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Abstract

Unfavorable lipophilicity and water solubility cause many drug fail-
ures, therefore these properties have to be taken into account early on in
lead discovery. Commercial tools for predicting lipophilicity usually have
been trained on small and neutral molecules, and are thus often unable
to accurately predict in-house data.

Using a modern Bayesian machine learning algorithm—a Gaussian
Process model—this study constructs a log D7 model based on 14556 drug
discovery compounds of Bayer Schering Pharma. Performance is com-
pared with support vector machines, decision trees, ridge regression and
four commercial tools. In a blind test on 7013 new measurements from
the last months (including compounds from new projects) 81 % were pre-
dicted correctly within one log unit, compared to only 44 % achieved by
commercial software. Additional evaluations using public data are pre-
sented.

We consider error bars for each method (model based error bars, en-
semble based, and distance based approaches), and investigate how well
they quantify the domain of applicability of each model.

1 Introduction

Lipophilicity of drugs is a major factor in both pharmacokinetics and phar-
macodynamics. Since a large fraction of drug failures (∼ 50%)1 results from
an unfavorable PC-ADME/T profile (absorption, distribution, metabolism, ex-
cretion, toxicity), the octanol water partition coefficients log P and log D are
nowadays considered early on in lead discovery.
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Due to the confidentiality of in-house data, makers of predictive tools are
usually not able to incorporate such data from pharmaceutical companies. Com-
mercial predictive tools are therefore typically constructed using publicly avail-
able measurements of relatively small and mostly neutral molecules. Often, their
accuracy on the in-house compounds of pharmaceutical companies is relatively
low2.

In our work, we follow a different route to derive models for lipophilicity
that are tailored to in-house data. We use a modern machine learning tool, a
so-called Gaussian Process model3 (short: GP), to obtain a nonlinear mapping
from descriptors to lipophilicity. A specific advantage of the tool is its Bayesian
framework for model selection, that provides theoretically well founded criteria
to automatically choose the “right amount of nonlinearity” for modeling. We
can avoid extensive grid search in cross-validation or expert intervention to
choose optimal parameter settings. Thus, the process can be fully automated.
For the first data analysis phase, structures do not need to be disclosed, since
all modeling is descriptor based.

Apart from the high performance, the chosen modeling approach shows an-
other virtue that makes it an excellent tool for applications in chemistry: GP
models have their roots in Bayesian statistics, and thus can supply the user with
an error bar for each individual prediction. This quantification of the prediction
uncertainty allows to reduce the error rate, by discarding predictions with large
error bars, or by re-confirming the prediction with a laboratory experiment. In
our work, we also compare these error bars with error bar heuristics that can
be applied to other commonly used modeling approaches.

Performance is compared with models constructed using three established
machine learning algorithms: Support Vector Machines, Random Forests and
linear Ridge Regression. We show that the different log P and log D7 models
exhibit convincing prediction performance, both on benchmark data and in-
house data of drug molecules. We compare our results with several commercial
tools, and show a large improvement of performance, in particular on the in-
house classes of compounds.

Using machine learning algorithms, one can construct models of biological
and chemical properties of molecules from a limited set of measurements4;5;6;7;8.
This so called training set is used to infer the underlying statistical properties
and select a prediction model. Tuning of (hyper-)parameters is usually per-
formed using cross-validation or re-sampling methods. To evaluate the perfor-
mance of the model, one should use a set of data that was not used in model
building in any form. In the best case, the model is evaluated in a blind test,
where the modelers do not have access to the held out data. Instead, the final
model is applied to the blind test data by an independent evaluating team. In
normal benchmark evaluations, re-tuning models on held-out data is possible
and typically results in too optimistic results. In contrast, the blind-test strat-
egy is nearly unbiased, because “cheating”, i.e., using results on the held-out
data for re-tuning the model, becomes infeasible. Note however that the blind
test set of data needs to be of somewhat reasonable size, and should represent
the typical application scenario of the model that is to be evaluated.
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GP models have been previously1 applied in computational chemistry, but
rather small data sets were used, and typically no blind test was conducted:

• Burden9 learned the toxicity of compounds and their activity on mus-
carinic and benzodiazepine receptors using up to 277 compounds.

• Enot et al.10 predicted log P using 44 compounds from a 1,2-dithiole-3-one
series.

• Tino et al.11 built GP models for log P from a public data set of 6912
compounds. Here, a blind test was conducted, but the validation set
(provided by Pfizer) contained only 266 compounds.

This study goes beyond the prior work: Our models were trained on large
sets of public and in-house data (up to 14556 compounds). A blind test was
performed by an independent evaluating team at Bayer Schering Pharma using
a set of 7013 drug discovery molecules from recent projects, that have not been
available to the modeling team Fraunhofer FIRST and idalab. To facilitate
reproduction of our results by other researchers, the complete list of compounds
in the public data set is included in the supporting information to our initial
communication4.

2 Estimating the Domain of Applicability

of Models

A typical challenge for statistical models in the chemical space is to adequately
determine the domain of applicability, i.e. the part of the chemical space where
the model’s predictions are reliable. To this end several “classical” approaches
exists: Range based methods are based on checking whether descriptors of test
set compounds exceed the range of the respective descriptor covered in train-
ing12;13. A warning message is raised when this occurs. Also, geometric methods
that estimate the convex hull of the training data can be used to further detail
such estimates14. Mind that both these methods are not able to detect “holes”
in the training data, that is, regions that are only scarcely populated with data.
2

If experimental data for some new compounds are available, error estimates
based on the library approach 15 can be used. By considering the closest neigh-
bors in the library of new compounds with known measurements, it is possible
to get a rough estimate of the bias for the respective test compound.

Probability density distribution based methods could, theoretically, be used
to estimate the model reliability14. Still, high dimensional density estimation
is recognized as an extremely difficult task, in particular since the behavior of
densities in high dimensions may be completely counterintuitive16.

1Our own recent results of modeling aqueous solubility are presented in5;6.
2Holes in the training data can, in principle, be detected using geometric methods in a

suitable feature space. To the best of our knowledge, there exists no published study about
this kind of approach.
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Distance based methods and extrapolation measures 17;14;18;2;12 consider one
of a number of distance measures (Mahalanobis, Euclidean etc.) to calculate the
distance of a test compound to its closest neighbor(s) or the whole training set,
respectively. Another way of using distance measures is to define a threshold and
count the number of training compounds closer than the threshold. Hotellings
test or the leverage rely on the assumption that the data follows a Gaussian
distribution in descriptor space and compute the Mahalanobis distance to the
whole training set. Tetko correctly states in18 that descriptors have different
relevance for predicting a specific property and concludes, that property specific
distances (resp. similarities) should be used 3.

When estimating the domain of applicability with ensemble methods, a num-
ber of models is trained on different sets of data. Typically the sets are generated
by (re)sampling from a larger set of available training data. Therefore the mod-
els will tend to agree in regions of the descriptor space where a lot of training
compounds are available and will disagree in sparsely populated regions. Alter-
natively, the training sets for the individual models may be generated by adding
noise to the descriptors, such that each model operates on a slightly modified
version of the whole set of descriptors. In this case the models will agree in
regions where the predictions are not very sensitive to small changes in the de-
scriptors and they will disagree in descriptor space regions where the sensitivity
with respect to small descriptor changes is large. This methodology can be used
with any type of models, but ensembles of ANNs18;2;19;20;17 and ensembles of
decision trees13;17 (“random forests”, Breiman21) are most commonly used.

The idea behind Bayesian methods is to treat all quantities involved in mod-
eling as random variables. By means of Bayesian inference, the a priori assump-
tions about parameters are combined with the experimental data, to obtain the
a posteriori knowledge. Hence, such models naturally output a probability dis-
tribution, instead of the “point prediction” in conventional learning methods.
Regions of high predictive variance not only indicate compounds outside the do-
main of applicability, but also regions of contradictory or scarce measurements.
The most simple and also most widely used method is the naive Bayes classi-
fier22;23. Gaussian Process regression and classification are more sophisticated
Bayesian methods, see Sec. 3.5.4.

In the present study, we use the Bayesian Gaussian Process models, ensem-
bles and distance based methods. All of these can handle empty regions in
descriptor-space and quantify their confidence, rather than just marking some
predictions as possibly unreliable. Confidence estimates will be presented in a
form that is intuitively understandable to chemists and other scientists.
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(b) Ridge Regression
(distance based)
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Figure 1: The four different regression models employed in this study are trained
on a small number of noisy measurements (black crosses) of the sine function
(blue line). Predictions from each model are drawn as solid red lines, while
dashed red lines indicate errors estimated by the respective model (in case of
the Gaussian Process and random forest) or a distance based approach (in case
of the Support Vector Machine and Ridge Regression model).

2.1 One Dimensional Examples

Figure 1 shows a simple one-dimensional example of the four different methods
of error estimation we use in this study. The sine function (shown as a blue
line in each subplot) is to be learned. The available training data are ten points
marked by black crosses. These are generated by randomly choosing x-values
and evaluating the sine function at these points. We simulate measurement
noise by adding Gaussian distributed random numbers with standard deviation
0.2 to the y-values.

The random forest, Figure 1 (a), does provide a reasonable fit to the training
points (yet the prediction is not smooth, due to the space dividing property
of the decision trees). Predicted errors are acceptable in the vicinity of the
training points, but overconfident when predictions far from the training points
are sought. It should be noted that the behavior of error bars in regions outside
of the training data depends solely on the ensemble members on the boundary of
the training data. If the ensemble members, by chance, agree in their prediction,
an error bar of zero would be the result.

The linear model, Figure 1 (b), clearly cannot fit the points from the non-
linear function. Therefore, the distance based error estimations are misleading:
Low errors are predicted in regions close to the training points, but the actual
error is quite large due to the poorly fitting model. This shows that the process
of error estimation should not be decoupled from the actual model fitting: The
error estimate should also indicate regions of poor fit.

The Support Vector Machine, Figure 1 (c), adapts to the non-linearity in the
input data and extrapolates well. The error estimation (the same distance based
procedure as described for the real data, Sec. 4.4) produces slightly conservative

3There is an interesting parrallel to Gaussian Process models: When allowing GP models
to assign weights to each descriptor that enters the model as input, they implicitly construct a
property specific distance measure and use it both for making predictions and for estimating
prediction errors.
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Figure 2: The process of model building.

(large) error bars in the region close the training points, and too small errors
when extrapolating.

The Gaussian Process, Figure 1 (d) also captures the non-linearity in the
input data and is able to extrapolate. Predicted errors are small in the region
close to the training points and increase strong enough in the extrapolation
region.

3 Methods and Data

3.1 Methodology Overview

The training procedure is outlined in Figure 2. We use Corina24 to generate a
3D structure for each molecule. Molecular descriptors are calculated using the
Dragon25 software. Finally, a number of machine learning algorithms is used
to “train” models, i.e., to infer the relationship between the descriptors and the
experimental values for log P and log D7.

To make predictions for new compounds, structures are again converted to
3D and descriptors are calculated. From the descriptors of each molecule, the
model generates a prediction of log P and/or log D7, and in case of the Gaussian
Process and random forest also a confidence estimate (error bar).

3.2 Data Preparation

3.2.1 Multiple Measurements

If multiple measurements exist for the same compound, we merge them as de-
scribed in the following to obtain a consensus value for model building. For
each compound we generate the histogram of experimental values. Characteris-
tic properties of histograms are the spread of values (y-spread) and the spread
of the bin heights (z-spread). If all measured values are similar (small y-spread)
the median value is taken as consensus value. If a group of similar measure-
ments and smaller number of far apart measurements exists, both y-spread and
z-spread are large. In this case we treat the far apart measurements as outliers,
i.e., we remove them and then use the median of the agreeing measurements as
consensus value. If an equal number of measurements supports on of two (or
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more) far apart values (high y-spread and zero z-spread) we discard the com-
pound. Initial experiments suggested that 0.5 (on the measurements log-scale)
is a suitable value for the threshold between small and large y-spreads.

3.2.2 Dataset 1: in-house

Dataset 1 consists of 14556 drug discovery compounds of Bayer Schering Pharma.
log D was measured following the experimental procedure described in Sec. A.
For the majority of compounds, log D was measured at pH = 7.0. For about
600 compounds log D was measured at pH = 7.4. Although for particular com-
pounds with pKa-values close to pH = 7 one can expect deviations in log D of
up to 0.4 (extreme case), first experiments showed that building separate mod-
els is not necessary. No negative impact on the model accuracy was observed
when the measurements performed at pH = 7.4 are included in the larger set.

3.2.3 Dataset 2: in-house validation

Dataset 2 is a set of 7013 new measurements of drug discovery molecules of
Bayer Schering Pharma that were collected in the months after dataset 1 had
been measured, and thus also includes compounds from new projects. log D was
measured following the same experimental procedure as was used for dataset 1,
see Sec. A.

3.2.4 Dataset 3: public

This set contains measurements of log P for 7926 unique compounds extracted
from the Physprop26 and Beilstein27 databases. log D measurements performed
at various pH values are often reported as log P in the literature, despite the fact
that log P applies, by definition, only to a molecule in its neutral form (i.e. the
pH of the solution has to be adjusted so that the molecule is neutral). To
avoid these wrongly reported log P values, the set was restricted to compounds
predicted to be completely neutral at pH 2 to 11 by ACDLabs v9, since for
these compounds, log D values in the given pH ranges coincide with the correct
log P values.

3.2.5 Differences between in-house and public data

Histograms of the molecular weight for each dataset are given in Figure 3. The
median of the molecular weight is 227 g/mol for the public dataset, 432 g/mol
for the in-house set and 405 g/mol for the in-house validation set (marked by
vertical green lines in the plots). As we can see from the histogram, more than
90% of the compounds in the public set have a molecular mass lower than 400
g/mol, that is well below the median of the molecular mass for the two in-house
sets of data. In this study, we separately evaluate models on the public and
in-house sets of data. In principle, data from internal and external sources can
be combined. However, care has to be taken when evaluating models on mixed
sets, since such models typically perform well on compounds with low molecular
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(a) Data Set 1: in-house
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(b) Data Set 2: in-house validation
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(c) Data Set 3: public

Figure 3: Histograms of molecular weight. Vertical green lines mark the median
of the molecular weight of the respective data set.
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Setup Prediction Data

In-house log D Training Validation

in−house (14556)

In-house validation log D Training Validation

in−house (14556) in−house validation (7013)

Public log P ValidationTraining

Physprop/Beilstein (7926)

Table 1: Summary of the different setups that are used for performance evalu-
ation. See Sec. 3.3 for a description and Sec. 3.2 for details on the individual
data sets

weight (see Sec. 4.2) but are less accurate for the larger compounds relevant to
drug discovery (see Sec. 4.3).

3.3 Training and Validation Setups

3.3.1 Cross-Validation

On the in-house and public set of data, models are evaluated in leave 50%
out cross-validation, i.e. the data is randomly split into two halves. A model
is trained on the first half and evaluated on the other half. This is repeated
with the two halves of the validation set exchanged, so that predictions for all
compounds in the set are generated. The overall procedure is then repeated
10 times with a different random split. Each prediction is an out-of-sample
prediction, made by a model that has not seen the particular compound in its
training data.

3.3.2 Blind test

Gaussian Process models built by the modelers at Fraunhofer FIRST and idalab
on the in-house set of data were evaluated by researchers at Bayer Schering
Pharma on the in-house validation set of data. At this point in time, the
modelers had no knowledge of the nature or log D values of the validation set.
Later, the validation data was revealed to the modelers and used as an external
validation set to assess the performance of other types of models.
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3.4 Molecular Descriptors

We use the Dragon descriptors by Todeschini et al.28. They are organized
in 20 blocks and include, among others, constitutional descriptors, topological
descriptors, walk and path counts, eigenvalue-based indices, functional group
counts and atom-centered fragments. A full list including references can be
found online29.

As one of their most pronounced features, Gaussian Process models allow to
assign weights to each descriptor that enters the model as input. The similarity
for two compounds as computed by the GP model takes into account that the
ith descriptor contributes to the similarity with weight wi (see 3.5.4). These
weights are chosen automatically during model fitting and can then be inspected
in order to get an impression of the relevance of individual descriptors.

We found that using a small (< 50) set of descriptors results in only slightly
decreased accuracy when comparing to models built on the full set of 1,664
descriptors. The error predictions, however, turn out to be too optimistic in
this case. Including whole blocks containing important descriptors leads to
both accurate predictions and accurate error estimations (see Sec. 4.1). In this
study, we used the full Dragon blocks 1, 2, 6, 9, 12, 15, 16, 17, 18, and 20. A
discussion of the importance of individual descriptors can be found in Sec. 4.1.

3.5 Machine Learning Methods

3.5.1 Introductory remarks

Since the application of Gaussian Process regression is still relatively new in
the field of chemoinformatics we chose to explain and illustrate the modeling
idea. Support vector machines are seen as established, but still deserve some
discussion due to interesting parallels and differences with the Bayesian GP
approach.

Linear ridge regression, decision trees and ensembles of trees (random forests)
are considered established methods - here we mainly note how the employed im-
plementation differs from the original algorithm, for which the reader is referred
to the literature.

3.5.2 Linear Ridge Regression

Ridge regression combines a linear model with a regularization term that ef-
fectively shrinks coefficients of the model towards zero. This is particularly
important for our application since a standard linear model runs into problems
when descriptors are correlated. We choose the complexity parameter λ that
controls the amount of shrinkage by grid search in nested cross-validation.

3.5.3 Random Forest

A modified version the random forests method of Breiman21 is employed. Trees
are constructed without bagging or bootstrapping and pruning of individual
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Figure 4: Bayesian modeling with Gaussian Processes

trees is done using a CART-style error-size trade-off.
The predictive variance is calculated by a averaging the variance of the

predictions from the different trees in the forest and the average estimated
variance from training points found at each tree leaf.

3.5.4 Gaussian Process Regression

Gaussian Process (GP) models have their origin30 in the field of Bayesian statis-
tics. A description of the methodology, including mathematical derivations, can
be found in Schwaighofer et al.6. For in depth coverage we refer the reader to
a recent book by Rasmussen3.

Figure 4 illustrates the principles behind GP models: Before having mea-
sured log D values, any relationship between the descriptor (in this 2 dimensional
example, only one descriptor is used and plotted on the x-axis) and log D (y-axis)
is equally likely. This is represented by an infinitely large family of functions
that map from descriptor space to log D space. The family is described by a
Gaussian Process prior, 25 examples are shown in Figure 4 (left).

When training the model with log D values for a number of molecules (sym-
bolized by black crosses in Figure 4 (middle)), we discard (or put lower weight
on) all functions that do not pass near by these known data points.

To predict log D values for new molecules, we just average over the functions
remaining in the pool (the red line in Figure 4 (right)) and read off the value
corresponding to the new molecules’ descriptors. To predict error bars, we
calculate the standard deviation of the functions remaining in the pool at the
position given by each new molecule’s descriptors. The 2σ environment for all
descriptor values on the x-axis is marked by the red region in Figure 4 (right).
Close to known points, the uncertainty is small, but not zero: Measurements
are assumed to be noisy. The uncertainty increases far from known points and
in regions where measurements disagree.

Effectively, all the steps described above are not implemented by sampling,
but via integral operations6. The Bayesian concept of a weighed average of
functions with a certain mean (log D prediction) and standard deviation (error
bar) is, however, preserved.

In order to derive the GP model prediction, let f be a function that depends
on a vector x of d molecular descriptors and outputs log D, i.e. f(x) ≈ log D(x).
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We assume that each possible function f is a realization of a Gaussian stochastic
process, and thus can be fully described by considering pairs of compounds x and
x′. By the properties of the Gaussian process, functional values f(x1), . . . , f(xn)
for any finite set of n points form a Gaussian distribution. The covariance for
each pair is then given by the covariance function,

cov(f(x), f(x′)) = k(x,x′), (1)

which has a role similar to the kernel function in Support Vector Machines31;8

and other kernel based learning methods. Any previous knowledge of the phe-
nomenon to be predicted is expressed in the covariance function k.

For n compounds the actual data consist of n log D measurements, y1, . . . yn

and n descriptor vectors, x1 . . .xn, (each of length d).
Assuming that measurements are noisy, we relate the n measured values to

the true log D by
yi = f(xi) + ǫ, (2)

where ǫ is Gaussian noise with standard deviation σ4

Applying a number of transformations and steps of statistical inference6

we find that the predicted log D for a new compound x∗ follows a Gaussian
distribution with mean f̄(x∗) and standard deviation std f(x∗), with

f̄(x∗) =
∑n

i=1 αik(x∗,xi) (3)

std f(x∗) =
√

k(x∗,x∗) −
∑n

i=1

∑n

j=1 k(x∗,xi)k(x∗,xj)Lij . (4)

Coefficients αi are found by solving a system of linear equations, (K + σ2I)α,
with Kij = k(xi,xj). For the standard deviation, Lij are the elements of the
matrix L = (K + σ2I)−1.

Details on inferring the parameters of the covariance function k and the
measurement noise σ can be found in Schwaighofer et al.6 .

Recent developments of approximation and sampling techniques32 allow to
train Gaussian process models on thousands of data points. However, memory
demand and computing time still increase with the third power of the number
of data points (compounds). For the larger datasets treated in this study, we
therefore precede the actual GP training with a k-means clustering, such that
each cluster contains up to 5000 compounds and train one GP per cluster. When
applying the model, predictions from the individual GP models are generated
and the prediction with the highest confidence (smallest error bar) is chosen.

4
σ can be a scalar, meaning that all measurements are equally noisy. σ can also be a vector,

allowing, in principle, to use a different noise level for each individual compound. In practice
we found it useful to assume equal measurement noise for groups of compounds that e.g. have
been measured in the same laboratory. In this way, model performance can be improved and
we can learn the noise level resulting from different (or uniform) experimental procedures
directly from the data6.
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3.5.5 Support Vector Regression

Support Vector Machines for regression and classification are based on the prin-
ciple of structural risk minimization. Out of a certain class of functions we want
to find the function that minimizes some notion of error, measured by the so-
called loss function. Using a very large class of functions (i.e., a very complex
model) one can perfectly fit to the training data, but the resulting function will
not generalize to new, unseen data (over-fitting). On the contrary, using a small
class of functions (simple, e.g. linear models) one may not be able to fit the
data reasonably, again resulting in inaccurate predictions.

Choosing a function class with functions of the right complexity can be
achieved by regularization: We combine the empirical loss on the training data
with a penalty term for the complexity and then minimize the sum (objective
function). Under certain assumptions (for example, that the training and test
data are sampled from the same distribution), it can be proven that this way of
choosing the function class leads to an optimal model33;34;35.

In the following we will first describe the idea behind linear SVR and then
generalize to the non-linear case.

Given a vector x of descriptors for a compound, the quantity of interest y

(in our case log D) will be predicted as y = f(x). Linear SVM finds a predictor
f(x) = w⊤x+ b, such that the empirical error as well as the norm of the weight
vector w are minimal. We employ an ǫ-insensitive loss function which does not
penalize deviations from the measured value that are smaller than ǫ. Model
training is done by solving the convex quadratic optimization problem:

min
w,b,ξ

1

2
‖w‖2 + C

n
∑

i=1

ξi,

subject to |f(xi) − yi| ≤ ǫ + ξi,

ξi ≥ 0, i = 1, . . . , n.

The threshold ǫ from the loss function manifests in the constraints. “Slack
variables” ξ are introduced and penalized in the objective function such that
deviation by more than ǫ increases the objective function only linearly. This
reduces the influence of outliers in the data. The constants ǫ and C are chosen
by cross-validation5.

Employing the so-called kernel trick8;35 one can generalize to non-linear
models. Functions f of the form f(x) =

∑n

i=1 αik(xi,x) + b can be gener-
ated by rewriting the liner SVM equations such that the descriptors x only
appear inside scalar products (x⊤

i xj). These scalar products can then be re-
placed by a kernel function k(xi,xj), that implicitly maps the descriptors into a
high-dimensional feature-space and computes the scalar product there. An in-
teresting connection with Gaussian Processes exists: Valid kernel functions for
support vector algorithms are also valid covariance functions for a GP model

5In principle, it is also possible to use more sophisticated approaches36 that compute SVR
solutions for multiple parameter values in a efficient manner.
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and vice versa. In this study, we do regression using Support Vector Machines
with the RBF kernel.

4 Results & Discussion

4.1 Choice of Descriptors

Gaussian Process models can assign weights to each descriptor that enters the
model as input (see Sec. 3.4 for details). The importance of individual descrip-
tors was evaluated using subsets of the training data. The 30 interpretable
descriptors with highest weight are clearly connected with log P and log D7.
They include the sum of geometrical distances between pairs of oxygen atoms,
counts of the following functional groups,

• donor atoms for H-bonds (N and O)

• H attached to hetero atom

• hydroxyl groups

• hydroxyl groups in phenol, enol, carboxyl

• ether groups

• oxygen atoms

• benzene-like rings

• carbon atoms

• quaternary nitrogen

• tertiary amines

• secondary amines

and a number of continuous quantities:

• topological polar surface area using N, O polar contributions

• topological polar surface area using N, O, S, P polar contributions

• mean atomic van der Waals volume (scaled on Carbon atom)

• harmonic oscillator model of aromaticity index total

• molar refractivity

• hydrophilic factor?

• molecular weight and 11 other measures of size, e.g. sum of conventional
bond orders, sum of atomic van der Waals volumes and size indices
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Public data Physprop/Beilstein MAE RMSE % ± 1
Gaussian Process 0.38 0.66 92.6
Linear Ridge Regression 0.59 0.89 84.4
Support Vector Machine 0.40 0.71 91.8
Random Forest 0.52 0.82 87.6
ACDLabs v9 0.43 0.90 89.2
Wskowwin v1.41 0.25 0.90 91.6
AdmetPredictor v1.2.3 0.65 1.32 86.9
QikProp v2.2 0.76 1.23 79.6
baseline: predict mean log P 1.68 2.24 40.7

Table 2: Accuracy achieved on the public data sets Physprop/Beilstein using
different machine learning methods compared with the performance of commer-
cial tools. MAE, RMSE and % ± 1 denote the mean absolute error, the root
mean squared error, and the percentage of compounds predicted with less than
one log unit error.

We found that using a small set of descriptors results in only slightly decreased
accuracy when comparing to models built on the full set of 1,664 descriptors.
The error predictions, however, turn out to be too optimistic. In other words:
The log D7 is predicted accurately for most compounds, but the model can
not correctly detect whether the test compound has, for example, additional
functional groups. These functional groups might not have occurred in the
training data, and were thus not included by the feature selection step. In the
test case, the information about these additional functional groups is important
since it helps to detect, that these compounds are different from those the
model has been trained on, i.e. the error bar should increase. Including whole
blocks containing important descriptors leads to both accurate predictions and
accurate error estimations. For, e.g. , a GP model these surplus descriptors will
get only a small weight during training – but the weight will not be zero. In
consequence the model has more information than it needs for predicting log D7

and will respond to new properties (functional groups etc.) of molecules by
estimating a larger prediction error.

In this study, we used the full Dragon blocks 1, 2, 6, 9, 12, 15, 16, 17, 18
and 20, thereby including constitutional descriptors, topological descriptors, 2D
autocorrelations, topological charge indices geometrical descriptors, WHIM de-
scriptors, GETAWAY descriptors, functional group counts, atom-centered frag-
ments and molecular properties. With this set of 904 descriptors, the models
accuracy is only slightly smaller the accuracy of models built on all 1,664 de-
scriptors, but the computational cost and memory requirements are significantly
reduced, and predicted error bars display close to ideal statistical properties (see
Sec. 4.4 and Sec. 4.5).

15



−10 −5 0 5 10 15
−10

−5

0

5

10

15

Measured log p

P
re

d
ic

te
d

 l
o

g
 p
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(b) Ridge regression
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(c) SVM
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(d) Random forests
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(e) ACDLabs v9
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(f) Wskowwin v1.41
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(g) AdmetPredictor v1.2.3
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(h) QikProp v2.2

Figure 5: Scatter plots for GP, SVM, Ridge regression and random forests (one
arbitrarily chosen cross-validation run each) and all four commercial tools on
the public data set (Physprop/Beilstein)
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4.2 Overall Accuracy: Public Data

The accuracy achieved on the public data set using different machine learning
methods is compared with the performance of ACDLabs v9, Wskowwin v1.41,
AdmetPredictor v1.2.3 and QikProp v2.2 in Table 2. The row labeled “baseline”
lists the performance achieved when constantly predicting the average log P of
the dataset. Scatter plots for all methods (one arbitrarily chosen cross-validation
run each) and all four commercial tools are given in Figure 5.

The Support Vector Machine and random forest models exhibit similarly
high performance (91.6% resp. 87.6% correct within one log unit) as the three
best performing commercial tools ACDLabs v9, Wskowwin v1.41 and Admet-
Predictor v1.2.3 (86.9% to 91.6 % correct ±1). The Gaussian Process model
performs slightly better (92.6 %± 1) than the best performing commercial tool
(91.6 % ± 1). The linear Ridge Regression model predicted a number of log P
values as high as 1016. For all plots and statistical evaluations, predictions from
the linear Ridge Regression model were post processed, setting 1.5 times the
highest/lowest log P values in the training data as upper/lower limits. Thus,
error measures like mean absolute error can be used in a more meaningful way.
84.4 % of all predictions were correct within one log unit. In general, we found
that the non-linear methods are more accurate and, in particular, produce fewer
“far off” predictions, as can be seen in Figure 5 a, c and d.

Examining Figure 5 e through h, we find that all four commercial tools
produce a number of outliers. ACDLabs v9 and Wskowwin v1.41 generate less
than 10 very “far off” predictions, but their log P is overestimated by more
than 10 orders of magnitude. For ≈ 50 compounds the predicted values are too
high by two or three log units. Still, the overall performance of both ACDLabs
v9 and Wskowwin v1.41 is good, which is also reflected in the low MAE and
RMSE, see Table 2. Neither QikProp v2.2 nor AdmetPredictor v1.2.3 produce
very “far off” predictions (> ten orders of magnitude). For several hundreds
of compounds, log P is predicted too high by two or three orders of magnitude,
reducing the overall performance (measured by MAE, RMSE and the percentage
of compounds correct within one log unit, see Table 2).

All four commercial tools have been trained using a number of compounds
that are also included in the Beilstein and Physprop databases. In these cases
the correct value is reproduced, rather than predicted. This effect can be seen
most clearly in the results for Wskowwin, where many of the model predictions
for the public data are right on the optimal prediction line. Thus, the presented
evaluation is, most likely, biased in favor of the commercial tools.

Our own results were obtained in 2-fold cross-validation (train on half of
the data, evaluate on the other half), repeated 10 times with different random
splits of the data. Therefore, test and training data tend to have a similar
distribution across different compound classes. This is not the case in the typical
application scenario of such models: In new projects, new compound classes will
be investigated, resulting in less accurate predictions. To get a realistic estimate
of the performance on unseen data, a “blind test” evaluation on data including
different compound classes is important. For models built on the Bayer Schering
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In-house cross-validation MAE RMSE % ± 1
Gaussian Process 0.41 0.66 90.7
Linear Ridge Regression 0.53 0.96 88.3
Support Vector Machine 0.44 0.70 89.8
Random Forest 0.55 0.80 84.4
ACDLabs v9 1.41 1.90 46.6
baseline: predict mean log D7 1.13 1.47 53.4

In-house blind test MAE RMSE % ± 1
Gaussian Process 0.60 0.82 81.2
Linear Ridge Regression 0.60 0.83 82.2
Support Vector Machine 0.58 0.81 81.6
Random Forest 0.74 1.00 74.8
ACDLabs v9 1.40 1.79 44.2
baseline: predict mean log D7 1.17 1.51 51.7

Table 3: Accuracy achieved using Gaussian Process models, Support Vector Ma-
chines, linear Ridge Regression and Random Forests for the respective datasets,
compared with the performance of ACDLabs v9. MAE, RMSE and % ± 1 de-
note the mean absolute error, the root mean squared error, and the percentage
of compounds predicted with an error less than one

Pharma in-house data, we present such an evaluation in the subsequent section.

4.3 Overall Accuracy: In-house Data

The results for predicting log D7 on Bayer Schering Pharma in-house data are
listed in Table 3. The corresponding scatter-plots are given in Figure 6. When
evaluated in 2-fold cross-validation on the in-house data (see Table 3, top),
the Gaussian Process model, the Support Vector Machine and the linear Ridge
Regression yielded good results (88.3 to 90.7 % correct within one log unit),
with the Gaussian Process model performing best (90.7%± 1). This model was
then validated in blind evaluation at Bayer Schering Pharma on a set of 7013
new measurements from the last months. Later, the data was made available to
the modeling team at Fraunhofer and idalab and other methods were evaluated,
treating the former blind test data as an external validation set. These results
are given in Table 3 (bottom). Amongst the commercial tools that were available
to us, only ACDLabs is able to calculate log D7, and can thus be used as a
benchmark.

With ACDLabs v9, only 44.2% of the compounds are predicted correctly
within one log unit. Mind that ACD has been trained on shake-flask mea-
surements, while the in-house measurements used in this study were performed
with the HPLC methodology described in Sec. A. With our tailored models, we
achieved 81.2% to 82.2% correct predictions. These are very good results, con-
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(a) GP (in-house blind test)
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(b) ACD (in-house blind test)
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(c) GP (in-house cross-validation)
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(d) ACD (in-house cross-validation)

Figure 6: Scatter-plots for Gaussian Process and ACDLabs v9 on in-house vali-
dation data in blind test (subplots a, b) and on in-house data in cross-validation
(subplots c,d)
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(a) In-house cross-validation
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(b) In-house blind test

Figure 7: Histograms of Mahalanobis distances from each compound to the
closest compound in the respective training set. Distances for the cross vali-
dated in-house setup a) were calculated for the training/validation-split of one
arbitrarily chosen cross-validation run.

20



environment pred ± σ pred ± 2σ

optimal % 68.7 95.0
GP 67.5 90.4
RR 62.6 88.0
SVM 63.7 87.9
forest 62.5 90.2

Table 4: Predicted error bars can be evaluated by counting how many pre-
dictions are actually within a σ, 2σ etc. environment and comparing with the
optimal percentage. A graphical presentation of these results including fractions
of σ can be found in Figure 8.

sidering that the structures were at no point in time available to the modeling
team at FIRST/idalab. Furthermore, the blind test data stems from new drug
discovery projects, and thus represents different structural classes than those
present in the training data.

The fact that performance decreases when comparing the results achieved
in cross-validation with the blind test could be taken as a hint that the non-
linear models did overfit to their training data. However, typical symptoms of
overfitting, like a too large number of support vectors in SVM models, were not
present. A large fraction of all compounds in the validation set is, however,
very dissimilar to the training data. Histograms of Mahalanobis distances from
each compound in the validation to the closest training compound are presented
in Figure 7. We used the same set of descriptors for both model building and
distance calculation.

In a typical cross-validation run on the in-house data set, 50 % of the com-
pounds have a nearest neighbor closer than 1100 units, see Figure 7, top. In
the blind test set, less than 25 % of the compounds have neighbors closer that
1100 units, see Figure 7 bottom.

This supports our hypothesis that the difference in performance between
the cross-validation results and the blind test is caused by a large number of
compounds being dissimilar to the training set compounds. Therefore it should
be possible to achieve higher performance by focusing on compounds that are
clearly inside the domain of applicability of the respective model. We investigate
this question in Sec. 4.5.

4.4 Individual Error Estimation for Interactive Use

Researchers establishing error estimations based on the distance of compounds
to the training data typically present plots or tables where prediction errors are
binned by distance, i.e., averaging over a large number of predictions, because
the correlation between distances and errors is typically not too strong when
considering individual compounds. When binning by the distance, one can
clearly see how the error increases as the distance increases17;14. One can fit
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(a) GP (in-house blind test)
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(b) RR (in-house external validation)
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(c) SVM (in-house external validation)
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(d) forest (in-house external validation)

Figure 8: Predicted error bars can be evaluated by counting how many predic-
tions are actually within a σ, 2σ etc. environment (red line) and comparing
with the optimal percentage (black line). The vertical green lines indicate the
σ and 2σ environments, the corresponding numbers can be found in Table 4.

22



a function to this relationship and use it to generate an error prediction for
each prediction the model makes. But how does the user know, what an error
prediction of e.g. 0.6 log units really means? In how many cases does the user
expect the error to be larger than the predicted error? How much larger can
errors turn out?

The most commonly used description of uncertainty (such as measurement
errors, prediction errors, etc.) in chemistry, physics and other fields is the error
bar. Its definition is based on the assumption that errors follow a Gaussian
distribution. When using a probabilistic model that predicts a Gaussian (i.e.,
a mean f̄ and a standard deviation σ), it follows that the true value has to be
in the interval f̄ ± σ with 68% confidence, and in the interval f̄ ± 2σ with 95%
confidence, etc. To evaluate the quality of the predicted error bars, one can
therefore compare with the true experimental values, and count how many of
them are actually within the σ, 2σ etc. intervals.6

Gaussian Process model can directly predict error bars. In the implementa-
tion of random forests used in this study, the predictive variance is calculated
by averaging the variance of the predictions from the different trees in the forest
and the average estimated variance from training points found at each tree leaf.

For the and linear Ridge Regression models and the Support Vector Ma-
chines, error bars were estimated by fitting exponential and linear functions to
the errors observed when evaluating the models in cross-validation and the ma-
halanobis distances to the closest neighbours in the training set of the respective
split. Since both linear and exponential functions worked equally well, we chose
the simple linear functions to estimate to error bars from the distances.

Plots of the empirical confidence versus the confidence interval are presented
in Figure 8 (red line). The optimal curve is marked by the black line. The σ and
2σ environments are marked by green lines, with the corresponding percentages
of predictions within each environment being listed in Table 4. Predicted er-
ror bars of all four models exhibit the correct statistical properties, with the
GPlogD error predictions being closest to the ideal distribution. The results
presented for the GP model stem from a “blind test” of the final model deliv-
ered to Bayer Schering Pharma4;5;6;7;8. The remaining algorithms have been
evaluated a posteriori, after the experimental values for the validation set had
been revealed.

In conclusion, using Bayesian models, ensemble models or distance based
approaches one can not only identify compounds outside of the models domain
of applicability, but also quantify the reliability of a prediction in a way that is
intuitively understandable for the user.
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(a) GPlogD on Flask (external validation)
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(b) RR on Flask (external validation)
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(c) SVM on Flask (external validation)
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(d) Forest on Flask (external validation)

Figure 9: Mean absolute error achieved when binning by the model based error
bar (in the case of the GP and the random forest) resp. the Mahalanobis distance
to the closest point in the training set (linear Ridge Regression and Support
Vector Machines do not provide error bars). Each bin contains one seventh
(1000 compounds) of the in-house validation set. Corresponding numbers can
be found in Table 5.
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error bar (average in bin) 0.10 0.20 0.29 0.40 0.55 0.72 1.26
MAE GP 0.32 0.41 0.55 0.57 0.57 0.68 0.77

error bar (average in bin) 0.22 0.37 0.47 0.57 0.68 0.85 1.19
MAE (forest) 0.37 0.53 0.59 0.69 0.80 0.95 1.24

distance (average in bin) 448 1021 1534 1986 2428 3057 5256
MAE (RR) 0.43 0.50 0.52 0.62 0.66 0.73 0.73
MAE (SVM) 0.35 0.44 0.50 0.61 0.65 0.73 0.79

Table 5: Mean absolute error achieved when binning by the model based error
bar (for GP and random forest) resp. the Mahalanobis distance to the closest
point in the training set (linear Ridge Regression and SVM, since these meth-
ods do not provide model-based error bars). Bins were chosen such that each
contains one seventh (around 1000 compounds) of the in-house validation set.
A graphical representation of this information can be found in Figure 9.

4.5 Increasing Accuracy by focusing on the

Domain of Applicability

In Sec. 4.3 we presented statistics obtained by applying our models to all com-
pounds in the respective test sets, without considering the models’ domain of
applicability. In Sec. 4.4 we have evaluated methods for quantifying the con-
fidence in predictions, and found that this can be achieved in a reliable way.
Therefore it should be possible to increase model performance by focusing on
more confident predictions or, in other words, on compounds clearly inside the
domain of applicability.

In Figure 9 we present a histogram-like bar plot obtained in the following
way: We assign compounds to bins based on the confidence in the prediction,
i.e., the model based error bar (GP and random forest) or distance to training
points (for ridge regression and SVM), such that each of the seven bins contains
1000 compounds (one seventh of the in-house validation data). Within each bin
(representing a different degree of confidence in the predictions), we compute
the mean absolute error. For each algorithm tested, the mean absolute error
decreases, as compounds in bins with higher confidence are considered. In case
of the GP model, the mean absolute error decreases from 0.55 to 0.42, when
focusing on the 3000 compound with the lowest predicted error bars. When
focusing on the 1000 compounds with lowest predicted error bars, the mean
absolute error can even be reduced to only 0.32 log units.

In conclusion, focusing on confident predictions, i.e., compounds within the
domain of applicability, allows us to achieve more accurate predictions than we
found when validating models on the whole in-house validation set (Table 3).
The previously observed decrease in performance relative to the cross-validation

6We found that numeric criteria, i.e., the log probability of the predictive distribution, can
be misleading.
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on the training data can therefore be avoided.

5 Summary

We presented results of modeling lipophilicity using the Gaussian Process method-
ology on public and in-house data. The statistical evaluations show that the
prediction quality of our GP models compares favorably with four commercial
tools and three other machine learning algorithms that were applied to the
same sets of data. The positive results achieved with the model on in-house
drug discovery compounds are re-confirmed by a blind evaluation on a large set
of measurements from new drug discovery projects at Bayer Schering Pharma.

It should be noted that GP models are not only capable of making accu-
rate predictions, but can also provide fully automatic adaptable tools: Using a
Bayesian model selection criteria allows for re-training without user intervention
whenever new data becomes available. As a further advantage for every day use
in drug discovery applications, GP models quantify their domain of applicabil-
ity in a statistically well founded manner. The confidence of each prediction is
quantified by error bars, an intuitively understood quantity. This allows both,
increasing the average accuracy of predictions by focusing on predictions that
are inside the domain of applicability of the model, and judging the reliability
of individual predictions in interactive use.
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A Appendix: Measuring log D7 using HPLC

High Performance Liquid Chromatography (HPLC) is performed on analytical
columns packed with a commercially available solid phase containing long hy-
drocarbon chains chemically bound onto silica. Chemicals injected onto such
a column move along it by partitioning between the mobile solvent phase and
the hydrocarbon stationary phase. The chemicals are retained in proportion
to their hydrocarbon-water partition coefficient, with water-soluble chemicals
eluted first and oil-soluble chemicals last. This enables the relationship between
the retention time on a reverse-phase column and the n-octanol/water partition
coefficient to be established. The partition coefficient is deduced from the ca-
pacity factor k = tr−t0

t0
, where tr is the retention time of the test substance and

t0 is the dead time, i.e., the average time a solvent molecule needs to pass the
column. In order to correlate the measured capacity factor k of a compound
with its log D7, a calibration graph is established. The partition coefficients

26



of the test compounds are obtained by interpolation of the calculated capac-
ity factors on the calibration graph using a proprietary software tool “POW
Determination”.

A.1 Apparatus and Materials

Experiments are carried out following the OECD Guideline for Testing of Chem-
icals No. 117. A set of 9 reference compounds with known log D7values selected
from this guideline is used.

• HPLC: Waters Alliance HT 2790 with DAD- and MS-detection

• Column: Spherisorb ODS 3 µm, 4.6 × 60 mm

• Mobile phase: Methanol/0.01 m Ammoniumacetate buffer (pH 7) 75:25

• Dead time compound: Formamide, Stock solution in MeOH

• Test compounds: 10 mmolar DMSO stock

• Reference compounds (Stock solutions in MeOH): Acetanilide, 4-Methyl-
benzyl alcohol, Methyl benzoate, Ethyl benzoate, Naphthalene, 1,2,4-
Trichlorobenzene, 2,6-Diphenylpyridine, Triphenylamine, DDT.
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