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Machine learning nonequilibrium electron forces for spin
dynamics of itinerant magnets
Puhan Zhang1 and Gia-Wei Chern1✉

We present a generalized potential theory for conservative as well as nonconservative forces for the Landau-Lifshitz magnetization
dynamics. Importantly, this formulation makes possible an elegant generalization of the Behler-Parrinello machine learning (ML)
approach, which is a cornerstone of ML-based quantummolecular dynamics methods, to the modeling of force fields in adiabatic spin
dynamics of out-of-equilibrium itinerant magnetic systems. We demonstrate our approach by developing a deep-learning neural
network that successfully learns the electron-mediated exchange fields in a driven s-d model computed from the nonequilibrium
Green’s function method. We show that dynamical simulations with forces predicted from the neural network accurately reproduce
the voltage-driven domain-wall propagation. Our work also lays the foundation for ML modeling of spin transfer torques and opens a
avenue for ML-based multi-scale modeling of nonequilibrium dynamical phenomena in itinerant magnets and spintronics.
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INTRODUCTION
In the past decade, machine learning (ML) techniques have greatly
impacted many areas of industry and scientific research. The
introduction of ML methods to the physical sciences has produced
many fruitful results as well as opened several promising
directions1–10. In particular, the utilization of ML models as
universal approximations for high-dimensional functions has
significantly improved the efficiency of complex numerical
simulations11–22. Perhaps the most prominent and successful
application in this direction is the ML prediction of energy and
forces in quantum molecular dynamics (QMD) simulations23–36.
Contrary to classical MD methods that are based on empirical
force fields, the atomic forces in QMD are computed by
integrating out electrons on-the-fly as the atomic trajectories are
generated37. Various many-body methods, notably the density
functional theory, have been used for the force calculation of
QMD. However, the fact that most of these electronic structure
methods are computationally very expensive significantly restricts
the accessible scales of atomic simulations. The ML model offers a
promising solution to this computational difficulty by accurately
emulating the time-consuming many-body calculations, thus
offering the possibility of large-scale QMD simulations with the
desired quantum accuracy.
The central idea behind the remarkable scalability of ML force-

field models is the principle of locality, or the nearsightedness, of
electronic matters38,39, which, in the context of QMD simulations,
assumes that the force acting on a given atom only depends on its
immediate surroundings. A practical implementation of the ML
model based on this principle was demonstrated in the pioneer
work of Behler and Parrinello23, and Bartók et al.24. In this
approach, the total energy of the system is partitioned as E= ∑iϵi,
where ϵi is called the atomic energy and only depends on the local
environment of the i-th atom23,24. The atomic forces are then
obtained from derivatives of the predicted energy: Fi=− ∂E/∂Ri,
where Ri is the atomic position vector. Crucially, the complicated
dependence of atomic energy ϵi on its neighborhood is
approximated by the ML model, which is trained on the condition

that both the predicted individual forces Fi as well as the total
energy E agree with the quantum calculations.
Also importantly, by focusing on the local energy ϵi, which, as a

scalar, is invariant under symmetry transformations such as
rotations, the symmetry properties of the system can be easily
incorporated into the ML model in such Behler-Parrinello (BP) type
schemes23,24. This approach also ensures that the predicted forces
are conservative, a property that is important for Born-
Oppenheimber molecular dynamics simulations. The BP scheme
has been generalized to improve Monte Carlo simulations of
lattice models in condensed matter physics40–43. Notably, ML
force-field models based on the BP scheme have also been
developed to enable large-scale Landau-Lifshitz dynamics simula-
tions of quasi-equilibrium correlated electron magnets44,45.
The fact that the atomic forces are conservative in the BP-type

approach, however, also significantly limits its capability to
represent forces due to highly nonequilibrium electrons, such as
in systems under external drive. This is because the energy E is not
a well defined concept in such open systems. The resultant
nonequilibrium electronic forces often cannot be written as a
derivative of an effective potential energy. A case in point is the
current-induced force46–49 in, e.g. the molecular junctions, which
has been shown to be nonconservative. Another important
example is the spin-transfer torque50–54 due to polarized electron
current that plays a central role in nanomagnetism and spintronics.
Consequently, it is unclear how all the well-developed machinery of
ML techniques for quasi-equilibrium QMD can be applied to model
the dynamics of electronic systems far from equilibrium.
In this paper, we propose a solution to this important problem in

the context of quantum Landau-Lifshitz-Gilbert dynamics for
itinerant magnets. We first show that general nonconservative
forces in the Landau-Lifshitz equation can be expressed in terms of
two scalar potentials. This formulation thus allows one to translate
the prediction of exchange fields to that of two potential energies.
Applying the locality principle, a generalized BP neural network is
developed to predict two associated local energies, from which the
forces acting on spins can be obtained through automatic
differentiation. As discussed above, the scalar outputs also allow
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for an easier incorporation of symmetry into the ML models.
Moreover, similar to the original BP-type schemes, our proposed ML
approach enjoys the advantage of further physical constraints on the
force prediction. As a demonstration, we apply our ML framework to
model the exchange fields computed from the nonequilibrium
Green’s function method on the s-d system, a well-studied model for
itinerant magnets. We further show that voltage-driven propagation
of magnetic domain-walls can be accurately reproduced based on
forces predicted by the trained neural-network model.

RESULTS
Generalized potential theory
The dynamics of a magnetic system is described by the Landau-
Lifshitz-Gilbert (LLG) equation55,56:

dSi
dt

¼ �γSi ´Hi þ αSi ´
dSi
dt

; (1)

where γ is the gyromagnetic ratio, α is an effective damping
parameter, and Hi is a local magnetic field. In analogy with the
molecular dynamics, this local electron-mediated exchange field
can be viewed as a force acting on spin Si. For a conservative
exchange field, this local field is given by Hi=− ∂E/∂Si, where
E= E({Si}) is the energy of the system which is either conserved or,
in the presence of dissipation, decreases with time. Explicitly, the
energy dissipation rate is dE=dt ¼ � α

γ

P
iðdSi=dtÞ2. Consequently,

magnetization dynamics in an open system where energies can
be pumped into spins from external sources is beyond the LLG
equation governed by a conservative force.
As noted above, the nonequilibrium electronic forces are often

nonconservative and cannot be expressed as derivatives of a
single potential energy E. As a result, the BP method cannot be
directly applied to model the nonequilibrium forces. An alter-
native approach is ML models that directly predict the non-
conservative vector force Hi

57,58. However, besides the difficulty of
incorporating the spin-rotation symmetry with a vector output, ML
force-field model without additional energy constraints is prone to
overfitting and hence less accurate. Indeed, in the so-called
gradient-domain ML force-field models, additional constraint is
introduced to ensure a curl-free conservative force field57,58 for
quasi-equilibrium electron systems.
For nonconservative forces originating from out-of-equilibrium

electrons, there is no constraint on the force-field or the total energy.
In order to impose similar physical conditions based on the potential
theory, here we derive a general expression for the exchange fields
acting on spins in terms of multiple scalar potentials. We first note
that one of the most crucial features of the LLG dynamics is the
preservation of the spin length, i.e. ∣Si(t)∣ is a constant. The most
general dynamical equation that satisfies this constraint has the form

dSi
dt

¼ Ti ¼ �γSi ´VðSiÞ; (2)

where Ti is the torque and V(S) defines a vector field on a unit
sphere S2. Applying the Helmholtz-Hodge theorem for the case of
the S2 domain59–61, the vector field can be decomposed into the
radial, gradient, and solenoidal components as:

VðSÞ ¼ SRðSÞ þ ∇s EðSÞ þ ∇s ´GðSÞ; (3)

where R; E and G are three scalar functions of the spin
S= (Sx, Sy, Sz). The surface gradient operator on a scalar function
f(S) is

∇sf ¼ ∂f
∂S

� S S � ∂f
∂S

� �
; (4)

while the curl operator on the S2 sphere is given by

∇s ´ f ¼ S ´
∂f
∂S

: (5)

Here ∂f
∂S ¼

P
α¼x;y;z

∂f
∂Sα is the normal gradient in three dimensions,

without the restriction ∣S∣= constant.
Since the radial component, which is parallel to the spin

direction, does not contribute to the torque Ti, the radial function
R behaves as a gauge transformation, which has no physical
effects on the spin dynamics. This implies that one can define a
physical exchange field H consisting of only the gradient and
solenoidal components in the expansion Eq. (3), i.e.
H ¼ ∇s EðSÞ þ ∇s ´GðSÞ. On the other hand, compared with the
surface gradient ∇s, the normal gradient ∂/∂S produces an
additional radial component, which can then be gauged away, i.e.
the difference between ∇sE and ∂E=∂S, according to Eq. (4), is a
radial vector field, which again does not contribute to the spin
dynamics. Consequently, the most general exchange field in the
LLG equation can be expressed in terms of the two scalar fields as

Hi ¼ � ∂E
∂Si

� Si ´
∂G
∂Si

¼ heq
i þ hneq

i : (6)

By analogy with the conservative force, the first term is called the
quasi-equilibrium exchange field. The second term which comes
from the curl-field is denoted as the nonequilibrium exchange
field; see Fig. 1. The generalized LLG equation then reads

∂Si
∂t

¼ γ Si ´
∂E
∂Si

þ γ Si ´ Si ´
∂G
∂Si

� �
þ αSi ´

∂Si
∂t

; (7)

The first term describes the conventional precessional dynamics in
Eq. (1) with the scalar potential E now playing the role of an
effective conservative potential. Importantly, while the third
Gilbert term accounts for universal dissipation of the energy E,
the second toroidal term can represents dynamical processes of
both energy loss and gain. For example, by setting the potential
G ¼ �λE, where λ is a positive parameter, the second term
corresponds to a dissipation term introduced in LL’s original
work55. On the other hand, the nonequilibrium Slonczewski-
Berger spin-torque50,51 can also be expressed by the second term
in Eq. (7) by identifying the vector mi ¼ �∂G=∂Si as the
magnetization of the fixed layer in a magnetic tunnel junction.
The fact that the generalized potential theory allows for dissipative

mechanisms through the G term suggests a potential alternative
formulation of thermostat. However, further investigation is required
in order to consistently include the stochastic thermal fields in this
formulation. On the other hand, by focusing the generalized
potentials E and G on the modeling of electron-mediated exchange
fields, a stochastic thermal field can be straightforwardly incorpo-
rated into the formulation based on conventional Gilbert damping
with a consistent Langevin-type thermostat62,63. Details of the
stochastic LLG equation are discussed in the Methods section.

Machine-learning exchange-field model for LL dynamics
By expressing the general exchange fields in terms of the scalar
potentials E and G, which correspond to the quasi-equilibrium
and nonequilibrium components, respectively, one can now
generalize the BP-type NN scheme for the forces arising from
out-of-equilibrium electrons. To this end, we first partition the
two potential energies into local contributions, namely E ¼ P

iϵi
and G ¼ P

iγi . Based on the principle of locality38,39, these two
local energies ϵi and γi are assumed to depend only on the local
magnetic environment Ci through two universal functions, i.e.
ϵi ¼ εðCiÞ and γi ¼ χðCiÞ for a given electronic model. The overall
dependence of the two potential energies on the spin
configuration {Si} of the system can be expressed as

EðfSjgÞ ¼
X
i

εðCiÞ; GðfSjgÞ ¼
X
i

χðCiÞ: (8)

In practice, the magnetic environment Ci can be defined as the spin
configuration within some cutoff radius Rc from the i-th spin, i.e.
Ci ¼ Sjj jrj � ri j � Rc

� �
. As discussed above, the complex
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dependences of local energies on the local magnetic environment
Ci are then approximated by a deep-learning NN as shown in Fig. 2.
To ensure that symmetries of the original electron Hamiltonian

are preserved in the two energy functions, a magnetic descriptor
developed in our previous work45 is employed to translate the
local magnetic environment Ci into a set of feature variables {Gℓ}
that are invariant under symmetry operations of the system. In
particular, for itinerant spin systems such as the well-studied s-d
model, the global spin-rotation symmetry needs to be preserved
in the ML force-field models. This SO(3) rotation symmetry can be
manifestly maintained by using bond variables bjk and scalar
chirality χjkl as building blocks for the construction of the feature
variables; they are defined as

bjk ¼ Sj � Sk ; χ jkl ¼ Sj � Sk ´ Sl: (9)

Effectively, this means that the two local energies are functions
only of these bond/chirality variables in the neighborhood, e.g.
ϵi= ε(bjk, χjkl), where sites-j, k, and l are within the cutoff radius of
the neighborhood.
The ML model also needs to respect the discrete lattice

symmetries, such as described by the point group D4 for the case
of square lattice. To obtain the relevant invariant variables, we first
note that the collection of bond/chirality variables {bjk, χjkl} around
the i-th spin form the basis of a high-dimensional representation
of the D4 group. This reducible representation of the magnetic
environment is then decomposed into the fundamental irreduci-
ble representations (IR)64. The basis of each IR f A1r ; f A2r ; � � � ; f Er ,
where r enumerates the multiplicity in the IR in the decomposi-
tion, are proper linear combinations of the bond and scalar
chirality variables. Finally, generalized coordinates {Gℓ} that are

Fig. 2 A scalable neural-network force-field model for out-of-equilibrium itinerant spin system and benchmark of force prediction.
a Schematic diagram of the neural-network model . A descriptor transforms the neighborhood spin configuration Ci to effective coordinates
{Gℓ} which are then fed into a NN. The two output nodes of the NN correspond to the local energy ϵi ¼ εðCiÞ and γi ¼ χðCiÞ associated with
site-i. The corresponding total potential energies E and G are obtained from summation of these local energies. Automatic differentiation65,66

is employed to compute the derivatives ∂E=∂Si and ∂G=∂Si , from which the local exchange fields Hi are obtained according to the generalized
force expression Eq. (6). The NN model is trained by datasets obtained from nonequilibrium Green’s function (NEGF) calculation for a driven
s-d model. Panel b shows the ML predicted forces versus those from the NEGF calculation for the s-d model with exchange coupling J= 3.8tnn;
the blue and red data points correspond to the training and validation/test datasets, respectively. The inset shows the normalized distribution
of the prediction error of the perpendicular components of the forces from the test dataset.

Fig. 1 The Helmholtz-Hodge of vector fields on a sphere. A tangential vector field on a sphere can be decomposed into (a) the curl-free
component ∇s E and (b) the divergence-free component ∇s ´G. (c) shows the gradient field heq

i ¼ �∂E=∂Si , which can be viewed as a quasi-
equilibrium exchange field, and the curl-field hneq

i ¼ �Si ´ ∂G=∂Si , which corresponds to the nonequilibrium force, and their respective
torques Teqi ¼ heq

i ´ Si and Tneqi ¼ hneq
i ´ Si .
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invariant under lattice symmetry operations are obtained from the
amplitudes and relative phases of these IR basis41. More details of
the lattice descriptor can be found in the Methods Section.
The resultant feature variables {Gℓ} are then fed into a fully

connected NN, which in turn produces the two local energies ϵi and
γi associated with the i-th spin; see Fig. 2. Applying the NN model to
compute all the local energies, the two potential energies E and G
are then obtained through Eq. (8). The local exchange fields Hi are
computed from the derivatives of the two potentials via Eq. (6),
where the two derivatives ∂E=∂Si and ∂G=∂Si can be efficiently and
accurately computed using automatic differentiation techniques65,66.
We emphasize that, as in ML-based interatomic potentials for

quantum MD simulations, the ML energy model of Eq. (8) essentially
provides a classical spin model for an underlying driven electronic
systems. However, the energy and force calculations based on the
highly nonlinear neural-network model is computationally more
demanding compared with classical simulations of short-ranged
empirical spin models67,68. While computational efficiency of the
neural net can be improved with GPU implementations, there are
issues of limited memory storage, especially for models with a large
cutoff radius. Nonetheless, the ML model is still significantly more
efficient than the quantum calculations. Also importantly, the BP-
type structure of the presented ML model allows for a linear-scaling
implementation of the dynamical simulations.
It is worth noting that magnetic descriptors based on the above

bond/chirality variables45, strictly speaking, cannot be applied to
electron-spin Hamiltonians with magnetic anisotropy, such as
spin-orbit coupling. In such systems, the spin-rotation symmetry is
coupled to the discrete lattice symmetry. Feature variables that
are invariant under the combined symmetry group can still be
obtained based on the group-theoretical method described
above69. However, for most s-d type models where the SU(2)
spin-rotation symmetry is only slightly broken, the above
descriptor is still a good approximation and a useful starting
point for building more general feature variables. We note in
passing that different approaches to magnetic descriptors have
also been proposed in recent years70,71, often in conjunction with
MD simulations. While similar bond-variables are also proposed as
descriptors70, the inclusion of the scalar chirality χjkl in our model
plays a crucial role in the stabilization of complex non-coplanar
magnetic structures45. Finally, off-lattice magnetic descriptors
based on bond/chirality variables, which can then be used for
combined LLG and MD simulations, are discussed in Ref. 69.

Machine-learning for nonequilibrium Green’s function
method
The above ML framework is general and can be used to represent
exchange field in any nonequilibrium electron systems. As a

demonstration of our approach, here we apply it to model the
forces computed from the nonequilibrium Green’s functions
(NEGF) method72–74 for a driven s-d system50–52. The s-d model
is widely used in the study of spintronics and spin transfer torques
for itinerant magnets. The large J limit of the s-d model, also
known as the double-exchange model, plays an important role in
the physics of colossal magnetoresistance observed in several
manganites75. Here we consider a square-lattice s-d system
sandwiched by two electrodes in a capacitor structure shown in
Fig. 3. The total Hamiltonian has two parts Htot ¼ Hs�d þHres,
where the first part is the s-d Hamiltonian,

Hs�d ¼ �tnn
X
hiji

cyiαcjα þ h:c:
� �

� J
X
i

Si � cyiασαβciβ; (10)

and Hres describes the electrodes and reservoir degrees of
freedom, as well as their coupling to the s-d model in the center.
The effects of the reservoir fermions can be subsumed into a self-
energy Σr(ϵ) in the retarded Green’s function:

GrðϵÞ ¼ ½ϵI� Hs�d � ΣrðϵÞ��1; (11)

where Hs−d is matrix representation of the s-d Hamiltonian in the
site-spin (i, α) space; more details can be found in the Method
Section. Next, the lesser Green’s function G<, which is important
for computing physical observables, is obtained using the Keldysh
formula for quasi-steady electron states: G<(ϵ)=Gr(ϵ)Σ<(ϵ)Ga(ϵ),
where the lesser self-energy Σ< is related to the Σr through the
dissipation-fluctuation theorem. For example, the on-site electron
number is given by ni ¼

P
αhĉyiαĉiαi ¼

P
α

R
dϵ
2πiG

<
iα;iαðϵÞ. The

exchange fields acting on spins in Eq. (1) are obtained using the
generalized Hellmann-Feynman theorem, and are explicitly
computed from the lesser Green’s function76–79

Hi ¼ � ∂Ĥs�d

∂Si

* +
¼ J

X
αβ

σβα

Z þ1

�1

dϵ
2πi

G<
iα;iβðϵÞ: (12)

The above NEGF calculation is combined with the stochastic LLG
dynamics to simulate the insulator-to-metal transition (IMT) of the
s-d model driven by an external voltage79. A small yet finite
Langevin-type stochastic field is added to the local exchange field
at every site to account for the thermal effects. A second-order
algorithm is then used to integrate the LLG equation80,81.
In the simulations of the voltage-induced IMT, the system is

initially in an insulating antiferromagnetic (AFM) state with an
energy gap ΔEg= 2J. An external voltage V is applied to the two
electrodes, which couple to the system at the left and right edges.
When the chemical potential of the right electrode is lowered to
the eigen-energies of the in-gap edge modes, an instability
towards the ferromagnetic (FM) ordering is triggered as electrons

Fig. 3 Nonequilibrium Green’s function (NEGF) calculation for the s-d model driven by an external voltage. a Schematic diagram of the
driven s-d model in a metal-insulator-metal capacitor structure. The central region is described by the square-lattice s-d Hamiltonian in Eq.
(10), while the two electrodes at left and right ends are shown here as modeled by simple square-lattice tight-binding model. An external
voltage is applied to the two electrodes, giving rise to a difference in chemical potentials μL/R= μ0∓ eV/2, where μ0 is the chemical potential of
the background reservoir. Panals b and c show the on-site electron number ni and nearest-neighbor spin-spin correlation Si ⋅ Sj, respectively, of
a snapshot during the voltage-induced insulator-to-metal transition simulated by the NEGF-LLG method. The size of the square lattice is
30 × 24.
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are drained from the edge of the system into the electrode79. This
instability leads to the nucleation of the FM domains at the edge
of the sample. The voltage-driven expansion of the FM domains
transforms the system into the low-resistant metallic state. Panels
(b) and (c) of Fig. 3 show the on-site electron number ni and the
nearest-neighbor spin-spin correlation b〈ij〉= Si ⋅ Sj, respectively,
of an intermediate state during the IMT. A rather sharp interface
separating two domains of distinct electron densities is devel-
oped. The insulating AFM region is half-filled with exactly one
electron per site, while the nucleated FM domains are character-
ized by low electron density and tend to be metallic.
The real-space NEGF calculation for a medium size lattice, e.g.

less than 1000 spins, is already time-consuming by itself. This is
mainly because the calculation of the retarded Green’s function
Gr(ϵ) requires the inversion of a large matrix that has to be carried
out for thousands of different energies ϵ; see Eq. (11). In the NEGF-
LLG simulation of driven itinerant magnets, the above NEGF
calculation has to be repeated at every time-step of the dynamical
simulation. The resultant computational overhead is thus rather
substantial. Even with 200 parallel cores, it often takes up to two
weeks to perform a complete IMT simulation. As a result, only
relatively small scale simulations with less than 1000 spins can be
achieved even with highly parallelized programming79. As
discussed in the Introduction, by accurately emulating the
expensive NEGF calculations, the ML approach to nonequilibrium
electron forces offers a promising solution to overcome this
difficulty of multi-scaling modeling.
Here we build a six-layer NN to implement the learning model

shown in Fig. 2(a). The electronic exchange fields computed from
the NEGF method are used to train the NN model based on our
generalized force formula Eq. (6). A total of 3200 snapshots, each of
which provides roughly 600 force data, are used for the training.
Contrary to the standard BP method where both forces and total
energy are included in the training of the NN model, the loss
function in our case is entirely given by the mean squared error of
the forces since the concept of total energy is not well defined for

such open systems. Figure 2(b) shows the componentwise torques
Si ×Hi predicted from our trained NN model versus the exact
results. An excellent MSE of 8.97 × 10−6 is obtained from the trained
NN model. The normalized distribution of the prediction error
obtained from the validation dataset, shown in the inset of Fig. 2(b),
is characterized by a rather small standard deviation of σ= 0.0014.
More details of the ML training is discussed in the Method Section.
We note that the NN model is trained by dataset from NEGF-LLG

simulations with a fixed external voltage eV= 3.2. As a result, it is
designed to specifically learn the out-of-equilibrium electron states
with this particular driving voltage, and cannot be used as an
effective model for simulations of different V. Nonetheless, similar
to ML force-field models for quantum MD simulations, our trained
NN model is scalable, which means it can be used to simulate much
larger systems with the same applied voltage. Moreover, the NN
model is also transferrable in the sense that it can be used in ML-
LLG simulations with different thermal fluctuations or classical
magnetic disorder, such as random on-site anisotropy. In the latter
case, more diverse and general datasets (with different tempera-
tures or disorder realizations) have to be used for training the NN
model. It is also possible to incorporate the driving voltage V as one
of the inputs to the NN, assuming a smooth and continuous V-
dependence of the exchange-fields. We will leave the development
of such ML model for future studies.

Machine-learning spin dynamics simulations: Quasi-
equilibrium vs Nonequilibrium torques
We next incorporate the NN exchange field model into the LLG
dynamics for the simulation of the voltage-driven domain-wall
propagation in the square-lattice s-d model. As discussed above,
the kinetics of the nonequilibrium insulator-to-metal transition is
essentially governed by the propagation of the FM-AFM domain
walls. We focus our ML model on the force prediction of the
interface region where the two distinct magnetic phases coexist.
Figure 4(a) and (b) shows the propagation of domain walls
obtained from the NEGF-LLG as well as the ML-LLG simulations on

Fig. 4 Benchmark and analysis of ML-LLG simulations of a driven itinerant magnet. a and b Domain wall propagation in a s-d system
driven by an external voltage eV= 3.2tnn. Comparison between (a) NEGF-LLG simulations and (b) ML-LLG simulations. The lattice size is
30 × 24. The color bar indicates the local nearest-neighbor spin correlation bij= Si ⋅ Sj. Blue (red) area corresponds to AFM (FM) domains. The
NEGF-LLG simulation was carried out at a low temperature of kBT= 0.01 tnn, while the ML simulation was performed without Langevin noise.
c Average position of FM-AFM domain, obtained from NEGF-LLG and ML-LLG simulations, as a function of time during the voltage-driven
insulator to metal transition of the s-d model. d histogram of the ratio jTneqi j=jTeqi j predicted by the NN model for the simulation of domain-
wall propagation. The dashed lines are guide for eye. Here Teqi ¼ Si ´ ∂E=∂Si is the quasi-equilibrium torque, and Tneqi ¼ Si ´ ðSi ´ ∂G=∂SiÞ is the
non-equilibrium torque in the generalized LLG equation. e histogram of the scalar product Tneqi � heq

i obtained from the NN model for domain-
wall propagation.
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a 30 × 24 square lattice. The same initial state with a well-
developed FM-AFM domain wall was used for both simulations. In
the NEGF-LLG simulations, a small thermal noise is introduced
which serves as a small perturbation to the unstable Néel order of
the driven system. A Langevin-type thermostat, corresponding to
a low temperature of kBT= 0.01tnn is employed in the stochastic
LLG dynamics62,63. On the other hand, the statistic error associated
with the force prediction of the NN model, as shown in Fig. 2(b),
can be treated as an effective thermal noise45. Indeed, as the
prediction error seems to be well approximated by a Gaussian
distribution, its effect resembles the addition of normal-
distributed random noise added to every site at each time-step
in a Langevin thermostat63.
The domain-wall positions averaged over the transverse y-

direction, obtained from LLG simulations using NEGF forces and
ML-predicted forces, are plotted in Fig. 4(c) as functions of time.
The two trajectories agree well with each other with a small
discrepancy that can be attributed to the random Langevin noise
in the LLG simulation and the force prediction error of the ML
model. This overall agreement might indicate that the prediction
error happens to mimic the small temperature used in the NEGF-
LLG simulations. But more likely, this is an indication that thermal
effect of this magnitude is not a dominant factor, but mainly
serves as a seed to induce the instability of the Néel state.
A useful by-product of our NN model is the partitioning of the

electron-mediated exchange fields into the quasi-equilibrium heq

and nonequilibrium hneq components according to the decom-
position in Eq. (6). It is worth noting that such partitioning is often
impossible in the microscopic approaches such as the NEGF
calculation for the exchange field in Eq. (12). The introduction of
these two potentials E and G is in fact similar in spirit to the
partitioning of the total electronic energy into atomic or site
energies in the original Behler-Parrinello ML model. These atomic
energies also cannot be directly obtained from the DFT calculations.
Yet the trained BP-type ML model could predict such local energies
associated with individual atoms, thus providing useful information
on the energy distribution of the atomic system.
From this decomposition, one can compute the quasi-

equilibrium torques Teqi ¼ heq
i ´ Si , as well as the nonequilibrium

ones Tneqi ¼ hneq
i ´ Si . Figure 4(d) shows the histogram of the ratio

jTneqi j=jTeqi j of these two torque components for spins in the vicinity
of the AFM-FM domain walls. As expected, the driving force of the
domain-wall propagation is dominated by the nonequilibrium
exchange fields. As demonstrated in Fig. 1(c), the quasi-equilibrium
torque Teqi ¼ Si ´ ∂E=∂Si is responsible for the precession motion of
spins along contours of constant energy E. The nonequilibrium
torque Tneqi ¼ Si ´ ðSi ´ ∂G=∂SiÞ, on the other hand, often points to
a direction opposite to that of the Landau-Lifshitz damping torque
Tdamping
i ¼ λSi ´ T

eq
i , where λ= γα/(1+ α2) is the effective damping

coefficient, computed from the (quasi) equilibrium exchange field.
This is confirmed by the histogram of the scalar product ðTneqi � heq

i Þ
obtained from the NN model for spins in the vicinity of the domain
walls, which is shown in Fig. 4(e). The predominantly negative
values of this scalar product indicate the nonequilibrium torques
are mostly pulling the spins away from the local field direction
heq
i ¼ �∂E=∂Si due to the quasi-equilibrium potential, thus acting

in a way similar to the so-called anti-damping torques52–54.

DISCUSSION
The machine-learning force-field models have revolutionized
atomistic simulation methods which are crucial to several fields
of biological and physical sciences. In particular, taking advantage
of the nearsightedness property of electronic matter, the widely-
used Behler-Parrinello scheme and other similar approaches allow
one to implement transferrable and scalable ML force field
models, thus enabling large-scale molecular dynamics simulations
with the accuracy of the state-of-the-art quantum calculations. Yet,

despite significant progress in recent years, the majority of
research focus on conservative forces due to quasi-equilibrium
electrons. This is partly because, by focusing on the prediction of
local atomic energies, the BP-type approaches are restricted to
forces which can be expressed as derivatives of an effective
energy. An important challenge in this field is the generalization of
the BP-type schemes to represent non-conservative forces
originating from out-of-equilibrium electrons, such as those in a
driven system.
Our work marks a crucial step toward ML modeling of

nonequilibrium nonconservative force fields of functional electro-
nic materials. Thanks to the special property that the magnitude of
magnetization is conserved by the Landau-Lifshitz dynamics, a
generalized potential theory is developed for both conservative
and non-conservative forces for spin dynamics. More importantly,
this formulation allows one to generalize the BP-type schemes to
the ML modeling of electronic forces in highly nonequilibrium
itinerant magnets. We demonstrate our approach by developing a
neural network model that successfully predicts the electronic
forces computed from the nonequilibrium Green’s function
method for a driven s-d model. LLG simulations using the NN-
predicted forces also accurately reproduce the voltage-driven
domain-wall propagation.
The ML framework developed in this work can also be used to

implement accurate and efficient modeling of spin-transfer
torques (STT)50–53, which plays a central role in the emerging
field of spintronics. It is worth noting that most LLG simulations of
magnetic systems involving STT are based on empirical formu-
las50–53,82–84, which are similar to the empirical force-field models
used in classical MD simulations. While LLG simulations with
empirical STT formulas can be achieved on rather large systems,
such classical simulations could not describe the subtle interplay
between spins and electrons. On the other hand, although STT can
be more accurately computed using the NEGF method, its
combination with LLG dynamics simulations is computationally
very demanding and has so far only been achieved with a hybrid
classical-quantum implementation or applied to relatively small
systems76–78,85–89. We envision ML-based STT models will open an
avenue to achieve large-scale dynamical simulations of magnetic
textures and spintronic devices with the accuracy of none-
quilibrium quantum methods.
While our work provides an elegant implementation of ML force

models for general spin dynamics, it remains unclear whether and
how similar approaches can be applied to the molecular force
fields. The fact that a generalized BP method for spin dynamics is
possible is because the exchange field is defined on the two-
dimensional surface S2 of a sphere. This suggests that a similar
approach can be applied to the force fields of 2D molecular
systems. Indeed, a general 2D force field can be decomposed as
Fðx; yÞ ¼ �∇2D ϕþ ∇2D ´ ðAz ẑÞ, where ∇2D= (∂x, ∂y), and ϕ(x, y)
and Az(x, y) are two scalar functions. The ML framework developed
here can be straightforwardly adopted to represent nonconserva-
tive and nonequilibrium forces for MD simulations of such driven
2D molecular systems. However, this approach cannot be directly
applied to 3D systems as the representation of a general force
field requires both a scalar and a vector potential: F=−∇ ϕ+∇
× A. One possible solution is to employ a NN model with a vector
output. However, the preservation of spin rotation symmetry
requires more sophisticated descriptors. Further work is required
to develop a general ML force field model for QMD simulations of
out-of-equilibrium electronic systems.

METHODS
Stochastic Landau-Lifshitz-Gilbert dynamics
The NEGF-LLG simulations of the resistance transition are carried
out at finite temperatures. To incorporate the stochastic thermal
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field into the LLG equation, an additional time-dependent term is
added to the local exchange field Hi in Eq. (1), giving rise to the
following stochastic LLG equation62,63

dSi
dt

¼ �γSi ´ Hi þ ζ ið Þ þ αSi ´
dSi
dt

: (13)

There are two contributions to the local exchange fields: the
deterministic exchange field Hi and a random thermal field ζi. The
deterministic term is given by Hi=− ∂E/∂Si for conservative field,
or Eq. (12) for the non-conservative case of out-of-equilibrium
system. For ML-LLG simulations, the deterministic exchange field
Hi is obtained from the generalized potentials as shown in Eq. (6).
The thermal fields at different sites are independent of each other
and their time-dependence is modeled by a white noise with zero
mean. Specifically they satisfy the following statistic properties

hζmi ðtÞi ¼ 0;

hζmi ðtÞζnj ðt0Þi ¼ δijδmnδðt � t0Þ αkBTγ
(14)

where m, n= x, y, and z denote the Cartesian components of the
thermal fields. A second-order semi-implicit finite-difference
method with special care taken to conserve the spin length is
employed to integrate the stochastic LLG equation80,81.

NEGF calculation of the exchange fields
In this section we outline spin dynamics with forces computed
from the nonequilibrium Green’s function (NEGF) method. We
consider a two-dimensional capacitor structure, shown in Fig. 2,
described by a total Hamiltonian H ¼ Hs�d þHres, where the two
terms correspond to the s-d model in the center and the reservoir
including the two electrodes at the two ends of the capacitor
structure. The Hamiltonian of the s-d model is described in Eq.
(10), and that of the reservoir is given by

Hres ¼
X
k;α;i

εk d
y
i;k;αdi;k;α �

X
i;k;α

Vk;i dyi;k;αci;α þ h:c:
� �

: (15)

Here di,α,k represents non-interacting fermions from the bath (i
inside the bulk) or the leads (for i on the two open boundaries), α
is the spin index, and k is a continuous quantum number. For
example, k encodes the band-structure of the two leads.
As the s-d Hamiltonian is quadratic in the electron operators,

which means there is no direct electron-electron interactions, it
can be written as

Hs�d ¼ ĉy Hs�d ĉ: (16)

where ĉ ¼ ĉ1;"; ĉ1;#; � � � ; ĉN;"; ĉN;#
� 	

is a vector of the electron
annihilation operators, and we have introduced a “first-quantized"
Hamiltonian Hs−d, which is a 2N × 2N matrix in the lattice site-spin
space with the following matrix elements:

Hs�dð Þiα;jβ ¼ tijδαβ � JHδijSi � σαβ; (17)

To simulate the time-evolution of the s-d model, we first note that
the relatively slow dynamics of spins allows us to employ the
adiabatic approximation, which is analogous to the Born-
Oppenheimer approximation in quantum molecular dynamics. In
this approximation, the electrons are assumed to quickly reach a
quasi-steady state, which could be in quasi-equilibrium thermo-
dynamically or out of equilibrium as in a driven system, with
respect to the instantaneous spin configuration. The semiclassical
or adiabatic dynamics of local spins in the s-d model is described
by the stochastic LLG equation in Eq. (13). Computationally, the
most crucial step is the calculation of the exchange field Hi. For a
conservative force, e.g. due to electrons in quasi-equilibrium, the
exchange field is given by the partial derivative of a potential
energy: Hi=− ∂E/∂Si, where E ¼ hHsdi ¼ Trðρeq HsdÞ is the
energy of the quasi-equilibrium electron liquid90,91. Often this is
obtained using exact diagonalization or more efficient linear-
scaling techniques such as the kernel polynomial method.

On the other hand, for an out-of-equilibrium quantum state Ψj i
such as the one driven by two electrodes in our case, the energy E
of the system is not well defined. However, the exchange field can
still be computed using the generalized Hellmann-Feynman
theorem76,77,

Hi ¼ � Ψ
∂Hs�d

∂Si










Ψ

� �
¼ JH ρiα;iβðfSigÞσβα: (18)

Here we have introduced the single-particle density matrix
ρiα;jβðtÞ ¼ hΨðtÞjcyjβciαjΨðtÞi. It is worth noting that this electron-
induced nonequilibrium exchange field is related to the spin-
transfer torques and current-induced phenomena such as
tunneling magnetoresistance50–53.
The general nonequilibrium density matrix ρiα,jβ(t) can be

expressed in terms of the equal-time lesser Green’s function
ρiα;jβðtÞ ¼ G<

iα;jβðt; tÞ, where the general two-time Green’s function,
defined as G<

iα;jβðt1; t2Þ ¼ ihΨðtÞjcyiαðt1Þcjβðt2ÞjΨðtÞi, is computed
using the NEGF method. First, assuming the various reservoir parts
are in thermal equilibrium with their respective local chemical
potentials, we integrate out these reservoir degrees of freedom
and obtain the Fourier-transformed retarded Green’s function
matrix for the central region.

GrðϵÞ ¼ ϵI� Hs�d � ΣrðϵÞ½ ��1; (19)

where Hs−d is the first-quantized Hamiltonian matrix introduced in
Eq. (17) and Σr is the matrix representation of the dissipation-
induced self-energy; its explicit matrix elements are

Σriα;jβðϵÞ ¼ δijδαβ
X
k

jVi;k j2
ϵ� ϵk þ i0þ

: (20)

The resultant level-broadening matrix Γ= i(Σr− Σa) is diagonal
with Γiα,iα= π∑k∣Vi,k∣2δ(ϵ− ϵk). For simplicity, we assume flat wide-
band spectrum for the reservoirs, which leads to a frequency-
independent broadening factor with two different values Γlead and
Γbath. Next, using the Keldysh formula for quasi-steady state, the
lesser Green’s function is obtained from the retarded/advanced
Green’s functions:

G<ðϵÞ ¼ GrðϵÞΣ<ðϵÞGaðϵÞ; (21)

and the lesser self-energy is related to the Σr/a through dissipation-
fluctuation theorem:

Σ<iα;jβðϵÞ ¼ 2i δijδαβ Γi f FDðϵ� μiÞ: (22)

Here Γi= Γlead or Γbath depending on whether site-i is at the
boundaries or in the bulk, and fL,R(ϵ)= fFD(ϵ− μL,R) are the Fermi-
Dirac distribution functions. The local chemical potential μi= μ0
for the bath, and μi= μL/R= μ0∓ eV/2 for the two electrodes,
where V is the applied voltage.
Given the retarded Green’s function Gr(ϵ) in frequency domain,

the density matrix ρiα,jβ, which is the equal-time retarded Green’s
function, is then given by the integral

ρiα;jβ fSigð Þ ¼
Z

dϵ
2πi

G<
iα;jβ ϵ; fSigð Þ; (23)

for quasi-steady electron state. Here we have explicitly shown the
dependence of both the Green’s function and the density matrix
on the instantaneous spin configuration {Si}. The density matrix is
used in the computation of the exchange field Eq. (18) acting
on spins.

Group theoretical method for lattice descriptor
The s-d model is characterized by two independent symmetry
groups: the global SO(3) rotation symmetry and the point group
symmetry of the lattice. Consequently, the feature variables or
effective coordinates characterizing the magnetic environment Ci
of the neighborhood need to be invariant under transformations
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of both symmetry groups. Here we outline the implementation of
such a magnetic descriptor45; more details can be found in
Supplemental information. As discussed above, instead of directly
using the spin vectors Si as input, the spin-rotation symmetry can
be preserved by using the scalar variables as building blocks for
the magnetic descriptor. Two types of fundamental scalars that
can be obtained from vector spins include the inner products, or
bond variables, bjk= Sj ⋅ Sk of a spin-pair, and the triple-product,
also known as the scalar chirality, χjkl= Sj ⋅ Sk × Sl of a spin-triplet.
Next we construct feature variables that are invariant under

the discrete point group symmetry, which is D4 in the case of
square lattice. The group-theoretical method provides a rigorous
and systematic approach to obtain general invariants of a given
symmetry group. The first step is to obtain the basis of
irreducible representations (IRs) of the point group. In our case,
the symmetry-related bond and scalar chirality variables
constructed from the magnetic environment Ci form a finite-
dimensional representation of the point group. They can be
decomposed into IRs through proper combinations. For example,
consider the four bonds bm ≡ bim between the center spin Si and
the four nearest neighbors Sm with m= 1,⋯ , 4. The
1-dimensional IR A1 is given by f A1 ¼ b1 þ b2 þ b3 þ b4, while
the 2-dimensional doublet IR is fE= (b1− b3, b2− b4). More
examples are given in the supplemental information. For
convenience, we arrange the basis functions of a given IR in
the decomponsition into a vector f Γr ¼ ðf Γr;1; f Γr;2; � � � ; f Γr;DΓ

Þ where
Γ labels the IR, r enumerates the multiple occurrences of IR Γ in
the decomposition, and DΓ is the dimension of the IR. Given
these basis functions, one can immediately obtain a set of
invariants called power spectrum fpΓr g, which are the amplitudes

of each individual IR coefficients, i.e. pΓr ¼ f Γr


 

2. However, feature

variables based only on power spectrum are incomplete in the
sense that the relative phases between different IRs are ignored.
For example, the relative “angle" between two IRs of the same
type: cos θ ¼ ðf Γr1 � f Γr2Þ=jf Γr1 jjf Γr2 j is also an invariant of the
symmetry group. Without such phase information, the NN model
might suffer from additional error due to the spurious symmetry,
namely two IRs can freely rotate independent of each other.
A more general set of invariants of a symmetry group is called

the bispectrum coefficients92, which are triple products of the IR
coefficients; the difference in the transformation properties of the
three IRs is accounted for by the Clebsch-Gordon coefficients of
the symmetry group. The power spectrum pΓr is a special subset of
the bispectrum coefficients. It is also worth noting that the
bispectrum coefficients are complete in the sense that they can be
used to faithfully reconstruct the neighborhood configuration up
to the symmetry operations. Indeed, it has been demonstrated
that atomic descriptors for ML-based molecular dynamics can be
obtained by applying the bispectrum method to the three-
dimensional rotation group which is an intrinsic symmetry of
interatomic interactions93.
However, the number of bispectrum coefficients is often too

large for practical applications, and some of them are redundant.
Here we have implemented a descriptor that is modified from the
bispectrum method45. We introduce the reference basis functions
f Γref for each distinct IR of the point group. These reference basis
are computed by averaging large blocks of bond and chirality
variables, such that they are less sensitive to small changes in the
neighborhood spin configurations. We then define the relative
“phase" of an IR as the projection of its basis functions onto the
reference basis: ηΓr � f Γr � f Γref=jf Γr j jf Γref j. The effective coordinates
are then the collection of power spectrum coefficients and the
relative phases: fGℓg ¼ fpΓr ; ηΓr g. The various steps of the
descriptor are summarized in the following

Ci ! fbjk ; χ jmng ! ff Γrg ! fpΓr ; ηΓrg (24)

The generalized coordinates {Gℓ}, or feature variables characteriz-
ing the neighborhood spins, are then forwarded to the neural
network which produces the local energies at its output node. For
the cutoff radius Rc= 5a used in this work, there is a total of 539
bond/chirality variables in each neighborhood.

Neural network model and training
A six-layer NN model with four hidden layers composed of
1024 × 512 × 256 × 128 neurons is constructed and trained on
PyTorch94. A schematic diagram of the NN is shown in Fig. 2(a).
The size of the input layer size is given by the number of feature
variables Gℓ, which is 539 in this work. The NN performs a series of
linear transformations on the input neurons where the ReLU
function95 is used as the activation function between layers. The
output layer consists of two neurons whose values correspond to
the two local energies ϵi and γi. Since only the perpendicular
component of the exchange field H?

i enters the torque Ti= Si ×Hi

that drives LL dynamics, the loss function is given by

L ¼
XN
i¼1

HNEGF
i;? � HML

i;?



 


2: (25)

The parameter of the NN is optimized by the Adam stochastic
optimizer96 at a learning rate of 0.0001. For the training of the NN,
3200 snapshots from the NEGF-LLG simulations are used as the
training dataset. A 5-fold cross-validation and early stopping
regularization are performed to prevent overfitting. More details
can be found in supplemental information.

DATA AVAILABILITY
Sample trained models and dataset can be found at https://github.com/
cherngroupUVA/ML_non_equilibrium_de.

CODE AVAILABILITY
The source codes used in this work can be downloaded from the GitHub repository
https://github.com/cherngroupUVA/ML_non_equilibrium_de. These include C codes for
spin dynamics and PyTorch codes for themachine learningmodels and the LLG equation.
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