugs (2690 molecules), Prestwick Chemical (Illkirch, France) library (1280 molecules)

and Traditional Chinese Medicine components (373 molecules, kindly provided by Dr. Ni Ai,

Zhejiang University, China). The top scoring molecules with the dual event model were

selected and purchased from eMolecules (La Jolla, CA) and then 97 underwent primary in

vitro screening.

Primary in vitro screening

Mouse myoblast cell line C2C12 (ATCC #CRL-1772) was cultivated in Dulbecco’s Modified

Eagle’s Medium containing 4.5 g/l glucose (DMEM), supplemented with 5% fetal bovine

serum (FBS), 25 mMHEPES, 2 mM L-glutamine, 100 U/ml penicillin and 100 μg/ml strepto-

mycin. T. cruzi CA-I/72 trypomastigotes were obtained from C2C12 infected-culture superna-

tants after 4–7 days of infection. Cultures were maintained at 37°C with 5% CO2. For the

infection assay to assess anti-parasitic activity of the compounds, 500 C2C12 cells were seeded

in 384-well plate in 40 μl of DMEMmedia per well. Compounds were added at 10 mM in 50 nl

per well using a Biomek FX (Beckman Coulter) for a final 10 μM concentration in 50 μl total

volume, and 2,500 parasites were added in 10 μl per well. The plate was incubated for 72 hours

at 37°C with 5% CO2. After the incubation, the plate was fixed with the addition of 50 μl of 8%

paraformaldehyde solution, followed by two successive washing steps using PBS. Finally, a

staining solution containing 0.5 μg/ml of 4',6-diamidino-2-phenylindole (DAPI) was added to

each well of the plate and incubated for at least 4 hours prior to reading. Images were acquired

by an IN Cell Analyzer 2000 (GE Healthcare) and analyzed by IN Cell Analyzer Developer 1.6

software. The size parameters used to segment host and parasite organelles were 125 μm2 for

host nucleus, and 1–2 μm2 for parasite nucleus/kinetoplast. Numbers of host cells and intracel-

lular amastigotes were determined based on host cell and parasite nucleus quantification,
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providing a measure of growth inhibition during the first 72 h of post-infection treatment com-

pared to untreated controls. The anti-parasitic results were expressed in terms of relative activ-

ity normalized based on the average infection ratio (number of infected cells/total number of

cells) of negative controls (0.1% DMSO, 0% activity) and positive controls (50 μM of benznida-

zole, EC100, 100% activity). The host cell viability was assessed based on the total number of

cells divided by the average number of cells from untreated controls (0.1% DMSO), being<0.5

considered a cytotoxic compound. This assay was performed in duplicate.

Hit selection and secondary screening (dose-response assay)

The hit selection criteria:>50% activity at 10 μM and>0.5 host cell viability in the primary

screening. To determine the potency of the hit compounds, we performed a dose-response

assay. EC50 values of compounds were determined applying the same assay used in the primary

screening. For this, an intermediate plate (384-well plate) was prepared by serial diluting each

hit compound (10 mM, 5 mM, 2.5mM, 1.125 mM, 0.625 mM, 0.312 mM, 0.156 mM, 78 μM,

36 μM, 18 μM) in 100% DMSO. Then, 50 nl of each sample were diluted in 50 μl media

(DMEMH-21) and added to the experimental plate followed by incubation at 37°C with 5%

CO2 for 72 h.

In vivo studies

To assess in vivo efficacy of test compounds, a 4-day mouse model of infection by transgenic T.

cruzi Brazil luc strain expressing firefly luciferase was used as previously described [83]. Six-

week-old female Balb/c mice (average weight 20g) were obtained from Simonsen Labs (Gilroy,

CA). All animal protocols were approved and carried out in accordance with the guidelines

established by the Institutional Animal Care and Use Committee from UCSD (Protocol

S14187). Mice were housed at a maximum of 5 per cage and kept in a specific-pathogen-free

(SPF) room at 20 to 24°C under a 12-h light/12-h dark cycle and provided with sterilized water

and chow ad libitum. To infect the mice, trypomastigotes of T. cruzi Brazil luc strain were used.

The parasites were harvested from culture supernatant 7 days after the infection of C2C12

myocytes in T.75 culture flasks using DMEMmedia supplemented with 5% FBS. The harvested

parasites were counted and the density was adjusted for 106 parasites per milliliter of DMEM

media without FBS. For the mouse infection, 100 ul of the parasite solution was injected intra-

peritoneally (105 trypomastigotes) per mouse. Starting on day 3 the infected mice were treated

with test compounds at 50 mg/kg administered in 20% Kolliphor, IP, b.i.d., for four consecutive

days. Two control groups included untreated mice, which received a vehicle (20% Kolliphor

HS 15, a.k.a. Solutol), and the positive control groups, which received 50 mg/kg benznidazole,

IP, twice a day (b.i.d). At day 7 post-infection, the luminescent signal from infected mice was

read upon injection of D-luciferin. The absolute numbers of measured photons/s/cm2 were

averaged between all five mice in each group. The average photons/s/cm2 from the group

treated with benznidazole was normalized as 100% efficacy and the average photons/s/cm2

from the group treated with vehicle only was normalized as 0% efficacy. Using a linear correla-

tion, the average photons/s/cm2 of each compound was normalized in the same efficacy scale

as the controls.

Statistics

Two tailed paired Student t test was used to verify the hypothesis that the luminescence values

from vehicle-treated and compound-treated groups at day 7 post-infection were significantly

different (p� 0.05).
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Results

Data annotation and Pathway Genome Data Base construction

A PGDB was constructed for T. cruzi using the complete genome sequence of the Dm28c strain

(Fig 1). The underlying genome sequence consisted of 5,287 contigs assembled into 1,378 scaf-

folds of 30,716,540 base pairs. Pathologic found 11,349 distinct gene products, at least 880 of

which were found to be enzymes and at least 16 of which are transporters. Pathologic was able

to infer 1030 enzymatic reactions and 122 pathways from these assignments as well as the exis-

tence of 806 metabolic compounds. This set was filtered to 358 molecules after removal of com-

pounds with R- groups and small nuisance molecules. This dataset was then used to infer

potential targets by comparing the Tanimoto similarity with a phenotypic screening hit [42].

Bayesian models

Using either dose response data alone (S1 Dataset) or the combination of dose response and

cytotoxicity (dual activity, S2 Dataset) resulted in statistically comparable models. Both had

leave one out Receiver Operator Curve (ROC) values greater than 0.8 (Table 1). The use of

FCFP_6 fingerprints enabled the features important for activity (termed good features) to be

visualized in the dose response data alone model (S1 Fig) which included tertiary amines,

piperidines and aromatic fragments containing basic nitrogen functionality while those fea-

tures that were negatively related to activity included cyclic hydrazines prone to tautomeriza-

tion as well as a number of electron-poor chlorinated aromatic systems (S2 Fig). Similarly for

the dual activity the good features were tertiary amines, piperidines and aromatic fragments

containing basic nitrogen functionality (S3 Fig) and the bad features were again a number of

cyclic hydrazines prone to tautomerization and a number of electron-poor chlorinated aro-

matic systems (S4 Fig) Upon 5 fold cross validation the ROC was greater than 78% for both

models and sensitivity, specificity and concordance values were comparable and greater than

77% (Table 1). The more exhaustive leave out 50% x 100 fold for the dual activity model

resulted in an external ROC of 0.79 and while concordance and specificity was greater than

73%, sensitivity declined to 66% (S1 Table).

In vitro screening

Approximately 7200 molecules were screened using the Bayesian model. Molecules with the

highest Bayesian score in the dual event model were selected by an experienced medicinal

chemist and purchased. Ninety seven molecules were tested and 11 were found to have EC50

values less than 10μM (S2 Table). Five of these molecules (verapamil, pyronaridine, furazoli-

done, tetrandrine and nitrofural) had in vitro EC50 values less than 1μM (Table 2).

In vivo testing

To assess in vivo efficacy of test compounds, a 4-day treatment mouse model of infection by

transgenic T.cruzi Brazil luc strain35 expressing firefly luciferase was used [83] which enabled

the activity in the mouse to be visually measured (S5 Fig). All compounds were dosed at 50mg/

kg bid. Benznidazole was used as a positive control and showed 100% efficacy alongside fura-

zolidone (Fig 2 and Table 2). Hydroxymethylnitrofurazone is a prodrug of nitrofural (which

had in vitro activity) and is an additional known active compound against Chagas Disease,

with an efficacy of 78.5%. We chose the prodrug form to reduce the toxicity of nitrofural in the

mouse model [84]. Pyronaridine showed 85.2% efficacy while verapamil showed 55.1% and tet-

randrine 43.6%, respectively. Apart from tetrandrine, these are statistically significant (Fig 2

and Table 2).
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Target prediction

Using several available datasets and resources we investigated the potential target/s of pyronar-

idine. First we performed a similarity search in the Chagas Disease dataset composed of litera-

ture data and targets which was curated in this study. The molecules with the highest

Tanimoto similarity in CDD were T. cruzi GAPDH inhibitors (S6 Fig). We also searched the

metabolites created from the T. cruzi pathway model created in this study. The most similar

molecule being S-adenosyl 3-(methylthio)propylamine with a Tanimoto similarity of 0.67

using the MDL Keys in Discovery Studio (Biovia, San Diego, CA). This would point to poly-

amine biosynthesis [85]. A further approach was to query the ChEMBL database from within

the MMDS mobile app (S7 Fig). This retrieved several analogs similar to the antimalarial quin-

acrine, suggesting trypanothione disulfide reductase [86,87] as a possible target. Quinacrine

has also been shown to be a Topoisomerase VI inhibitor elsewhere [88]. These targets will be

Fig 1. A typical metabolic cellular overview of TCruCyc provided by the Pathway Tools web server. This view of the TCruCyc PGDB shows the
(almost entirely) inferred set of metabolic pathways from gene sequence data. Canonical pathways such as “Amino Acids Biosynthesis”, “Amino Acids
Degradation”, “Nucleosides and Nucleotides Biosynthesis”, “Fatty Acids and Lipids Biosynthesis” and “Respiration” are partially inferred as well as a large set
of single reaction steps (right side) that Pathway Tools could integrate into larger pathways. This is an expected level of derivable connectivity that would be
available from annotated genome and proteome sequence data. We expect that a significant number of unassigned protein functions can be assigned by
extending Pathway Tools with (high threshold) automated sequence similarity analysis that is currently done via manual curation.

doi:10.1371/journal.pntd.0003878.g001

Table 1. Leave-out cross validation data for T.cruzi Bayesian models.

Model Best
cutoff

Leave-one
out ROC

5-fold cross
validation ROC

5-fold cross
validation sensitivity
(%)

5-fold cross
validation specificity
(%)

5-fold cross validation
concordance (%)

Dose response (1853 actives,
2203 inactives)

-0.676 0.81 0.78 77 89 84

Dose response and
cytotoxicity (1698 actives,
2363 inactives)

-0.337 0.82 0.80 80 88 84

doi:10.1371/journal.pntd.0003878.t001
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evaluated in future studies to identify whether they have a role in the mechanism of action of

pyronidine in T. cruzi.

Discussion

Our prior computational drug discovery work inMycobacterium tuberculosis [42] was made

possible by the existence of datasets with genetic validation of essential genes in vivo. The work

profited from the existence of the tier one TBCyc metabolic pathway database, the natural

divergence of prokaryoticM. tuberculosis genome from the genome of the eukaryotic human

host, and the availability of a well-annotatedM. tuberculosis genome [24,34]. In contrast, T.

cruzi, the eukaryotic parasite that causes Chagas disease, and several other eukaryotic human

Table 2. In vitro and in vivo data for compounds selected in this study.

Synonyms Infection
Ratio

EC50

(μM)
EC90

(μM)
Hill
slope

Cytotoxicity
CC50 (μM)

Chagas mouse model (4 days treatment,
luciferase): In vivo efficacy at 50 mg/kg bid (IP)
(%)

(±)-Verapamil hydrochloride,
715730, SC-0011762

0.02, 0.02 0.0383 0.143 1.67 >10.0 55.1

29781612, Pyronaridine 0.00, 0.00 0.225 0.665 2.03 3.0 85.2

511176, Furazolidone 0.00, 0.00 0.257 0.563 2.81 >10.0 100.5

501337, SC-0011777,
Tetrandrine

0.00, 0.00 0.508 1.57 1.95 1.3 43.6

SC-0011754, Nitrofural 0.01, 0.01 0.775 6.98 1.00 >10.0 78.5*

* Used hydroxymethylnitrofurazone for in vivo study (nitrofural pro-drug)

doi:10.1371/journal.pntd.0003878.t002

Fig 2. In vivo efficacy of test compounds (50mg/kg b.i.d.) in a 4-day mousemodel of infection by
transgenic T.cruzi Brazil luc strain35 expressing firefly luciferase.

doi:10.1371/journal.pntd.0003878.g002
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pathogens including the parasites that cause malaria, human African trypanosomiasis, and

leishmaniasis, have larger genomes, higher similarity to human enzymes and biological path-

ways, and have less well annotated genomes. Investment in high throughput screening efforts

has resulted in the release of screening data and hit lists for several of these eukaryotic patho-

gens [35–36]. However, identification of targets of hit compounds has seen relatively slow

progress. Therefore, we hypothesized that for pathogens, such as T. cruzi, with fewer sources of

available data to support bioinformatics approaches to target identification, we can take a

reverse approach as compared to our work inMycobacterium tuberculosis. More specifically,

we can start with interesting phenotypic screening hits and apply cheminformatic and bioin-

formatic approaches to map those hits onto potential targets. As a preliminary step in this

direction we have used public data to build computational models.

The CDD Public database now includes structural and biological activity data for over

300,000 molecules from the Broad Institute compounds that have been screened against T.

cruzi. In addition we have curated over 500 compounds and their known targets and over 740

compounds from DNDi based around the fungicide fenarimol, as separate datasets. In this

study, we have utilized a subset of the Broad HTS screening data to build Bayesian machine

learning models to classify compounds as likely actives against T. cruzi in vitro. We then used

these models to virtually screen several libraries of compounds including drugs and drug-like

compounds, to identify compounds with potential activity that may have not been tested yet.

Some of these compounds were purchased and tested in vitro and then several more tested in

vivo. Historically, for a diversity-based library undergoing HTS, it is expected a range of 1 to

2% of hits based on observed activity (usually>50% antiparasitic activity at 10 μM and no

signs of cytotoxicity at this concentration) will be observed [34]. Applying the current method,

11/97 (11%) hits were identified and confirmed with EC50< 10 μM.

Out of these hits derived from searching 8 relatively small libraries of compounds, several of

the compounds were found to be known actives against T. cruzi. Verapamil was previously

shown as active in the Broad dataset with an EC50< 0.1μM, and has a well-known effect in

reducing acute mortality in mice [89,90] and cardiomyopathy if treated early in infection [91].

It should be noted that others have retested some of the active HTS hits from the Broad T.

cruzi screen and found higher IC50 values. For example the IC50 for verapamil in one study was

>50 μM [38]. Pyronaridine is in clinical use as an antimalarial [92,93], is a P-glycoprotein

inhibitor [94] and was given a positive opinion by the European Medicines Agency using this

molecule in a combination therapy [95]. It was shown to have an EC50< 0.587μM in the

Broad dose response dataset, which is comparable to this study (EC50 0.225 μM). Apparently

both of these compounds were retrieved as various salt forms from the vendor databases and

were initially not considered to be in the training sets. Pyronaridine as far as we can tell, was

overlooked following the published initial screening [34] and so we pursued these compounds

further in vivo. Furazolidone is used as aH. pylori treatment [96] and has known in vivo activ-

ity against T. cruzi [97] and was not in the dose response training set (but is in the larger Broad

screening dataset of over 300,000 compounds), so can be considered a true ‘prediction’. Tetran-

drine is a P-glycoprotein inhibitor [98] that has been tested in malaria in combination with

chloroquine [99]. This molecule was not in the training dataset but was in the larger Broad

HTS screening dataset to identify inhibitors of replication as an ‘inactive’, so our ability to iden-

tify a previous false negative as an active prediction is an interesting observation, although this

compound does not appear to have statistically significant efficacy in vivo. The known T. cruzi

active compound Nitrofural (nitrofurazone) [97] was also not in the model training set or the

Broad dataset, but was predicted as ‘active’ in vitro (experimentally confirmed EC50 0.77μM

and CC50> 10μM), and its prodrug form hydroxymethylnitrofurazone was used as an internal

control (while benznidazole was a positive control) in the in vivo experiments. These results

Machine Learning for Chagas Disease

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003878 June 26, 2015 10 / 18



illustrate that the dose response and cytotoxicity machine learning model based on T. cruzi rep-

lication HTS data [34] used in this case, could retrieve known active compounds useful for

Chagas Disease. While the Broad screen and the assay used in this study are similar in that they

are both cell-based, they each use different cell lines for T. cruzi culture and different readouts.

The Broad screen used the Tulahuen genetically modified to express Beta-galactosidase [34,54]

which is biased towards finding CYP51 inhibitors [35], while we used the CA-I/72 strain with

Fig 3. An example showing the CDD Vault for this collaboration, illustrating how the structures and biology data can be securely shared.

doi:10.1371/journal.pntd.0003878.g003
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an image-based readout. We are not aware of publications describing pyronaridine being tested

in the mouse model for Chagas disease and our observation of 85.2% efficacy (higher than

nitrofural) suggests this molecule is therefore worthy of further study (Fig 2 and S5 Fig). In par-

ticular, the identification of the likely target or targets for this molecule would be very impor-

tant. Using various informatics resources we have attempted to predict these in this study. Our

prior work onMtb resulted in many datasets relating to small molecules and their targets in

the bacteria, which in turn lead to the development of the TB Mobile app which contains

Bayesian models that can be used for target prediction [56,62,63]. While we do not have as

much published data for T. cruzi a similar approach could be undertaken in future for target

prediction in NTDs more broadly.

This study made wide use of public datasets in CDD as well as the collaborative sharing of

data in the CDD Vault. We have also highlighted how the in vivo transgenic T.cruzi Brazil luc

strain expressing firefly luciferase data can be stored in the software (Fig 3). These data will ulti-

mately be made publically accessible in this format alongside the datasets we have already

made public. In the process of this study we have curated T. cruzi data, constructed a Pathway

Genome Data Base for T. cruzi (Fig 1), developed multiple Bayesian machine learning models,

tested molecules in vitro and in vivo as well as proposed potential targets for one of the in vivo

active compounds. In the process we have identified pyronaridine as having promising in vivo

activity in the mouse model of Chagas disease. Future studies will evaluate efficacy in longer

term models and identify the target or targets of this molecule. The approaches taken are

broadly applicable to other NTDs and extend our prior work withMtb [42,43,46,47,56–63].

Leveraging published data to create additional resources and models for either re-mining

known or new datasets to suggest compounds that can be rapidly progressed all the way

through to in vivo animal models, may lead to new clinical studies in a shorter time scale.

There are many steps we could take to update our computational models such as incorporating

the current data and using other machine learning algorithms. If we can in future narrow

down the list of possible targets computationally as well and accelerate experimental target vali-

dation that will also be of importance. The combination of computational and experimental

approaches represents a multistep workflow (S8 Fig) that was undertaken in this study that

could be applicable in any NTD drug discovery project. Efforts to automate, streamline and

learn from the resulting data would further increase the efficiency of the approach we have

described.
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