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The ability to witness nonlocal correlations lies at the core of foundational aspects of quantummechanics

and its application in the processing of information. Commonly, this is achieved via the violation of Bell

inequalities. Unfortunately, however, their systematic derivation quickly becomes unfeasible as the

scenario of interest grows in complexity. To cope with that, here, we propose a machine learning approach

for the detection and quantification of nonlocality. It consists of an ensemble of multilayer perceptrons

blended with genetic algorithms achieving a high performance in a number of relevant Bell scenarios. As

we show, not only can the machine learn to quantify nonlocality, but discover new kinds of nonlocal

correlations inaccessible with other current methods as well. We also apply our framework to distinguish

between classical, quantum, and even postquantum correlations. Our results offer a novel method and a

proof-of-principle for the relevance of machine learning for understanding nonlocality.
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Quantum correlations, stronger than those allowed by

classical systems, are at the core of quantum information

science, its fundamental implications, and practical appli-

cations [1,2]. For instance, the correlations obtained by

measurements on distant entangled particles are incompat-

ible with any local hidden variable (LHV) model [3], a

cornerstone in our understanding of quantum theory that

paved the way to many relevant information processing

tasks ranging from quantum cryptography [4–6] and

randomness certification [7,8] to self-testing [9] and dis-

tributed computing [10]. To that aim, it is crucial to develop

ways to test the incompatibility of a given correlation with

LHV models, that is, to detect its nonlocal behavior.

The most common approach to that purpose is based on

Bell inequalities. First, their violation is an unambiguous

witness of the nonclassicality of the correlations. Second,

they serve as an objective function over which one can

optimize quantum states and measurements to find viola-

tions and, thus, search for nonlocal correlations. Given its

clear importance, over the years a very general framework

has been developed [11,12], and dozens of inequalities

were found [2]. LHV models define a set of correlations

compatible with it, the nontrivial boundaries of which are

precisely the Bell inequalities. Typically, however, the

characterization of the local set via Bell inequalities is

computationally very demanding, rapidly becoming

intractable as the scenario of interest raises its complexity

[13–16]. The situation is far worse for more general

situations, for instance, when dealing with quantum

networks [17–24] where many independent sources of

entangled states are present and give rise to semialgebraic

(nonconvex) sets [25,26]. Faced with this impairing sit-

uation, it is natural to search for alternative routes that do

not rely on Bell inequalities. That is precisely the aim of

this work.

Motivated by the outstanding recent progress within

quantum physics [27–34], here, we propose a machine

learning (ML) approach to test the nonclassicality of

correlations. Our starting point is a recently introduced

quantifier of nonlocality [35] considering “how far” a given

correlation is from the local set. As opposed to a specific

Bell inequality—covering a very limited region of the space

of correlations—our approach offers a global perspective of

the local set geometry, in some sense testing all Bell

inequalities at once. We randomly sample the space of

correlations, compute this quantifier, and feed this data to

an ensemble of deep learning algorithms [36] able to

recognize patterns in the correlations and create machine

models for the complex geometry of Bell correlations.

Strikingly, not only can the neural networks quantify, with

a high accuracy, the nonlocality of given correlations, but can

also be used to discover new nonlocal correlations that could

hardly be found by any other available means. That is, not

only can the machine learn, but also teach us something new

about Bell correlations. This is shown in a variety of Bell

scenarios, including the simplest scenario for which no

complete characterization of the local set (Bell inequalities)

and the entanglement swapping experiment [37–40] giving

rise to the notoriously thorny bilocality scenario [17–19].

Finally, we also show that the machine can distinguish

between quantum and postquantum correlations [41,42],

an important topic in the foundations of quantum theory [43].

PHYSICAL REVIEW LETTERS 122, 200401 (2019)

0031-9007=19=122(20)=200401(6) 200401-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.200401&domain=pdf&date_stamp=2019-05-22
https://doi.org/10.1103/PhysRevLett.122.200401
https://doi.org/10.1103/PhysRevLett.122.200401
https://doi.org/10.1103/PhysRevLett.122.200401
https://doi.org/10.1103/PhysRevLett.122.200401


A machine learning approach to detect and quantify

nonlocal correlations.—Bell’s theorem [3] shows that

measurements on distant entangled systems are incompat-

ible with the assumption of local realism. We will refer to

the simplest Bell scenario [see Fig. 1(a)], composed of two

distant parties that, upon receiving their shares of a

composite physical system, measure different observables

(labeled by the variables X and Y) obtaining a respective

measurement outcome (labeled by A and B). In a classical

description, the probability distribution pðA ¼ a; B ¼
bjX ¼ x; Y ¼ yÞ ¼ pða; bjx; yÞ observed in such a simple

experiment should be decomposable in terms of a LHV

model, that is,

pða; bjx; yÞ ¼
X

λ

pðajx; λÞpðbjy; λÞpðλÞ; ð1Þ

defining a convex set L, the boundaries of which are Bell

inequalities [see Fig. 1(c)]. According to Born’s rule,

however, quantum mechanics implies that

pða; bjx; yÞ ¼ Tr½ðMx
a ⊗ M

y
bÞϱAB�; ð2Þ

where ϱAB is the density operator describing the shared

physical system, and Mx
a and M

y
b describe measurement

operators. Thus, to test the nonlocality of a given quantum

distribution (2), we have to show that it falls outside the set

L, the paradigmatic method for that being the violation of a

Bell inequality.

However, the number of Bell inequalities grows very fast

as the Bell scenario of interest grows its complexity (number

of parties, measurements, or outcomes) [2,12,13], that is, any

given inequality will typically offer very limited and local-

ized information of a high-dimensional and intricate set of

correlations. To cope with that, we employ a more refined

description here, based on a nonlocality quantifier NLðqÞ
given by minimum trace distance between the distribution

q ¼ qða; bjx; yÞ under test and a p ¼ pða; bjx; yÞ in the set
of local distributions [35]

NLðqÞ ¼ 1

2jxjjyjp ∈ L
min

X

a;b;x;y

jq − pj; ð3Þ

where jxj ¼ jyj ¼ m denotes the number of possible mea-

surements performed by the parties.

Having defined a Bell scenario of interest, the first step in

our ML approach is to generate the training points to the

machine. We do that by randomly sampling nonsignaling

(NS) distributions defined by simple linear constraints (see

the Supplemental Material (SM) [44]). The reason for

sampling NS instead of quantum distributions is threefold.

First, characterizing the quantum set is extremely challeng-

ing, the best available method given by an infinite hierarchy

of semidefinite programs [42]. Second, even thought the NS

condition allows for correlations beyond quantum mechan-

ics, they play an important role in the foundations of the

theory [41,43]. Third, the NS machine model describes

quantum correlations equally well. For each sampled corre-

lation [45], we compute the corresponding exact measure

NLtest (the target function t), feeding this data to different

neural networks, the best ones have been blended via a

genetic algorithm [46] to generate a machine prediction

NLpredicted [see Fig. 1(d) and SM [44] for details]. Tomeasure

the performance/error of the model, we employ the average

trace distance P ¼ ð1=NÞPN
i¼1

jNLi
test − NLi

predictedj, where
N is the number of points in the testing set [47].

Our first goal is to show that the machine can learn in a

reliable manner to detect and quantify nonlocality. The

results for the bipartite Bell scenario with m ¼ 2, 3, 4, 5

dichotomic measurements and input data of 5 × 105 points

are shown in Fig. 2 and Table I. The average error is of

order 10−3 in all scenarios. The measure NLðqÞ is a

function of all Bell inequalities defining a given scenario,

and its number is equal to 8ðm ¼ 2Þ, 72ðm ¼ 3Þ,
27936ðm ¼ 4Þ while already, for m ¼ 5, no complete

characterization is available. Thus, such high accuracies

are a truly striking feature of the deep learning approach.

But what can we learn from the machine?

First, we notice that, once the machine model is trained,

to obtain a prediction about a new instance is basically

instantaneous, in some cases offering a 105 speedup (more

on that below). Second, in spite of the machine being

trained over the NS set (including postquantum correla-

tions), it provides a remarkably accurate description of the

quantum set as well [see in Fig. 2(a)]. Finally, the machine

model can be used to unveil new kinds of nonlocal

(a) (b)

(c) (d)

FIG. 1. Black-box representation of (a) the bipartite Bell

scenario and (b) a tripartite scenario with two independent

sources of states. (c) Pictorial illustration of the different sets

of correlations: nonsignaling, quantum, local, and bilocal.

(d) Blending technique where different machines are combined

to improve the overall performance.
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correlations that would be unaccessible by standard

approaches. Consider, for instance, a typical situation

where the experimental platform imposes strict constraints

on the types of measurements that can be performed and

their efficiency. The paradigmatic approach would be to

optimize (under specified constraints) the violation of some

Bell inequality. However, as said before, very few classes of

inequalities are known, and often, they provide extremely

limited information. In contrast, the ML approach provides

an objective function taking the whole local set into account

that can be optimized over to generate candidate nonlocal

correlations. We say candidate correlations because, as in

any other ML construction, there will be an associated

intrinsic uncertainty (however small). Nonetheless, once a

good candidate is found, one can use the linear program-

ming approach (generating the data training the machine) to

certify its nonclassicality. A specific example of how we

can learn from the machine is given below, considering the

thorny bilocality scenario.

Nonlocal correlations in a simple quantum network.—

To illustrate the power of the ML approach, consider the

simplest possible quantum network beyond Bell’s para-

digmatic scenario, akin to an entanglement swapping

experiment [37]. It consists of three separated parties

interconnected by two independent sources of states [see

Fig. 1(b)]. The LHV model, taking into account the

independence of the sources—pðλ1; λ2Þ ¼ pðλ1Þpðλ2Þ,
the bilocality assumption [17,18]—implies that the tripar-

tite observed distribution can be written as

pða; b; cjx; y; zÞ
¼

X

λ1;λ2

pðajx; λ1Þpðbjy; λ1; λ2Þpðcjz; λ2Þpðλ1Þpðλ2Þ: ð4Þ

Interestingly, there are local correlations that, nonetheless,

are nonbilocal (NBL); correlations that appear of classical

nature have their nonclassicality revealed if the independ-

ence of the sources generating the correlations is consid-

ered [see Fig. 1(c)]. On the negative side, Eq. (4) defines an

intricate nonconvex set for which very few and specific

inequalities have been derived [17–23]. The ML approach

offers a novel way to circumvent this difficulty. Similar to

what has been done before, we sample over NS distribu-

tions and compute its distance NBLðqÞ to the bilocal set via
a sequence of linear programs (see [49] and SM [44] for

details).

Consider that the three parties perform two possible

measurements (x, y, z ¼ 0, 1). The only known inequality

in this scenario is given by

ffiffiffiffiffi

jIj
p

þ
ffiffiffiffiffiffi

jJj
p

≤ 1; ð5Þ

with I¼ð1=4ÞPx;zhAx;B0;Czi and J¼ð1=4ÞPx;zð−1Þxþz×

hAx;B1;Czi. Within that context, we considered two differ-

ent cases, both considering a total of 1.5 × 105 sampled

distributions. In the first, the correlations are encoded in the

expectation values ðI; J; hA0i; hA1iÞ (four features) and in

the second ðhA0B0; C0i;…; hA1B1; C1i; hA0i; hA1iÞ (ten

features) [50]. The results are shown in Fig. 3 and in

Table I. The overall performance is very high.

We have also compared the ML models trained with

NS correlations to detect quantum ones. On the first,

(a) (b)

(c) (d)

FIG. 2. The straight line (blue) indicates the exact solution of

Eq. (3) or Eq. (6) (see SM [44]) and the circle (red) indicates the

ML prediction (considering 104 test set points). In all cases, the

machine can predict, with excellent accuracy, the degree of

nonlocality without any information about Bell inequalities.

(a) Bipartite scenario (m ¼ 2) with quantum correlations obtained

by projective measurements on jψi ¼ cos θj00i þ sin θj11i, that
maximally violate the Clauser-Horne-Shimony-Holt inequality

[48]. (b) Bipartite scenario (m ¼ 3), (c) (m ¼ 5), and (d) the

bilocality scenario employing four features ðI; J; hA0i; hA1iÞ. For
(b), (c), and (d), the x axis denotes the point ith correlations (qi)

with an increasing ordering in the value of NLi
test.

TABLE I. Performance (average l1-norm) for different scenarios and different ML approaches. See SM [44] for

details.

Scenario

Technique m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5 IJA0A1 AxByCz; Ax

Typical MLP ð×10−3Þ 0.46 2.20 7.75 8.50 2.70 6.30

Blending ð×10−3Þ 0.05 1.54 6.78 7.31 0.45 3.22
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we have used the blended ensemble of deep learning

models to compute the degree of nonbilocality of

the correlations obtained by measurements on a

Werner state ϱ ¼ vjΦþihΦþj þ ð1 − vÞ1=4 [with jΦþi ¼
ð1=

ffiffiffi

2
p

Þðj00i þ j11iÞ] and that maximally violate the

inequality (5), obtaining nearly perfect agreement [see

Fig. 3(a)]. On the second, we have numerically searched

for quantum correlations violating the ML regression

function but that do not violate (5). As discussed above,

in this case, our ML approach is providing us with new and

relevant information: the machine provides us new exam-

ples of correlations, the nonclassicality of which cannot be

detected by the only known inequality (5) [see Fig. 3(b)].

We highlight that, after training the machine, to obtain a

prediction about a new instance is basically instantaneous

(of the order of 10−4 seconds) while the brute force method

(used to train the machine) takes considerably more time,

on average 20 seconds, thus, offering a 105 speedup.

Machine learning postquantum correlations.—The best

available method to characterize the set of quantum

correlations (those obtainable by measurements on a

quantum state) is given by a hierarchy of semidefinite

programs that converges asymptotically to the quantum set

[42] and, thus, only provides an outer approximation, in

general. Notwithstanding, in some particular instances, the

convergence happens at a finite step, as is the case in a

bipartite scenario where each party can perform two

possible dichotomic measurements.

A necessary and sufficient condition [51] for the

expectation values hAxByi with x, y ¼ 0, 1 to have a

quantum realization is given by all four symmetries of the

inequality j arcsinhA0B0i þ arcsinhA0B1i þ arcsinhA1B0i−
arcsinhA1B1ij ≤ π. Furthermore, the nonlocality of

the associated distribution can also be decided by testing

all the symmetries of the inequality jhA0B0i þ hA0B1i þ
hA1B0i − hA1B1ij ≤ 2. Given the list of correlators hAxByi,
we can then classify it as local, nonlocal (quantum), or

postquantum.

In machine learning, classification is the problem of

determining to which class of categories a new observation

belongs by means of a training set of data containing

instances whose category membership is known [52]. The

ensemble of classifiers, created in a similar way as the

ensemble of regressors, was trained over 4 × 105 input

points. The overall accuracy achieved was 99.49%. To

better quantify the quality of the predictions of the

ensemble of deep learning models that we proposed, we

computed the confusion matrix for a random sample of 105

unseen new instances in Table II, see SM [44] for more

details. Interestingly, even though most of the postquantum

points occur close to the local set [53], the ML method

never makes mistakes between both. That is, in spite of

their very small geometrical distance, the machine per-

ceives traits in those correlations allowing us to distinguish

between them.

Discussion.—Bell nonlocality shows that, even without a

precise description of a physical apparatus and solely based

on measurement data, one can prove the quantumness of

some observed correlations. It is at the core of the device-

independent approach to quantum information processing

[54] with many applications in near term quantum tech-

nologies such as quantum cryptography [4–6]. Detecting

Bell nonlocality beyond simple cases, however, remains a

thorny issue given the hard computational complexity of

the characterization of locality via Bell inequalities [12,13].

Further, with the recent advances on the quantum internet

[55,56]—in short, a network with several independent

sources of quantum states—such computational difficulties

become even more pronounced [19,25,26]. Here, we

propose an alternative and timely route, a machine learning

approach, allowing the detection and quantification of

nonlocality as well as its quantum (or postquantum) nature.

To illustrate its benefits, we have applied it to a number of

relevant Bell scenarios showing that not only can the

machine learn, but also teach, for instance, pointing to

(a) (b)

FIG. 3. Bilocality scenario. (a) Diamonds (blue), indicate the

exact value of NBL ¼ v2 − 1=2 [49] obtained by measurements

on a Werner state maximally violating the inequality (5). The

circles (red) indicate the deep learning prediction. (b) The

triangles (grey) indicate the results of a numerical optimization

for the maximum value of the regression ML function for

quantum correlations obtained by measurements on the state

jψiAB ¼ jψiBC ¼ cos θj00i þ sin θj11i (not violating inequality

5). The diamonds (blue) indicate the exact value and the circles

(red) indicate the prediction made by a neural network trained

with NS correlations. Strikingly, the ML approach can discover

new quantum correlations without any information about Bell

inequalities.

TABLE II. The confusion matrix Cij of the blend of classifiers

for 105 unseen inputs, which returns the number of observations

known to be in group i but predicted to be in group j. The sum of

the elements of the main diagonal divided by the total of elements

gives the accuracy score.

Predictions

True Class Local Quantum Postquantum

Local 33436 96 0

Quantum 41 33173 236

Postquantum 0 136 32882
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new kinds of nonlocal correlations that cannot be detected

by known Bell inequalities. From the machine learning

side, to the best of our knowledge, it is the first time that

many multilayer perceptrons (MLPs) are blended using

generative algorithms to automatically find the best way to

combine them, proving a robust framework for dealing with

a great variety of Bell scenarios.

Our results provide a proof-of-principle for the relevance

of ML tools in Bell nonlocality, and we trust they will open

several research venues. A natural next step is to consider

classical and quantum networks of growing complexity

[19–24]. A clear bottleneck of our approach is the fact that

we have to train the machine and this becomes very

computationally costly as we increase the complexity.

On the positive side, once the ML model is obtained, it

provides an enormous speedup and our framework can

naturally be integrated with more efficient training methods

[57,58] alternative to linear programming. Furthermore, to

investigate alternative ML approaches, such as anomaly

detection, is certainly interesting. In that case, the machine

should be trained with local correlations only, clearly a

much simpler training task. Another clear possibility is the

combination with other recent results, e.g., the reinforce-

ment learning approach to finding the maximum violation

of a given Bell inequality [34]. Finally, one can wonder

how much we can learn from the machine models. For

instance, in spite of their very close geometrical distance,

the machine almost perfectly recognizes classical, quan-

tum, and postquantum correlations. Can it be that the

machine is recognizing some new physical principle

presently unknown? If so, how can we retrieve it? That

means we have to somehow open the machine black

box [59], and we hope our results motivate further research

in this direction.
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