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Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness

this power to predict highly accurate molecular infrared spectra with unprecedented computational

efficiency. To account for vibrational anharmonic and dynamical effects – typically neglected by

conventional quantum chemistry approaches – we base our machine learning strategy on ab initio

molecular dynamics simulations. While these simulations are usually extremely time consuming even for

small molecules, we overcome these limitations by leveraging the power of a variety of machine learning

techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending

the size of systems that can be treated. To this end, we develop a molecular dipole moment model

based on environment dependent neural network charges and combine it with the neural network

potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to

obtain very accurate machine learning models for the prediction of infrared spectra based on only a few

hundreds of electronic structure reference points. This is made possible through the use of molecular

forces during neural network potential training and the introduction of a fully automated sampling

scheme. We demonstrate the power of our machine learning approach by applying it to model the

infrared spectra of a methanol molecule, n-alkanes containing up to 200 atoms and the protonated

alanine tripeptide, which at the same time represents the first application of machine learning techniques

to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement

between the infrared spectra predicted via machine learning models and the respective theoretical and

experimental spectra.

1 Introduction

Machine learning (ML) – the science of autonomously learning

complex relationships fromdata – has experienced an immensely

successful resurgence during the last decade.1,2 Increasingly

powerful ML algorithms form the basis of a wealth of fascinating

applications, with image and speech recognition, search engines

or even self-driving cars being only a few examples. In a similar

manner, ML based techniques have lead to several exciting

developments in the eld of theoretical chemistry.3–7

ML potentials are an excellent example of the benets ML

algorithms can offer when paired with theoretical chemistry

methods.8–16 These potentials aim to accurately reproduce the

potential energy surface (PES) of a chemical system (and its

forces) based on a number of data points computed with

quantum chemistry methods. Due to the powerful non-linear

learning machines at their core, ML potentials are able to

retain the accuracy of the underlying quantum chemical

method, but can be evaluated several orders of magnitude

faster. This combination of speed and accuracy is especially

advantageous in situations where a large number of costly

quantum chemical calculations would be required.

One such case is ab initio molecular dynamics (AIMD),

a simulation technique used to describe the evolution of chem-

ical systems with time.17 In AIMD, the motion of the nuclei is

described classically according to Newton’s equations of

motion18 and depends on the quantummechanical force exerted

by the electrons and nuclei. AIMD is a highly versatile tool and

has been used to model a variety of phenomena like photo-

dynamical processes or the vibrational spectra of molecules.19–23

The latter application is of particular interest in the eld of

vibrational spectroscopy. With the development of more and

more sophisticated experimental techniques, it is now possible

to use methods like infrared (IR) and Raman spectroscopy to

obtain highly accurate spectra of macromolecular systems (e.g.

proteins).24,25 As a consequence, vibrational spectra have

become increasingly complex and theoretical chemistry simu-

lations are now an indispensable aid in their interpretation.

Unfortunately, the standard approach to model vibrational
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spectra, static calculations based on the harmonic oscillator

(HO) approximation, suffers from several inherent limita-

tions.21,26 Due to the HO approximation, anharmonic vibra-

tional effects are neglected, which are of great importance in

molecular systems with high degrees of exibility and/or

hydrogen bonding, such as biological systems. Moreover, HO

based calculations are unable to account for conformational

and dynamic effects, due to their restriction to one particular

conformer. This also makes it hard to accurately model

temperature effects, which have a large inuence on confor-

mational dynamics and are highly relevant for spectra recorded

at room temperature.20 These deciencies lead to disagree-

ments between experimental and theoretical spectra, thus

complicating consistent analysis.

Different strategies, like the variational self-consistent eld

(VSCF) approach and its extensions,26 as well as quantum

dynamics based methods,27,28 have been developed to account

for these effects, but they either neglect dynamical effects or are

computationally intractable for systems containing more than

a few tens of atoms. Consequently, AIMD, which is able to

describe anharmonicities and dynamic effects at manageable

computational costs, is an invaluable tool for the practical

simulation of vibrational spectra.20,21

Yet, standard AIMD is still comparatively expensive, placing

severe restrictions on the maximum size of the systems under

investigation (approximately 100 atoms) and on the quality of

the quantum chemical method. Various techniques, such as

compressed sensing29 or harmonic inversion,30 can be used to

reduce the amount of AIMD samples required to obtain good

quality spectra. However, these approaches are not able to

overcome system size limitations. A more general alternative to

signicantly accelerate AIMD simulations without sacricing

chemical accuracy is to replace most electronic structure

calculations with much cheaper ML computations. This opens

the way for exciting new possibilities, making it possible to

simulate larger systems and longer timescales in only a fraction

of the original computer time.

The goal of the current work is to use ML accelerated AIMD

calculations to simulate accurate IR spectra of different organic

molecules. This is achieved by harnessing the synergies

between established techniques, improvements to existing

schemes and new developments: (I) a special kind of ML

potential, called high-dimensional neural network potential

(HDNNP), is used to model the PES.31 (II) Molecular forces are

employed in the construction of these HDNNPs, using amethod

based on the element decoupled Kalman lter.32 (III) Electronic

structure reference data points are selected via an enhanced

adaptive sampling scheme for molecular systems. (IV) A

HDNNP based fragmentation method is used to accelerate

reference computations for macromolecules.33 Finally, (V) a new

ML scheme to model dipole moments is introduced. A detailed

description of all of these individual components is given in the

following section.

Three different molecular systems were studied using the

strategies described above. First, a single methanol molecule

served as a test case to assess the overall accuracy of the HDNNP

based simulations compared to the spectra obtained with

standard AIMD. Second, the ability of HDNNPs to efficiently

deal with macromolecular systems was demonstrated by (a)

constructing a HDNNP of a simple alkane chain based only on

small fragments of the macromolecule and then (b) using the

resulting model to predict the IR spectra of alkanes of varying

chain lengths. In order to probe the suitability of HDNNPs for

systems of biological relevance, a nal study was dedicated to

the protonated trialanine peptide. This also served as an

excellent test case for the ML based dipole moment model.

Separate reference data sets are generated for each of the

three systems. The system specic HDNNPs are constructed

using density functional theory (DFT) as an electronic structure

reference method. Generalized gradient functionals are used

for methanol and the tripeptide. In the case of alkanes, we

demonstrate that in principle highly accurate double-hybrid

density functionals34 can also be used. The simulations

carried out with these latter HDNNPs would be next to impos-

sible using on-the-y AIMD. In all cases, comparisons to

experimental IR spectra are shown.

2 Theoretical background

In AIMD, vibrational spectra are computed via the Fourier

transformation of time autocorrelation functions.21 Different

physical properties give rise to different types of spectra. IR

spectra depend on the molecular dipole moments:

IIRf

ðþN

�N
h _mðsÞ _mðsþ tÞi

s
e�iutdt ; (1)

where _m is the time derivative of the molecular dipole moment,

u is the vibrational frequency, s is a time lag and t is the time.

Upon closer examination of eqn (1), several challenges to

model AIMD quality IR spectra via ML become apparent: reli-

able ML potentials (and especially forces) are required to

describe the time evolution of a chemical system. Consequently,

reference points need to be selected from representative regions

of the PES, while keeping the number of costly electronic

structure calculations to a minimum. This also calls for efficient

strategies to handle the reference calculations of large mole-

cules. Finally, a method to accurately model molecular dipole

moments is required.

2.1 High-dimensional neural network potentials

In a HDNNP (shown in Fig. 1), the total potential energy Epot of

a molecule is expressed as a sum of individual atomic ener-

gies.31,35 The contribution Ei of every atom depends on its local

chemical environment and is modeled by a neural network

(NN). These atomic NNs are typically constrained to be the same

for a given element and thus are also termed elemental NNs.

Due to this unique structure, HDNNPs can easily adapt to

molecules of different sizes and even be transferred between

sufficiently similar molecular systems.

The chemical environment of an atom is represented by a set

of many-body symmetry functions {Gi}, so-called atom-centered

symmetry functions (ACSFs).36 ACSFs depend on the positions

{Ri} of all neighboring atoms around the central atom, up to

This journal is © The Royal Society of Chemistry 2017 Chem. Sci., 2017, 8, 6924–6935 | 6925
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a predened cutoff radius. By introducing a cutoff radius, an

atom’s environment is restricted to the chemically relevant

regions. This brings two distinct advantages: the computational

cost of HDNNPs now scales linearly with molecular size and

chemical locality can be exploited in their construction and

application,8 which has been demonstrated recently e.g. for

alkanes.33 In addition, HDNNPs are well suited for molecular

dynamics simulations, since an analytical expression for

molecular forces is available due to their well-dened func-

tional form. For a detailed discussion of HDNNPs and ACSFs,

see ref. 35.

In order for HDNNPs to yield reliable models of the PES, a set

of optimal parameters needs to be determined for the elemental

NNs. This is done in a process called training, where a cost

function (typically the mean squared error) between the refer-

ence data points (e.g. energies and forces) and the HDNNP

predictions is minimized iteratively. Different algorithms can

be used to carry out the minimisation. The current work uses

the element-decoupled Kalman lter,32 a special adaptation of

the global extended Kalman lter37 for HDNNPs.

Besides the energies, it is also possible to include molecular

forces in the training process, by minimizing the cost function35

C E;F ¼ 1

M

X

M

m

ð ~Em � EmÞ2 þ
h

M

X

M

m

1

3Nm

X

3Nm

a

ð ~Fma � FmaÞ2: (2)

The rst term on the right hand side corresponds to the

mean squared error between the reference energies E and

HDNNP energies ~E. The second term describes the deviation

between the HDNNP (~F) and quantum chemical forces (F). M is

the number of molecules in the reference data set, N the

number of atoms in a molecule, and a is an index running over

the 3N Cartesian force components. h is a constant used to tune

the importance of the force error on the update step. Including

the forces in the training process leads to substantial

improvements in the forces predicted by the HDNNP. Further-

more, instead of only one single energy, 3N points of additional

information per molecule can now be utilized during training,

thus greatly reducing the number of reference points required

for a converged potential. An in-depth description of the

element-decoupled Kalman lter and its extension to molecular

forces can be found in ref. 32.

2.2 Adaptive selection scheme

Ultimately, the quality of a ML potential does not only depend

on the underlying ML algorithm and the employed training

procedure, but also on how well the reference data set repre-

sents the chemical problem under investigation. Ideally, the

reference data span all relevant regions of the PES with as few

data points as possible to avoid costly electronic structure

computations. To this end, different strategies – e.g. based on

Bayesian inference38 or geometric ngerprints39 – have been

developed in the past.

A simple but relatively effective procedure to select data points

is based on the use of multiple HDNNPs and is described for

example in ref. 35. Aer choosing an initial set of reference data

points, a set of preliminary HDNNPs is trained, differing in the

initial parameters and/or architectures of their elemental NNs

(Fig. 2). These proto-potentials are then used to sample different

molecular conformations, using e.g. molecular dynamics simu-

lations. Aerwards, the predictions of the HDNNPs are compared

to each other. Regions of the PES where the different HDNNPs

agree closely are assumed to be represented well, whereas

conformations with diverging HDNNP predictions are modeled

inaccurately. The inaccurately described conformations are

recomputed with the electronic structure reference method and

Fig. 1 Schematic representation of a high-dimensional neural
network potential (HDNNP). The Cartesian coordinates R are trans-
formed into many-body symmetry functions {Gi} describing an atom’s
chemical environment. Based on these functions, a NN then predicts
the energy contribution Ei associated with atom i. The potential energy
Epot of the whole molecule is obtained by summing over all individual
atomic energies.

Fig. 2 A typical run of the adaptive selection scheme starts by using
a small set of initial reference data points to train a preliminary
ensemble of HDNNPs. These HDNNPs are then used to sample new
molecular conformations (e.g. via molecular dynamics simulations).
During sampling, the predictions of the individual potentials are
monitored and if divergence is detected, the sampling run is stopped.
The conformation for which the HDNNPs disagree is computed with
the electronic structure reference method and added to the set of
reference points. Subsequently, the HDNNP ensemble is retrained on
the expanded data set and sampling is continued with the new
potential. This procedure is repeated in an iterative manner, until the
divergence stops to exceed a predetermined threshold.

6926 | Chem. Sci., 2017, 8, 6924–6935 This journal is © The Royal Society of Chemistry 2017
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added to the reference data set. The HDNNPs are then retrained

using the expanded data set and the process is repeated in a self

consistent manner until the HDNNPs reach the desired quality.

The current work introduces small adaptations to this

procedure in order to make it more suitable for use with

biomolecules and expensive reference methods. Instead of

performing independent sampling simulations with the indi-

vidual HDNNPs, they are combined into an ensemble. In the

ensemble, the energy and forces are computed as the average of

the J different HDNNP predictions:

E ¼ 1

J

X

J

j¼1

~E j ; (3)

F ¼ 1

J

X

J

j¼1

~Fj : (4)

Simulations are then carried out using these averaged

properties. The prediction uncertainty of the HDNNP ensem-

bles is dened as

Es ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

J � 1

X

J

j

�

~E j � E
�2

v

u

u

t

: (5)

The use of the HDNNP ensembles and the above uncertainty

measure offers two advantages: rst, the reliability of the

uncertainty measure increases with the number of basic

HDNNPs. The more HDNNPs are used, the more unlikely it

becomes that they exhibit similar behavior in underrepresented

regions of the PES. Second, ensembles are less susceptible to

errors in their individual components, since these errors tend to

cancel to a certain degree. This leads to a signicant improve-

ment of the prediction accuracy (reducing the error up to

a factor of
1
ffiffi

J
p in some cases) at negligible extra cost. This effect

leads to more reliable simulations, especially in the early stages

of the PES exploration, hence diminishing the number of elec-

tronic structure starting points needed to seed the self-

consistent renement procedure. As a consequence, HDNNPs

can now be grown on-the-y from only a handful of data points

in a highly automated manner: starting from e.g. a few molec-

ular dynamics steps, HDNNP ensemble simulations are run

until Es of a visited structure exceeds a predened threshold.

The corresponding conformation is recomputed with the

reference method and added to the training set. The HDNNPs

are retrained and simulations are continued from the prob-

lematic conformation. Finally, once a converged HDNNP

ensemble has been obtained in this way, it is used to simulate

the properties of interest.

This procedure is effective but highly sequential and calcula-

tions using expensive reference methods constitute a signicant

bottleneck. Under the assumption that the approximate shape of

the PES is sufficiently similar for different electronic structure

methods, an “upscaling” step is introduced. First, the iterative

renement is carried out using a low-level method until

convergence of the HDNNPs. The conformations obtained in this

manner are then recomputed using a high-level method. Since

these high-level calculations can be done in parallel, the overall

procedure is highly efficient. Aerwards, new HDNNPs are

trained, now at the quality of the better method. The above

assumption with regard to the similar shape of the PES at the

different levels of theory is not necessarily valid, hence an

upscaling step is typically followed by additional renement steps

at the higher level of theory.

A detailed discussion on the performance of the adaptive

selection scheme and the convergence of the ML predictions

with ensemble size can be found in the ESI.†

2.3 Fragmentation with high-dimensional neural network

potentials

Since the computational cost of electronic structure calculations

scales very unfavorably with the system size and accuracy of the

underlying method, individual reference computations can still be

problematic. Hence, the required reference computations would

quickly become intractable for highly accurateHDNNPs describing

large molecular systems, despite the efficient sampling scheme.

It is possible to circumvent this problem by exploiting the

special structure of HDNNPs. As a consequence of expressing the

HDNNP energy as a sum of atomic contributions and introducing

a cutoff radius, HDNNPs operate in the same manner as frag-

mentation methods using a divide and conquer approach: given

only the energies of small molecular fragments, HDNNPs can

reconstruct the energy of the total system.8,33 Thus, expensive

electronic structure calculations never have to be performed for the

whole molecule, but only for small parts of it. The result is a linear

scaling of the computational effort with system size. Similar frag-

mentation strategies are employed by other ML models.12,40–42

In practice, a molecule is rst divided into its individual

fragments. Reference computations are then carried out for these

fragments and the resulting data set is used to train a HDNNP.

The ML potential is then applied to the geometry of the original

molecule and the energy of the full system is recovered in this

way. Different strategies can be used to partition the full molec-

ular system. In the current work, every molecule is split into N

atom-centered fragments (see Fig. 3). The size and shape of these

fragments are determined by a cutoff radius around the central

atom. Atoms beyond the cutoff radius are removed and free

valencies are saturated with hydrogen atoms. If a free valency is

situated on a hydrogen atom or two capping hydrogens overlap,

the heavy atom corresponding to this position is instead included

in the fragment and the process is repeated iteratively. Typically,

the same cutoff radius as that in the ACSFs is used.

HDNNP fragmentation can easily be integrated into the

adaptive sampling scheme. Using the deviations in atomic

forces predicted by different HDNNPs as uncertainty measures,

inaccurately modeled fragments can be identied. These frag-

ments are then added to the reference data set.

2.4 Neural network dipole moments and charge analysis

A vital ingredient in the simulation of IR spectra with AIMD is

the molecular dipole moment (see eqn (1)). While strategies to

This journal is © The Royal Society of Chemistry 2017 Chem. Sci., 2017, 8, 6924–6935 | 6927
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predict dipole moments using NNs exist,43,44 HDNNPs them-

selves have only been used to predict environment dependent

charges in full analogy to the atomic energy contributions with

the aim to model electrostatic long range interactions.45,46

In this work, we extend this approach, by constructing

molecular dipole moments as a sum of such environment

dependent atomic partial charges:

~m ¼
X

N

i

~qiri; (6)

where ~qi is the charge of atom i modeled by a NN and ri is the

distance vector of the atom from the molecule’s center of

mass.

While the elemental charge NNs could in principle be

trained to reproduce charges computed with quantum chemical

charge partitioning schemes (as was e.g. done in ref. 47 to

model electrostatic interactions), this approach has the

following problems: rst, the charge of a given atom obtained

with such a partitioning scheme can in principle change along

a trajectory in a non-continuous manner (e.g. depending on the

local minima of the t found when determining the atomic

charges in such methods as CHELPG48). The resulting incon-

sistencies in the reference data can in turn lead to erratic

predictions of the nal machine learning model. Second, unlike

molecular energies and forces, atomic partial charges are not

quantum mechanical observable. Hence, there is no physically

unique way to determine them and a variety of different parti-

tioning schemes exists.49 This complicates the choice of a suit-

able method to compute reference charges, since different

schemes oen exhibit vastly different behavior and sometimes

fail to reproduce the molecular dipole moment accurately.50

Both problems can be avoided by training the elemental NNs

to reproduce the molecular moments directly, while the envi-

ronment dependent atomic charges ~qi are inferred in an indi-

rect manner. In order to achieve this, a cost function of the form

CQ ¼ 1

M

X

M

m

ð ~Qm �QmÞ2 þ
1

3M

X

M

m

X

3

l

ð~mlm � mlmÞ2 þ. (7)

is minimized. Here, Qm and mlm are the reference total charge

and dipole moment components of molecule m. The index l

runs over the three Cartesian components of the dipole

moment. ~Q is the total charge of the composite NN model,

computed as ~Q ¼ P

N

i

~qi, while ~m is the NN dipole moment

(eqn (6)). While the cost function (from eqn (7)) can be easily

extended to include higher multipole moments, it was found

that including only the total molecular charge and dipoles is

sufficient for the purpose of modeling IR spectra. Since this

scheme depends exclusively on molecular moments which are

quantum mechanical observable, charge partitioning is no

longer required. On the contrary, the trained NN model itself

constitutes a new kind of partitioning scheme, where the

atomic partial charges qi depend on the chemical environment

and are determined on a purely statistical basis. These charges

can also be used for additional purposes, e.g. to compute elec-

trostatic interactions. Another possible application would be to

augment classical force elds,43 where partial charges typically

do not change with the chemical environment.51 As such, the

NN charge scheme presented here constitutes an interesting

alternative to static point charges or polarizable models.52

3 Computational details

Electronic structure reference calculations were carried out with

ORCA53 at the BP86/def2-SVP54–59 (methanol and alanine tri-

peptide), BLYP/def2-SVP54–56,60 (Ala3
+) and B2PLYP/def2-

TZVPP34,59 (n-alkanes) levels of theory. All calculations were

accelerated using the resolution of identity approximation.61,62

All HDNNPs were constructed and trained with the RUNNER

program.63 The NN dipole models were implemented in

python64 using the numpy65 and theano66 packages. Reference

data points were obtained with the adaptive selection scheme,

employing molecular dynamics trajectories at a temperature of

500 K with a 0.5 fs timestep to sample relevant conformations.

The nal ML models are based on 245 (methanol), 534 (n-

alkanes) and 718 (peptide) reference data points, with

a maximum network size of 35-35-1 (two hidden layers with 35

nodes each and one node in the output layer) for the HDNNPs

and 100-100-1 for the dipole moment model.

IR spectra were obtained with molecular dynamics simula-

tions in the gas phase employing the same timestep as the

sampling procedure. Aer a short initial equilibration period (3

ps for methanol and 5 ps otherwise), constant temperature

molecular dynamics simulations were run for 30 ps in the case of

methanol and 50 ps in the case of the other molecules. In addi-

tion to ML accelerated dynamics, AIMD simulations were carried

out for methanol using the BP86 level of theory described above.

Fig. 3 In order to generate molecular fragments, first all atoms
beyond a predetermined cutoff radius from the central atom are
removed. Afterwards, free valencies are saturated with hydrogen
atoms, unless the valency itself is situated on a hydrogen or corre-
sponds to a double bond in the unfragmented molecule. In this case,
the heavy atom connected to this atom in the original molecule is
included in the fragment and the process is repeated iteratively. This
procedure is performed for the whole system, leading to one fragment
per atom.

6928 | Chem. Sci., 2017, 8, 6924–6935 This journal is © The Royal Society of Chemistry 2017
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Detailed information regarding the setup of the electronic

structure calculations and molecular dynamics simulations as

well as the ML models can be found in the ESI.†

4 Results and discussion
4.1 Methanol

Due to its small size, the methanol molecule constitutes an

excellent test system, not only for the direct comparison

between the IR spectra obtained via standard AIMD and ML

simulations, but also to investigate the overall accuracy of the

ML approximations.

The nal ML model for methanol consists of two HDNNPs

and a NN dipole moment model trained on the BP86 data for

245 congurations. To assess the errors associated with the

individual components of the model, a standard AIMD simu-

lation is run for 30 ps, producing 60 000 congurations. For the

sampled geometries, energies, forces and dipoles are predicted

with the MLmodel. These predictions are then compared to the

respective electronic structure results. The distribution of errors

between the ML predictions and the BP86 method are shown in

blue in Fig. 4.

Excellent agreement between BP86 calculations and the ML

model is found for all investigated properties. In the case of

energies (Fig. 4a), the mean absolute error (MAE) of 0.048 kcal

mol�1 (range of energies 13.620 kcal mol�1) is well below the

commonly accepted limit for chemical accuracy (1 kcal mol�1)

and is expected to be negligible compared to the intrinsic error

of the BP86 reference method in practical applications. The

components of the force vectors are reproduced equally well

(Fig. 4b), with a MAE of 0.533 kcal mol�1 Å�1 (range 242.34

kcal mol�1 Å�1). These ndings are comparable with other

state of the art ML learning strategies developed specically

for the modeling of forces67 and demonstrate the excellent

capabilities of HDNNPs to create potentials suitable for the

dynamical simulation of molecules. This conclusion is also

supported by a comparison of the normal mode frequencies

obtained for the optimized methanol structure at the ML- and

BP86-level (see Table 1). Although the HDNNP model was

never explicitly trained to reproduce normal mode frequen-

cies, its predictions agree well with the reference frequencies,

exhibiting a maximum deviation of only 31.38 cm�1 (0.090 kcal

mol�1). The new NN dipole model is also found to provide an

accurate description of the molecular dipole moments

(Fig. 4c). The total dipole moment shows an overall MAE of

0.016 D (over a range of 0.723 D) and the spatial orientation of

the dipole vector is modeled equally reliably, with the MAEs of

the individual Cartesian components ranging from 0.0173 D to

0.0200 D. The small shi of the dipole error distribution

towards negative values is due to the fact that the atomic

charges uctuate around values other than zero. This effect is

enhanced further, by the nal summation to obtain the dipole

moment model (see eqn (6)). Further evidence for the high

efficacy of the dipole moment model is provided by the small

deviations between the static IR intensities obtained for the

optimized methanol at the ML- and BP86-level (see Table 1).

However, care should be taken, as these values have been

derived within the harmonic oscillator approximation and

serve the sole purpose of analyzing the accuracy of the ML

model.

Fig. 4 Distribution of errors between the ML model based on the
adaptive sampling scheme and the BP86 reference (blue). The devia-
tions were computed based on the energies, forces and dipole
moments (from top to bottom) of 60 000 configurations of methanol
sampled with an AIMD simulation. The deviations obtained with a ML
model trained on data points selected at random from a force field
simulation are shown in grey (see ESI†).

Table 1 Comparison of the normal mode frequencies and IR inten-
sities of methanol obtained with DFT and the ML model within the
harmonic oscillator approximation

#

~u [cm�1] I [km mol�1]

BP86 ML D~u BP86 ML DI

1 331.70 346.94 �15.24 119.94 117.96 1.99
2 1037.82 1030.00 7.82 90.89 81.72 9.16
3 1080.46 1092.09 �11.63 34.31 53.33 �19.02
4 1135.08 1138.21 �3.13 0.35 0.08 0.27
5 1328.95 1320.84 8.11 23.97 44.70 �20.73
6 1420.02 1416.42 3.60 1.74 8.15 �6.41
7 1427.64 1422.59 5.05 5.96 2.31 3.66
8 1449.79 1449.02 0.77 8.63 3.24 5.39
9 2880.76 2892.94 �12.18 74.67 65.10 9.58
10 2930.10 2961.48 �31.38 85.43 67.65 17.78
11 3034.15 3054.08 �19.93 29.45 31.19 �1.75
12 3707.93 3707.73 0.20 21.29 19.89 1.39
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In order to study the quality of an IR spectrummodeled with

the composite ML model, it is compared directly to the spec-

trum obtained via the BP86 AIMD simulation. Fig. 5 shows both

IR spectra alongside an experimental spectrum of methanol

recorded in the gas phase.68 While the whole spectral range is

covered for both theoretical spectra, the experiment only spans

the region from 600 cm�1 to 4100 cm�1. The overall shape of the

ML spectrum, as well as the peak positions and intensities,

shows excellent agreement with the electronic structure refer-

ence. The most distinctive difference between the QM and ML

spectra is the intensity of the stretching vibration of the O–H

bond observed at 3700 cm�1. This relatively minor deviation is

most likely caused by small deviations of the dipole moment

model. Overall, the ML approach presented here is able to

reproduce the AIMD IR spectrum of methanol with high accu-

racy. These results are remarkable insofar as the nal MLmodel

is based on only 245 electronic structure calculations. This

demonstrates the effectiveness of the combination of HDNNPs

and the NN dipole model, as well as the power of the improved

sampling scheme.

Finally, both simulations agree well with the experimental

spectrum, serving as an example of the utility of AIMD and ML

accelerated AIMD for the prediction of accurate vibrational spectra.

4.2 n-Alkanes

When constructing ML potentials for large molecular systems

containing hundreds or thousands of atoms, the necessary

electronic structure reference calculations can quickly become

intractable, especially for high-level methods. HDNNPs, as well

as the dipole moment model presented in this work, can over-

come this limitation via their implicit use of fragmentation (see

Section 2.3). In order to demonstrate the potential of this

approach, it is used to predict the IR spectrum of an n-alkane

with the chemical formula C69H140 (depicted in Fig. 6) via ML

accelerated AIMD simulations based on the B2PLYP double-

hybrid density functional method.

The two HDNNPs and NN dipole moment model consti-

tuting the nal ML model were trained on reference

calculations for 534 fragments of the n-alkane. These fragments

use a cutoff radius of 4.0 Å and contain 37 atoms on average and

a maximum of 70 atoms. Aer initial adaptive sampling at the

BP86/def2-SVP level, the nal B2PLYP/TZVPP level ML model is

obtained via an upscaling step described in Section 2.2.

Dispersion interactions, which are expected to play an impor-

tant role in molecular systems of this size, are accounted for via

a simple scheme: the HDNNPs are constructed from standard

B2PLYP calculations and augmented with the empirical D3

dispersion correction using Becke–Johnson damping69,70 in an

a posteriori fashion.

The IR spectrum of the C69H140 n-alkane predicted via ML is

shown in Fig. 6. It exhibits all of the spectroscopic features

typical for simple hydrocarbons: the intense peak at 3000 cm�1

corresponds to symmetric and asymmetric C–H stretching

vibrations. Deformations of the CH2-groups give rise to the

bands close to 1500 cm�1, while the extremely weak signals in

the vicinity of 1000 cm�1 and 600 cm�1 are generated by C–C

bond stretching and CH2 rocking vibrations.

Although the general shape and features of the IR spectrum

are described well by the ML model, some peak positions

deviate from the expected experimental frequencies. This effect

is especially pronounced for the C–H stretching vibrations,

which are blue-shied from the typical experimental value of

2900 cm�1 to 3040 cm�1. This blue shi is due to the B2PLYP

method or the classical equations of nuclear motion (and not an

artifact introduced by the ML approximations), as will be

explained in the following. Direct AIMD simulations and even

static frequency calculations are prohibitively expensive for the

C69H140 molecule. Instead, we exploit the transferability of the

combined HDNNP and dipole model and use it to simulate the

IR spectrum of the much smaller n-butane, for which theoret-

ical and experimental spectra can be obtained easily. Fig. 7

shows the n-butane IR spectra obtained with ML accelerated

AIMD and static electronic structure calculations and the

experimental spectrum68 (for a direct comparison of the static

ML and B2PLYP spectra, see the ESI†). The blue shi of the C–H

stretching vibrations present in the ML spectrum can also be

found in the static B2PLYP spectrum. Moreover, both spectra

show good agreement with each other with respect to the overall

positions of the spectral peaks. These ndings support the

Fig. 5 IR spectra of the methanol molecule. The ML spectrum (red) is
able to reproduce the AIMD spectrum (blue) obtained with BP86 with
high accuracy. In addition, both theoretical spectra agree well with the
experimental one recorded in the regions between 600 cm�1 to 4100
cm�1 (grey).

Fig. 6 IR spectrum of the C69H140 alkane as predicted by the ML
model based on the B2PLYP method.
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conclusion that the observed frequency shis are indeed

a consequence of the underlying electronic structure method or

the classical description of the nuclear dynamics71 and not an

artifact of the ML approximation. Furthermore, the ML accel-

erated AIMD approach is found to accurately reproduce the

structure of the experimental vibrational bands (especially the

C–H stretching vibrations, see the inset of Fig. 7). This is not the

case for the static spectrum and shows that even for relatively

small molecules an accurate description of the dynamic effects

is important in order to obtain high-quality IR spectra. Both

observations demonstrate the excellent accuracy of the HDNNP

and NN dipole model, even for molecular systems not

encountered during training.

Finally, to demonstrate the power of the ML based approach

in general and the fragmentation based approach in particular,

a few exemplary timings are given for the C69H140 molecule

(using a single core of an Intel Xeon E5-2650 v3 CPU): obtaining

the relevant molecular fragments using the iterative sampling

scheme takes approximately 7 days. The reference calculations

of the fragments on the B2PLYP level of theory can be carried

out in a highly parallel manner within 1.2 days (using a single

CPU per conguration), including the time necessary to

construct the nal ML model. ML accelerated AIMD simula-

tions for the C69H140 molecule which involve the calculation of

110 000 energies and forces (5 ps equilibration and 50 ps

simulation) take 3 hours. The NN dipole moments can be ob-

tained within half an hour. Including the generation of the

model, the total time to obtain the ML based IR spectrum

amounts to a little over 8 days. In contrast, the evaluation of

a single energy and gradient at the B2PLYP level for the full n-

alkane would require 30 days, extrapolating from the timing of

the fragment reference calculations. Hence, performing the

110 000 calculations necessary for the AIMD simulation would

require a total of 3.3 million days or 9041 years. Using

a conventional fragmentation method (e.g. the systematic

fragmentation method) and assigning every fragment to an

individual core, the total computation time of one conguration

of the n-alkane at the B2PLYP level can be reduced to 1.2 days,

leading to an overall simulation time of 361 years. Although this

leads to a speedup of a factor of 25 compared to the unfrag-

mented B2PLYP calculations, HDNNP simulations are still

several orders of magnitude faster, once again demonstrating

their excellent computational efficiency. An even more

convincing picture for the efficacy of the current ML approach is

painted by comparing the number of nite difference calcula-

tions required to obtain a static electronic structure spectrum to

the number of samples contained in the ML model (see also the

ESI†): using analytical molecular forces to construct nite

difference Hessians, 1254 electronic structure computations

need to be performed in the case of a static quantum chemical

spectrum, while the ML model requires less than half of this

number (534) to provide an accurate spectrum.

4.3 Protonated alanine tripeptide

Vibrational anharmonicities as well as conformational and

dynamic effects play a crucial role in the vibrational spectra of

biomolecules. In order to investigate the ability of ML acceler-

ated AIMD to account for these effects, the composite MLmodel

is used to simulate the IR spectrum of the protonated alanine

tripeptide molecule (Ala3
+) in the gas phase. Modeling the Ala3

+

molecule poses several challenges: an accurate description of

the complicated PES depends crucially on the ability of the

adaptive sampling scheme and the HDNNPs to reliably identify

and interpolate relevant electronic structure data points.

Moreover, the changing charge distribution and dipole moment

of the protonated species need to be captured by the NN dipole

model. Since the IR spectrum of Ala3
+ has been studied exten-

sively, both experimentally and theoretically,72,73 the quality of

the ML approach can be assessed directly.

The composite Ala3
+ ML model consists of two HDNNPs and

a NN dipole model and was constructed from 717 reference

geometries selected with the adaptive sampling scheme. The

model exhibits overall RMSEs of 1.56 kcal mol�1, 3.40 kcal

mol�1 Å�1 and 0.26 Debye for the energies, forces and dipoles

respectively. This increase in the RMSEs and number of

required data points compared to the previous systems is an

indicator for the chemical complexity of the peptide. Long range

dispersion interactions were accounted for in the same manner

as in the case of the n-alkanes.

Previous theoretical studies by Vaden and coworkers73 have

found that the experimental IR spectrum of Ala3
+ is primarily

composed of the contributions of three different conformers:

(1) an elongated Ala3
+ chain with the proton situated at the N-

terminal amine group, (2) a folded chain protonated at the

same site and (3) an elongated form in which the proton is

located at the carbonyl group of the N-terminus (see Fig. 8),

which will be referred to as the NH3, folded and NH2 families

henceforth. In order to account for these effects, ML accelerated

AIMD simulations were carried out for all three conformers at

350 K, the estimated experimental temperature. The nal ML IR

spectrum was then obtained by averaging. Fig. 8 shows the

overall spectrum, as well as the contributions of the individual

Fig. 7 IR spectrum of n-butane obtained via the ML model (red),
compared to the static quantum mechanical spectrum computed at
the B2PLYP level (blue) and convoluted with Gaussians. The peak
positions in the ML and B2PLYP spectra agree closely, suggesting that
the observed deviations from the experimental spectrum (grey) are not
caused by the ML approximation. The overall structure of the peaks is
reproduced much better by the ML accelerated AIMD simulation,
especially in the region of the C–H stretching vibrations (see inset).

This journal is © The Royal Society of Chemistry 2017 Chem. Sci., 2017, 8, 6924–6935 | 6931

Edge Article Chemical Science

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

0
 A

u
g
u
st

 2
0
1
7
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/2
6
/2

0
2
2
 3

:4
6
:2

2
 A

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7sc02267k


conformations alongside the experimental spectrum.73 Due to

the range of the recorded spectrum and the high congestion of

spectral bands in the regions of the lower vibrational modes, we

restrict our discussion only to the stretching modes involving

hydrogens (ca. 2700 cm�1 to 3700 cm�1). An analysis of the

static spectra computed for the full spectral range at the ML and

BLYP level can be found in the ESI.†

As can be seen, the ML model correctly captures the features

present in the experimental spectrum. The intense peak at 3570

cm�1 is due to the O–H stretching vibrations of the carboxylic

acid group of the C-terminus. The position as well as the slight

asymmetry of this band is almost perfectly reproduced in the

ML spectrum. The region from 3300 cm�1 to 3500 cm�1 is

populated by signals arising from the stretching modes of N–H

bonds not participating in hydrogen bonds (e.g. NH2 terminus

in the NH2 family). The free N-terminal N–H groups of the NH3

and folded family give rise to the intense feature at 3420 cm�1.

Compared to the experimental spectrum, the region ranging

from 3250 cm�1 to 3350 cm�1 is underpopulated in the BLYP

simulation. This deviation is primarily a consequence of the

employed electronic structure method. As can be seen in Fig. 8,

the description of this region is extremely method dependent

and changing to a model based on the BP86 functional (see

discussion below) leads to an increased population of the cor-

responding bands. In addition to the choice of methods,

temperature effects seem to play a role, as increasing the

simulation temperature also populates these bands to a certain

extent. The experimental temperature of 350 K reported for this

systems is only an averaged estimate and higher temperatures

for the individual conformers might indeed be possible. While

this distribution of temperatures might be accounted for via

a trial and error procedure, the exact reproduction of the

experimental conditions is not the ultimate goal of this study.

Vibrations associated with the N–H groups directly involved in

hydrogen bonds are situated in the region from 3100 cm�1 to

3300 cm�1, where the ML spectrum captures several experi-

mental subpeaks. Finally, the region from 2800 cm�1 to 3100

cm�1 corresponds to the C–H stretching vibrations. Here, the

most distinct features are the peak at 2930 cm�1 due to the C–H

vibrations of the Ca groups and the peak at 2970 cm�1, which is

caused by the vibrations of the methyl group hydrogens. The

generally good agreement between the ML and experimental

spectrum and the ability to reliably resolve individual bands is

a testament for the efficacy of the composite ML scheme

introduced in this work: the dipole model is able to describe the

charge distribution of Ala3
+ accurately, while the HDNNP

ensemble provides a reliable approximate PES.

A good perspective on the accuracy of the ML approach can

also be gained by comparing the current MLmodel to one based

on a different electronic structure reference method. The top

panel of Fig. 8 shows the averaged IR spectrum predicted by

a ML model based on the BP86 density functional next to the

previously discussed BLYP spectrum. Although one would

expect the closely related BLYP and BP86 methods to give

similar results, signicant differences can be found: besides

a blue shi of the signal caused by the C-terminal COOH group

by almost 80 cm�1 compared to the BLYP spectrum and

experimental spectrum, large deviations are also found in the

shape and positions of the bands corresponding to the N–H

stretching vibrations. Here, we investigate the cause of the latter

effect by a closer examination of the NH3 conformer. Since the

hydrogens of the N-terminal NH3 group can be involved in

a proton transfer event to the neighboring carbonyl group,

different spectra can arise depending on how oen this transfer

occurs. The transfer rate is directly correlated to the energy

barrier associated with the transfer, suggesting that BLYP and

BP86 differ signicantly in the description of this event, which

in turn leads to differences in the ML spectra. Whether this

phenomenon is caused by the ML approximations or due to the

BP86 method itself can easily be veried by computing the

proton transfer barriers with both electronic structure methods

and ML models. As can be seen in Fig. 9, the barrier height is

indeed underestimated by the BP86 functional compared to

BLYP, giving rise to the observed behavior. At the same time, the

ML models faithfully reproduce the barriers found with their

respective reference methods. This is an excellent demonstra-

tion for the reliability of the ML approach, since the deviation

between the ML model and reference method is actually

Fig. 8 IR spectra of the protonated alanine tripeptide. The top panel
shows the experimental spectrum (gray), as well as the ML spectra
based on the BLYP (blue) and BP86 (red) referencemethods. The lower
panels depict the structures of the three main Ala3

+ conformers, along
with their respective contributions to the averaged BLYP ML spectrum.
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negligible compared to the differences between two closely

related electronic structure methods. The ease with whichML of

different QM methods can be generated also suggests a poten-

tial use of the ML approach presented here as an efficient tool

for extensively comparing and thus benchmarking electronic

structure methods. Additional ML models can simply be con-

structed by recomputing the representative conformations

selected by the sampling scheme with a different method in

a parallel fashion and subsequent retraining of the new model

(see Section 2.2). Possible applications of this nding will be

explored in the future.

The above observations also serve to highlight the ability of

the ML model to automatically infer the chemistry underlying

the Ala3
+ system. Proton transfer events are essential in char-

acterizing the experimental spectrum.72 Driven by the auto-

mated sampling scheme, the composite ML approach gradually

learns to describe these relevant chemical events, as is nicely

demonstrated based on the reaction barrier previously obtained

for the NH3 transfer (Fig. 9): although the description of this

event was never explicitly targeted in the training procedure, the

barrier is nevertheless reproduced to an excellent degree of

accuracy. This feat is impressive insofar as the ML model is

based on a relatively small set of ab intio computations. These

ndings also serve to highlight an important advantage of

HDNNPs over typical classical force elds, which is the ability to

describe bond breaking and formation reactions.

Once again, the excellent computational efficiency of the

compositeMLmodel should be stressed: while the computational

chemistry method employed for Ala3
+ is already considered to be

relatively cheap, the speedup gained is still signicant. A single

step in the BP86 simulation takes approximately 1.5 minutes (on

a single Intel Xeon E5-2650 v3 CPU). The dynamics of every Ala3
+

conformer are simulated for 55 ps, requiring a total of 110 000

steps. This amounts to a simulation time of 114 days for full

AIMD. In contrast, using theMLmodel one can perform the same

simulation in only one hour.

5 Conclusions

Here, we present the rst application of machine learning (ML)

techniques to the dynamical simulation of molecular infrared

spectra. We nd that our ML approach is able to predict infrared

spectra of various chemical systems in a highly reliable manner,

correctly describing anharmonicities, as well as dynamic effects,

such as proton transfer events. The excellent accuracy – which is

only limited by the underlying computational chemistrymethod –

is paired with high computational efficiency, reducing the overall

computation time by several orders of magnitude. This makes it

possible to treat molecular systems that are usually beyond the

scope of standard electronic structure methods. As a proof of

principle, we have simulated n-alkanes containing several

hundreds of atoms, as well as the protonated alanine tripeptide.

However, even larger systems can in principle be handled easily

by our ML approach. To realize the above simulations, we

combined neural network potentials (NNPs) of the Behler–Parri-

nello type31 with a newly developed ML model for molecular

dipole moments. This neural network based model constitutes

a new form of a charge partitioning scheme based purely on

statistical principles and offers access to environment dependent

atomic charges. For the efficient selection of electronic structure

data points, a new adaptive sampling scheme is introduced. By

employing this scheme, it is possible to incrementally grow ML

potentials for specic applications in a highly automated manner

based on only a small initial seed of reference data. When

combined with the ability of NNPs to include molecular forces in

their training procedure, the amount of reference data points

required to construct a ML potential is reduced (e.g. 717 cong-

urations are sufficient for a converged potential of the tripeptide).

Furthermore, we demonstrate the ability of NNPs to model

macromolecules based only on the information contained in

small fragments, making it possible to treat even these systems

with highly accurate electronic structure methods in a divide and

conquer fashion. The above ndings are not restricted to the

simulation of infrared spectra via dynamics simulations, but

apply to ML potentials in a broader sense. The ML approach

presented here thus constitutes an alternative to the currently

prevailing trend of tting potentials to more and more reference

data points. The latter strategy suffers from the disadvantage that

electronic structure reference calculations become prohibitively

expensive for highly accurate methods and/or large molecular

systems. Here we show that these problems can be overcome

through the efficient use of data, bringing the dream of simu-

lating the dynamics of e.g. enzymatic reactions with highly accu-

rate methods one step closer.
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Fig. 9 Reaction barriers associated with the proton transfer from the
N-terminal NH3 group in the NH3 conformer of Ala3

+ to the neigh-
boring carbonyl. The reaction coordinate is the distance between the
transferred NH3 hydrogen and the carbonyl oxygen. The barriers
computed with the electronic structure reference methods are shown
as solid lines colored red for the BLYP method and blue in the case of
the BP86method. The dashed curves correspond to the predictions of
the respective ML models, maintaining the above color scheme.
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