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abstRact In myelodysplastic syndrome (MDS) and myeloproliferative neoplasm (MPN), bone 

marrow (BM) histopathology is assessed to identify dysplastic cellular morphol-

ogy, cellularity, and blast excess. Yet, other morphologic findings may elude the human eye. We used 

convolutional neural networks to extract morphologic features from 236 MDS, 87 MDS/MPN, and 11 

control BM biopsies. These features predicted genetic and cytogenetic aberrations, prognosis, age, and 

gender in multivariate regression models. Highest prediction accuracy was found for TET2 [area under 

the receiver operating curve (AUROC) = 0.94] and spliceosome mutations (0.89) and chromosome 7 

monosomy (0.89). Mutation prediction probability correlated with variant allele frequency and number 

of affected genes per pathway, demonstrating the algorithms’ ability to identify relevant morphologic 

patterns. By converting regression models to texture and cellular composition, we reproduced the 

classical del(5q) MDS morphology consisting of hypolobulated megakaryocytes. In summary, this study 

highlights the potential of linking deep BM histopathology with genetics and clinical variables.

SIGNIFICANCE: Histopathology is elementary in the diagnostics of patients with MDS, but its high-

dimensional data are underused. By elucidating the association of morphologic features with clinical 

variables and molecular genetics, this study highlights the vast potential of convolutional neural net-

works in understanding MDS pathology and how genetics is reflected in BM morphology.

See related commentary by Elemento, p. 195.
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intRoduction

Current diagnosis of myelodysplastic syndrome (MDS) is 
based on identifying cellular dysplasia by visual inspection of 
bone marrow (BM) aspirate or biopsy (1). Karyotype, blast pro-
portion, and peripheral blood (PB) cell count are assessed for dis-
ease subclassification according to World Health Organization  
(WHO) guidelines and for risk stratification by the Revised 
International Prognostic Scoring System (IPSS-R) criteria (1, 2).

Deep learning enables accurate visual pattern recognition 
with convolutional neural networks (CNN), where multiple 
processing layers detect and decode image data into numeri-
cal features (3). CNNs have recently led to significant break-

throughs in the analysis of biomedical images, facilitating 
diagnosis of skin tumors, retinal disease, intracranial hemor-
rhage, and breast cancer (3–6). In the context of routine hema-
toxylin and eosin (H&E) tissue stains, similar algorithms have 
improved Gleason scoring in prostate cancer, outcome pre-
diction in colorectal cancer, and even discrimination of solid 
cancer patients by driver mutation status (4, 7–9).

Here, we investigate the potential of CNN-based morpho-
logic analysis in hematology. To improve our understanding of 
MDS histopathology and its association with clinical factors, we 
predict diagnosis, prognosis, IPSS-R risk score, mutated genes, 
cytogenetics, and patient age and gender by utilizing solely BM 
morphologic features (study flow presented in Supplementary 
Fig.  S1). We demonstrate the highest detection accuracy for 
point mutations, such as TET2 and ASXL1. The mutation 
prediction probability correlates with variant allele frequency 
(VAF) within the sample, confirming the identification of 
mutation-specific features. To study interactions between 
disease determinants and BM histology, we introduce a novel 
multidimensional image analysis approach that combines 
information at tile, segmented nucleated hematopoietic cell 
(NHC), and pixel levels, ultimately facilitating the interpreta-
tion of complex BM histopathologic patterns.

Results

Unsupervised Modeling of BM Texture 
Recognized Morphologic Lineages and Distinct 
Myelodysplastic Clusters

To dissect BM morphology, we extracted ImageNet-configured  
visual features of H&E-stained BM biopsies from patients 
with MDS (236 samples from 143 subjects), patients with 
MDS/myeloproliferative neoplasm (MPN; 87 samples from 
51 subjects), and healthy controls (11 samples from 11 sub-
jects) using VGG16 and Xception CNNs (Fig. 1A; Supplemen-
tary Fig.  S1). Images of tissue microarray (TMA) cores were  
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grayscaled and split into 500 tiles enabling the examination 
of detailed tissue patterns. To investigate the spectrum of 
CNN texture patterns, we mapped image tiles from diagnos-
tic BM samples of MDS, MDS/MPN, and control subjects 
with two-dimensional uniform manifold approximation and 
projection (UMAP) representation (Fig.  1B). Unsupervised 
image segregation was principally driven by stromal and cellu-
lar texture. Images with cellular content were observed to sub-
cluster according to NHC and red blood cell (RBC) abundance 
and lipid droplet density. As up to 60% of patients with MDS 
may present with a hypercellular BM phenotype at diagnosis, 
complete discrimination of patients with MDS and MDS/
MPN with an unsupervised approach is unlikely (10). Here, 
patients with MDS/MPN harbored an increased number of 
hypercellular tiles, while patients with MDS demonstrated 
heterogeneous histopathologic phenotypes (Fig. 1B). Notably, 
tiles from healthy subjects represented a balanced cellular and 
lipid droplet composition, with scarce proportion of stroma.

By clustering image tiles with PhenoGraph, we observed 
distinct subgroups of tissue texture. In turn, we hypothesized 
that these patterns could be interconnected into morphologic 
entities (Fig.  1B). Slingshot lineage analysis is commonly used 
in single-cell RNA-sequencing data analysis to identify cellular 
development trajectories (11). The method aims to identify evo-
lutionary branches from a common starting point using mini-
mum spanning tree-based clustering (11). Here, we repurposed 
slingshot analysis for image data and demonstrate that tiles 
with a high proportion of either lipid droplets, hypercellularity, 
or RBCs were connected to tiles of hypocellular tissue (Fig. 1B). 
These connections suggest that adipose, hypercellular, and RBC-
rich tissue areas rarely transform from one to another, but 
instead are more likely to arise from areas of hypocellular texture.

Tile features from MDS, MDS/MPN, and healthy subjects 
were averaged by adding the features of all tiles from one TMA 
spot and dividing by the number of tiles. Aggregated features 
were two-dimensionally projected with UMAP (Fig.  1C and 
http://hruh-20.it.helsinki.fi/mds_visualization). Unsupervised  
k-means clustering was used for subgrouping aggregated fea-
tures, and each cluster was analyzed for associations with clin-
ical variables. A distinct cluster representing healthy subjects 
(cluster 1) was clearly distinguishable and homogenous in 
contrast to the four myelodysplastic subgroups (Fig. 1C; Sup-
plementary Fig. S2A). It also confirmed that the selected trans-
fer learning approach identifies relevant biological features, 
even though these have been designed with the nonhistologic 

ImageNet image dataset (Fig. 1D). Clustering was principally 
driven by tissue texture content, which included the propor-
tion of NHC, stroma, and lipid droplets and RBC and nuclear 
metrics of NHCs (Fig. 1D–G).

Cluster 3, defined histologically by high bone stroma con-
tent, was enriched with the WHO MDS subtypes elevated blast 
type 1 (EB-1; P = 0.03, χ2 test) and 2 (EB-2; P = 0.01, χ2 test), 
dimmer hematoxylin staining, and leukopenic PB cell count 
(Fig. 1F and G). Cluster 5 was characterized by high NHC pro-
portion and hypercellular BM typical for patients with chronic 
myelomonocytic leukemia (CMML; P = 0.005, χ2 test) and 
unclassifiable MDS/MPN (P = 0.13, χ2 test). Moreover, these 
were also associated with darker hematoxylin staining. Cluster 
4 harbored hypoplastic MDS (hMDS; P = 0.002, χ2 test) as well 
as low erythroid cell frequency linked with del(5q) MDS (12). 
Of note, the unsupervised clustering structure of MDS and 
MDS/MPN samples only partly overlapped with the WHO 
disease classification, likely as it was driven by tissue texture 
features, whereas the WHO classes are defined by BM cyto-
morphology, cytogenetics, blast proportion, and cytopenias. 
However, CNN-guided tissue analysis could potentially assist 
classification of challenging cases according to WHO criteria.

The MDS BM Morphology Is Linked to Mutation, 
Karyotype, Gender, and Prognostic Status

MDS is characterized by recurrent oncogenic somatic vari-
ants in driver genes and chromosomal aberrations, and the 
mutation profile detected in our patient cohort corresponded 
well to the known mutational landscape in MDS (Fig. 2A and 
B; Supplementary Fig. S2B and S2C; refs. 13–15). We adapted 
a transfer learning approach, where we used VGG16 and Xcep-
tion network features extracted from tile-level H&E images to 
develop elastic net–regularized regression models (Supplemen-
tary Fig.  S1). Predictions at the TMA spot level outweighed 
tile-level detection values due to uncertainties related to the 
limited image data in individual tiles. After averaging tile-level 
predictions at the TMA sample level, we could accurately detect 
notably TET2, ASXL1, and STAG2 mutations; chromosome 
7 monosomy; and 7q deletion from morphologic features 
(Fig.  3A–D). Moreover, morphologic features were associated 
with point mutations in genes regulating splicing, cell differ-
entiation, and cell cycle, which are commonly affected in MDS.

Secondary MDS and complex karyotype were often 
observed in the same patients (P = 0.008, χ2 test), and their 
morphologic features were most challenging to learn possibly 

Figure 1.  Study design. A, TMAs were constructed from formalin-fixed, paraffin-embedded BM trephine biopsies and stained with H&E. Images were 
analyzed at tile, pixel, and NHC levels. In the tile-level analysis, TMA spot images were split into 500 small patches, and morphologic features were extracted 
with ImageNet-pretrained convolutional neural networks. We developed elastic net–regularized algorithms to predict multiple clinical and molecular genetic 
variables using only morphologic features. Tile-level feature features for each prediction model were joined into activation maps where the probability of each 
tile to associate with an endpoint is visualized with a heatmap color panel. A Weka pixel classifier was trained to identify NHCs, red blood cells, stroma, and lipid 
droplets from images. Moreover, the nuclei of NHCs were segmented, and their geometric measures were extracted. RBC, red blood cells. B, Extracted visual 
features from image tiles of diagnostic MDS, MDS/MPN, and healthy subjects are plotted using UMAP. We have selected 10 random tiles from each TMA sample 
for the UMAP visualization. Colors represent different PhenoGraph clusters (larger image) or diagnoses (top right image). Dashed circles represent morphologic 
subcategories where PhenoGraph clusters have been regrouped with k-means clustering. Superposed lines demonstrate morphologic trajectories generated 
with a slingshot analysis. Study flow is described in detail in Supplementary Fig. S1. C, UMAP projection of TMA samples. Visual features of tile images are com-
bined at the TMA sample level by their mean value. TMA samples are then clustered with the k-means method (numbered large circles). Circle colors represent 
the corresponding diagnosis, tissue proportion of NHCs (D) and stroma (E), and WHO classification (F). CMML, chronic myelomonocytic leukemia; MDS-Del(5q), 
MDS with deletion 5q; MDS-MLD, MDS with multilineage dysplasia; MDS-RAEB-1, MDS with refractory anemia with excess blasts type 1; MDS-RAEB-2, MDS 
with refractory anemia with excess blasts type 2; MDS-RS, MDS with ring sideroblasts; MDS-SLD, MDS with single-lineage dysplasia; MDS/MPN-U, MDS/MPN, 
unclassifiable. G, Each k-means cluster has been compared with remaining clusters (Wilcoxon rank-sum test and Benjamini–Hochberg P-value correction) for 
segmented NHC, pixel-level image analysis parameters and clinical information. Clinical information is not reported for healthy patients (cluster 1). Variables are 
described in Supplementary Table S2. B-Hb, hemoglobin level; B-leuk, leucocyte count; B-neut, neutrophil count; B-PLT, platelet count; WBC, white blood cell.
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Figure 2.  Distribution of genomic alterations. A, Oncoprint visualization of mutation pattern and gene groups in patients with MDS. The top bars represent 
the frequency of mutations per patient. The right bars represent the frequency of patients with a given mutated gene. The bottom bars represent the survival 
status of each patient. AML, acute myeloid leukemia. B, Oncoprint visualization of cytogenetics pattern in samples from MDS patients. The top bars represent 
the frequency of the described karyotype aberrations per patient. The right bars represent the frequency of patients with a given karyotype aberration.
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due to higher variability in tissue texture. Features extracted 
with the Xception CNN model were more generalizable 
than those extracted with VGG16, concomitant with higher 
feature heterogeneity observed in the Xception correlation 
matrix (Supplementary Figs. S3 and S4). In addition, Lasso 
and elastic net penalization provided more generalizable 
models than ridge regression (Supplementary Fig. S4).

Next, we investigated the validity of models predicting 
mutated genes and dysregulated pathways. The detection 
probability of a distinct mutation correlated significantly 
with its VAF within the sample for ASXL1, KRAS/NRAS, 
IDH1/IDH2, and RUNX1 genes, and showed a trend for TET2 
and TP53 genes (Fig. 3E and F; Supplementary Fig. S5). More-
over, the predicted likelihood of RAS, cell differentiation, and 
chromatin structure regulating gene pathway dysregulation 

correlated with the number of genes mutated in the respec-
tive pathways (Fig.  3G). This signifies that the prediction 
probability is higher when the sample contains more mutated 
cells, represented as higher VAF, or the sample has a higher 
proportion of mutated genes in the same pathway. This 
implies that prominent genetic changes translate to distinct 
morphologic image features. Of note, the initial models were 
developed using data from all patients with available myeloid 
mutation panel analysis, while the correlation analysis was 
restricted to samples with known mutation, indicating BM 
tissue morphology to be impacted by molecular genetics and 
emphasizing the algorithms’ ability to identify variant-related 
histopathologic patterns in an unprecedented fashion.

Contrary to the histopathologic evaluation of solid tumors, 
tissue morphology is not factored in risk stratification of 
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Figure 3.  Supervised learning on BM morphologic features. A, Heatmap displaying AUROC values of elastic net–regularized logistic regression mod-
els. The leftmost column shows the number of samples included in the analysis, and the cell color represents the distribution of the binary variables to be 
predicted. The following two columns inform the AUROC values of the models in the training (2/3) and test (1/3) dataset in the tile-level images and the 
last two columns at the TMA spot level. Abbreviations used for predicted variables: ABNCHR, presence of any abnormal chromosome; AML2y, progres-
sion to acute myeloid leukemia (AML) within 2 years of follow-up; CELLCYCLEmut, mutation in genes regulating cell cycle; CELLDIFFERENTIATIONmut, 
mutation in genes regulating cell differentiation; DNACHROMATINmut, mutation in genes regulating DNA chromatin structure; IDHmut, mutation in IDH1 
or IDH2; OS2y, overall survival event within 2 years of follow-up; RASmut, mutation in NRAS or KRAS; RASPATHWAYmut, mutation in genes regulating the 
RAS pathway; SPLICINGmut, spliceosome mutations. B, Similar plot for elastic net–regularized linear regression models. The leftmost column shows the 
Spearman correlation value in the training dataset and rightmost in the test dataset. ***, P < 0.001. Tile-level (left) and TMA spot–level (right) AUROC for 
the logistic regression of monosomy 7 (C) and ASXL1 mutation status (D). The analysis shows the consistency of the predicted and true occurrence of an 
aberration. E, Scatter plot for the Spearman correlation (x-axis) between logistic regression predicting mutation status and the observed gene VAF for 
individual genes or number of genes mutated for functional pathways. F, Linear regression (R represents Spearman correlation) between prediction prob-
ability of ASXL1 mutation and its detected VAF. G, Wilcoxon comparison for predicted mutation probability and detected frequency of altered genes in 
the RAS pathway. *, P < 0.05. H, Linear regression (R represents Spearman correlation) between the predicted and observed IPSS-R score in the training 
(left) and test (right) datasets.
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patients with MDS. Instead, the IPSS-R score accounting for PB 
cell count, BM blast burden, and cytogenetics is the most estab-
lished stratification tool, and was associated in this dataset with 
risk for acute myeloid leukemia (AML) and overall survival (OS; 
Supplementary Fig. S6A and S6B; ref. 2). We could predict IPSS-
R score, OS, and progression to AML by solely employing H&E-
stained slides (Fig. 3A, B, and H). When evaluating progression 
to AML, BM morphology was associated with inferior prediction 
capability compared to the IPSS-R score but performed slightly 
better than IPSS-R when predicting OS within 2 years (Sup-
plementary Fig. S6C and S6D). The best model was achieved by 
combining both deep histopathology and IPSS-R scores (Sup-
plementary Fig. S6D). These results might be impacted by differ-
ences in patient selection, as our cohort represented an unbiased 
real-world cohort, while patients treated with disease-modifying 
therapies were excluded from the landmark prognostic study by 
Greenberg and colleagues (2). However, patient prognostication 
and treatment stratification could be significantly improved by 
including morphologic features.

Interpretation of Supervised Prediction Models 
with Multilevel Image Analysis

MDS is differentially diagnosed from MDS/MPN by cyto-
morphologic and histopathologic examination, evaluation of 
PB counts, flow cytometry, karyotype, and increasingly, molec-
ular genetics. In our study, tissue samples were partitioned 
into smaller TMA cores, possibly limiting effective diagnostic 
segregation. Yet, we could discern patients with MDS from 
patients with MDS/MPN with an area under the receiver oper-
ating curve (AUROC) validation accuracy of 0.81 (Fig. 3A). To 
help understand which texture patterns are associated with 
various clinical variables, we interpreted regression models by 
correlating tile-level tissue texture predictions with pixel- and 
NHC-level metrics (Fig.  4A). In addition, we present both 
tile- and TMA spot–level images with the highest and lowest 
association with the predicted endpoint as well as TMA-level 
activation maps (Supplementary Fig. S7). Pixel classification 
was trained to identify NHCs, RBCs, stroma including fibrotic 
stroma and bone trabeculae, and lipid droplets, constituting 
the major tissue elements in standard H&E staining. In addi-
tion, NHCs were segmented to extract nuclear measurements 
such as size, circularity, and H&E dye variations. As expected, 
MDS likelihood increased if the sample represented hypoplas-
tic texture (Fig. 4B and C). MDS morphology was also associ-
ated with dimmer H&E staining and larger nuclear size, likely 
due to a technically larger cell segmentation area in hypocel-
lular BM (Fig. 4A; Supplementary Fig. S7A).

Chromosome 5q deletion is associated with a decrease 
in erythroid precursor cells and an increase in hypolobular 
megakaryocytes (12). When inspecting tiles associated with 
5q deletion, we discovered enrichment of megakaryocytes 
with abnormally circular nuclei, in line with previous findings 
(Fig.  4D). While hMDS was not associated with 5q deletion 
syndrome in our cohort (7/51 vs. 14/183 samples had 5q 
deletion syndrome in hMDS vs. non-hMDS, P = 0.29, χ2 test), 
del(5q) was identified more often in hypocellular samples and 
samples with higher stroma content (Fig. 4E). These findings 
could be due to prior treatment with lenalidomide indicated 
for MDS with del(5q). Moreover, del(5q) MDS samples dis-
played lower nucleus circularity. This could be due to different 

white blood cell content rather than dysplasia, as this pattern 
was absent in samples with complex karyotype (Fig. 4F).

discussion

Here, we demonstrate how the intricate and heterogeneous 
BM morphologic landscape can be dissected and associated 
with clinical data using multilevel computer vision.

While the presented analytic platform is not accurate and 
extensive enough to replace sequencing technologies in iden-
tifying genetic lesions, deep BM morphology predicted muta-
tions and cytogenetic aberrations with accuracy exceeding 
that of similar applications in solid tumors (4, 7, 16, 17). We 
suspect that the homogeneous BM tissue consistency and 
lower mutation burden in MDS may account for the results. 
To increase reliability, we employed transfer learning and 
separated the training and validation datasets at the TMA 
sample level. However, in the absence of an independent test 
cohort, the results should be interpreted with caution.

On the basis of our findings, transfer learning of H&E 
images can shed light on disease pathology and gene targets 
by linking molecular genetics with tissue dysplasia. It would 
be interesting to compare the texture of MDS BM samples 
collected in clinical trials or derived from animal models to 
images in our interactive platform (http://hruh-20.it.helsinki. 
fi/mds_visualization). The mechanism of action of any 
drug could thus be examined with respect to the signaling 
pathways or molecular genetic aberrations described in this 
study. The potential of this approach could further expand if 
explored by combining genetic variants with protein produc-
tion quantitated with immunohistochemistry to comprehen-
sively observe the effects of transcriptional, spliceosomal, and 
translational regulation on eventual protein production.

The analysis was conducted for images digitized with 
20× objective, as we initially aimed to combine cellular-level 
morphologic patterns with clinical variables. However, the 
resolution remains suboptimal for the distinction of subcel-
lular organelles, and quantification of chromatin or nucleus-
to-cytoplasm ratio. Addressing these questions would likely 
require analysis of May-Grunwald-Giemsa (MGG)–stained 
BM aspirate samples with better morphologic quality using 
high-magnification (100×) microscopes and oil immersion.

While presence of bone trabeculae could be related to sam-
pling artifacts, the BM microenvironment and erythropoietin 
are known to regulate the osteoblast–osteoclast balance, and 
ultimately bone remodeling (18, 19). Moreover, both cellular 
and acellular components contribute to the BM niche (20). 
Therefore, bone trabeculae were not excluded from image anal-
ysis, and further examination of the BM microenvironment is 
needed to validate associations with molecular genetics.

Digital pathology and adaptation of CNNs have had sub-
stantial influence in the field of solid tumors (21). Standardized 
clinical application would require multicenter collaboration 
both to collect sufficient training data and to impact clinical 
routine. Our current results suggest that image analysis of 
H&E-stained BM samples is insufficient alone to reliably dif-
ferentiate MDS and MDS/MPN subtypes. However, especially 
the trained eye of the pathologist may benefit by learning 
novel associations between morphology and molecular genet-
ics. Moreover, CNN-based analytics could reduce intra- and 
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Figure 4.  Interpretation of supervised prediction models. A, Correlation matrix for logistic and linear regression model predictions (rows) and pixel-level 
and segmented NHC–level image analysis metrics aggregated per sample. The color of individual matrix cells represents the Spearman correlation and the 
asterisks the Benjamini–Hochberg–adjusted significance values: *, P < 0.05; **, P < 0.01; ***, P < 0.001. Variables are described in Supplementary Table S2.  
Abbreviations used for predicted variables: ABNCHR, presence of any abnormal chromosome; AML2y, progression to acute myeloid leukemia (AML) within  
2 years of follow-up; AZA, azacytidine treatment response; CELLCYCLEmut, mutation in genes regulating cell cycle; CELLDIFFERENTIATIONmut, mutation in 
genes regulating cell differentiation; DNACHROMATINmut, mutation in genes regulating DNA chromatin structure; IDHmut, mutation in IDH1 or IDH2; OS2y, 
overall survival event within 2 years of follow-up; RASmut, mutation in NRAS or KRAS; RASPATHWAYmut, mutation in genes regulating the RAS pathway; 
SPLICINGmut, spliceosome mutations. B, H&E-stained TMA spots and corresponding activation maps for the prediction of MDS or MDS/MPN. For the activa-
tion map, tile-level predictions have been color-scaled (blue, high probability for MDS/MPN; red, high probability for MDS). C, Scatter plot and Wilcoxon rank-
sum test to compare NHC proportion by MDS and MDS/MPN diagnoses. Boxplots define the interquartile ranges and median values by diagnoses. D, Image 
tiles representing highest and lowest computed probability of chromosome 5q deletion. Scatter plot and Wilcoxon rank-sum test to compare the proportion of 
stroma (E) and nuclei eccentricity (opposite of circularity; F) by del(5q) status. Boxplots define the interquartile ranges and median values by diagnoses.
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interobserver variability of histopathologic analysis, and incor-
porating additional clinical information could assist in auto-
mating and objectively classifying patients with MDS. A recent 
study took a slightly different approach and used hemato-
pathologic reports instead of image analysis to link BM mor-
phology and clinical variables (22). Cytomorphologic findings 
such as dysplasia, monocytosis, and elevated megakaryocytes 
from MGG-stained BM smears and presence of myelofibrosis 

from H&E-stained BM biopsies were shown to associate with 
cytopenia and mutations, emphasizing that machine learning–
based platforms could support MDS diagnosis.

The black box dilemma hinders clinical translation of deep 
learning algorithms (23). To increase model transparency, 
we decoded CNN-extracted morphologic patterns associated 
with molecular and clinical determinants with a holistic 
methodology linking image analysis at the tile, pixel, and 
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cellular levels. CNN-based feature extraction, pixel classi-
fication, and NHC segmentation required little parameter 
optimization to increase reproducibility and scalability to 
any image analysis study employing deep learning. Image 
features associated with MDS versus MDS/MPN diagnosis 
and del(5q) MDS were affirmed by a hematopathologist and 
were consistent with previous knowledge (1, 12). Dissection 
of complex computer vision models could be achieved with 
similar approaches based on neural network–based semantic 
and instance segmentation methods.

Taken together, deep mining of the BM tissue texture on 
a larger scale could assist pathologists by revealing intricate 
morphologic patterns defining disease subtypes and eventu-
ally improving clinical stratification of patients with MDS.

Methods

Patients

The study population comprised patients with MDS (n = 143) and 

MDS/MPN (n = 51) and control subjects (n = 11) treated from 2000 to  

2018 at the Department of Hematology in the Helsinki University  

Hospital (HUH; Helsinki, Finland; Supplementary Fig.  S1; Table 1). 

The formal MDS or MDS/MPN diagnosis and classification adhered to 

WHO guidelines and were assigned by the treating clinical hematolo-

gist on the basis of patient history, PB cell counts, BM cytomorphology 

evaluated by two laboratory hematology specialists, and cytogenetics 

according to WHO guidelines. If needed, flow cytometry results were 

included in the evaluation. The diagnostic conclusion, especially if chal-

lenging, was confirmed by a regular tumor board of clinical hematolo-

gists and a laboratory hematologist at our institution (24, 25).

BM trephine biopsies are used in standard diagnostic procedures 

and occasionally for assessing treatment response and disease pro-

gression. As all available samples were obtained, no selection bias 

in sample collection occurred. Diagnostic (MDS n = 143, MDS/

MPN n = 51) and follow-up specimens (MDS n = 93, MDS/MPN n =  

36) were collected prior to and after initiating a disease-modifying 

treatment, respectively. According to ethics board guidelines, control 

BM trephine samples were collected from subjects without diagnosis 

of hematologic malignancy, chronic infection, or autoimmune dis-

order in the 6-year follow-up (Supplementary Table S1). Of the 11 

control subjects, six were males and their median age was 57.0 (range, 

40.0–82.0) years at the time of BM sampling. Patients with MDS and 

MDS/MPN were slightly older than control subjects (P = 0.02 and P =  

0.002, respectively) but did not differ significantly by sex (Table 1).

The study complied with the Declaration of Helsinki and the HUS 

institutional ethics committee. All study patients gave written informed 

consent. All clinical data were collected from the HUS datalake, a Gen-

eral Data Protection Regulation (GDPR)–compliant database.

Sequencing

Genomic DNA was isolated from diagnostic BM aspirates (n = 108) 

using the QIAsymphony DSP DNA kit. According to the manufac-

turer’s protocols, 20 ng of DNA for each sample was used for library 

preparation with the Ion AmpliSeq Library Kit 2.0 (Thermo Fisher 

Scientific) and the AmpliSeq primers (Thermo Fisher Scientific) for 

the in-house myeloid cancer gene panel. This panel covers all exons 

in ASXL1, BCOR, CDKN2A, CEBPA, CREBBP, CUX1, DNMT3A, EP300, 

ETV6, EZH2, GATA2, KDM6A, NF1, PHF6, RAD21, SETD2, STAG2, 

TET2, TP53, and ZRSR2 genes and hotspot exons in BRAF, CALR, 

CBL, CSF3R, FLT3, GATA1, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, 

NRAS, PDGFRA, PTPN11, RUNX1, SETBP1, SF3B1, SMC1A, SMC3, 

SRSF2, U2AF1, and WT1 genes. Libraries were barcoded with the Ion 

Xpress Barcode Adapters (Thermo Fisher Scientific) and quantified 

with the Ion Library TaqMan Quantitation Kit. Template preparation 

and chip loading were performed on the Ion Chef system (Thermo 

Fisher Scientific). Sequencing was carried out on the Ion Proton or Ion 

GeneStudio S5 system (Thermo Fisher Scientific). Data analysis was 

carried out with Torrent Suite Software v.5.8 (Life Technologies). The 

Ion Reporter software v4.6 (Thermo Fisher Scientific) was used to fil-

ter out noncoding and polymorphic variants. All variants listed after 

filtering were visualized in the Integrative Genomics Viewer (IGV) to 

manually discard alterations generated by incorrect calling.

Driver gene mutations were defined using a clinical-grade, myeloid 

amplicon sequencing panel capable of identifying mutations with 

VAF >2% (mean sequencing depth 6,000×; Supplementary Fig. S2B 

and S2C). In addition, data from an additional 40 samples analyzed 

with the Illumina TruSight myeloid amplicon sequencing panel 

were included (mean sequencing depth 100×). Sequencing panels 

produced similar results for 305/315 genes (96.8%) by analyzing nine 

samples in parallel with both assays.

Tissue Microarrays

Upon sampling, fresh BM biopsies were subjected to routine 

EDTA-based decalcification, softening the tissue and FFPE. TMAs 

were cast by a single 2-mm core (MDS and MDS/MPN) or double 

1-mm cores (controls) per sample from representative BM biopsy 

areas (Fig. 1A). Duplicate control cores did not differ by their mor-

phologic patterns (Supplementary Fig. S2A). Tissue blocks were cut 

into 4-µm–thick sections and stained with H&E. Slides were digitized 

at 0.22 µm/pixel (20× objective magnification) with the whole-slide 

scanner Pannoramic 250 FLASH (3DHISTECH Ltd.).

Image Analysis

Images were analyzed with three methods—(i) transfer learning, (ii) 

pixel classification, and (iii) NHC analysis—to capture information 

from different representation levels (Supplementary Fig. S1).

Transfer Learning

Image Preprocessing. As sample processing and slide digitiza-

tion affect color distribution, H&E-stained RGB images were con-

verted into gray scale with the OpenCV Python module to reduce 

possible technical noise. Moreover, we standardized background 

pixels that did not represent BM tissue by converting them into the 

pixel value 255 (white). H&E images were split into 500 equal-sized 

tiles (small subimages of the original H&E image), in average 470 × 

470 pixels. Tile size was optimized to outsize the BM lipid droplets to 

avoid their classification as nontissue background. Tiles with mean 

pixel intensity over 240 represented nontissue background and were 

excluded from the analysis, resulting in 73,531 tiles.

Feature Extraction. In transfer learning, a prior algorithm or 

its configurations are reused to develop a new machine learning 

algorithm. Visual features that were previously defined in a larger 

training dataset can be repurposed for new image analysis tasks, 

reducing the need for training models from scratch (26). We adapted 

a transfer learning approach where image tile features were extracted 

with pretrained Xception and VGG16 convolutional networks that 

have achieved high accuracy in classifying the ImageNet dataset com-

monly used to develop and benchmark computer vision algorithms 

(27, 28). Individual tiles were resized into equal sizes (224 × 224 pixels 

for VGG16 and 299 × 299 pixels for Xception). Colors were rescaled 

between values [0,1]. Images were reformatted as three-channel gray 

scale where each pixel was assigned an identical value for each channel 

to ensure compatibility with pretrained CNNs, as ImageNet configu-

rations have been developed for color images. For each tile image, a 

2.048-bin feature vector was extracted at the second-to-last Xception 

network layer. As VGG16 and Xception networks do not possess a simi-

lar number of parameters, we exported features from the last layer of 

the VGG16 network (n = 25.088) and retained only 2.048 features with 

the highest variance-to-mean ratio (Supplementary Fig. S3A and S3B).
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table 1. Patient characteristics at diagnosis

MDS (n = 143) MDS/MPN (n = 51)

Gender, male 73 (51.0%) 36 (70.6%)

Age, mean (range) 64.8 [15.5–88.6] 67.5 (36.4–87.0)

Etiology

�De novo 118 (82.5%) 47 (92.2%)

�Secondary (treatment-related) 25 (17.5%) 4 (7.8%)

WHO MDS classification

�MDS-SLD 20 (14.0%)

�MDS-MLD 33 (23.1%)

�MDS-RS 16 (11.2%)

�MDS-EB-1 25 (17.5%)

�MDS-EB-2 35 (24.5%)

�MDS with isolated del(5q) 10 (7.0%)

�MDS-U 4 (2.8%)

WHO MDS/MPN classification

�CMML 35 (68.6%)

�MDS/MPN-U 16 (31.4%)

Survival status 2 years after diagnosis

�Alive 60 (42.0%) 32 (62.7%)

�Deceased 70 (49.0%) 19 (37.3%)

�Not defined or censored due to alloHSCT 13 (9.1%) 0 (0.0%)

Progression to AML within 2 years of diagnosis

�No 51 (35.7%) 28 (54.9%)

�Yes 42 (29.4%) 11 (21.6%)

�Not defined or censored due to alloHSCT 50 (35.0%) 12 (23.5%)

Azacytidine-treated within 1 year of diagnosis

�No 78 (54.5%) 31 (60.8%)

�Yes 65 (45.5%) 20 (39.2%)

IPSS risk class

�Low 24 (16.8%)

�Intermediate-1 57 (39.9%)

�Intermediate-2 26 (18.2%)

�High 24 (16.8%)

�Not defined 12 (8.4%)

IPSS-R risk class

�Very low 17 (11.9%)

�Low 33 (23.1%)

�Intermediate 27 (18.9%)

�High 26 (18.2%)

�Very high 28 (19.6%)

�Not defined 12 (8.4%)

AlloHSCT

�No 117 (81.8%) 43 (84.3%)

�Yes 24 (16.8%) 8 (15.7%)

�Not defined 2 (1.4%) 0 (0.0%)

Abbreviations: alloHSCT, allogeneic hematopoietic stem cell transplantation; MDS-EB-1, MDS with excess blasts 1; 
MDS-EB-2, MDS with excess blasts 2; MDS-MLD, MDS with multilineage dysplasia; MDS/MPN-U, MDS/MPN, unclassi-
fiable; MDS-RS, MDS with ring sideroblasts; MDS-SLD, MDS with single-lineage dysplasia; MDS-U, MDS, unclassifiable.

Regression Models. Visual features extracted from image 

tiles with CNNs contain numerical values. Therefore, these can be 

introduced as covariates to develop regression models. Image tiles were 

first split at the TMA sample level into training (2/3) and test (1/3) 

datasets. In average, 213 (range 70–336) tiles per sample were avail-

able. Models were trained with L1 (alpha = 1), L2 (alpha = 0), or elastic 

net–regularized (alpha = 0.5) regression models. Here, multivariate  

regression models are optimized for both regularizing a factor alpha 

and penalization rate lambda using 5-fold cross-validation. Lambda 

values were optimized for each fixed parameter alpha to reach  
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minimum cross-validation error (lambda.min) and the lambda at one 

SE of this minimum (lambda.1se). Training of the regression models 

occurred at the tile level to highlight individual tissue texture and cell 

morphology features. The prediction results were assessed both at tile 

level and TMA sample level. Prediction probabilities for TMA samples 

were calculated by summing probabilities of each tile of the same 

TMA sample and dividing the total by the number of tiles. In sum-

mary, each predicted variable was estimated based on 12 algorithms 

(feature matrices extracted with two CNN models and three alpha and 

two lambda elastic net regularization parameter values).

Follow-up for survival analyses was restricted to 2 years to identify 

morphologic patterns associated with aggressive disease and to ensure 

concordance between AUROC model evaluation and the predicted vari-

able. Patients with shorter follow-up time or receiving allogenic hemat-

opoietic stem cell transplant before the occurrence of an event were 

censored. Azacytidine was administered 75 mg/m2 per day, with a median 

interval of 29 days (27–33 days, 25th–75th percentiles) and a median of 

six treatment cycles (3–11 cycles, 25%–75%). Positive treatment response 

was defined as continuation of treatment over 6 months or complete 

remission prior to 6 months. Disease progression was determined to 

represent treatment failure. Patients treated for less than 6 months due 

to short follow-up or therapy-related side effects were censored.

As longitudinal samples were not characterized with lower variance 

in morphologic features compared with samples from other patients, 

we included samples from multiple time points of the same patient for 

model training (Supplementary Fig. S8A and S8B). Prediction models 

were trained with MDS BM images only except for differential diag-

nosis, where both MDS and MDS/MPN samples were used. Separate 

prediction models for IPSS-R score and age at diagnosis were devel-

oped with linear regression and using only diagnostic MDS samples. 

Age was transformed into categories of <50.0, 50.0–59.9, 60.0–69.9, 

70.0–79.9, and >80.0 years age categories, which ameliorated the accu-

racy and interpretation of results. Gender, mutations, cytogenetic 

aberrations, and MDS etiology were predicted with logistic regression 

using both diagnostic and follow-up samples. Prognosis was measured 

by predicting OS and AML progression using both diagnostic and 

follow-up samples. Only mutations and chromosomal aberrancies 

present in over 9% of the samples were selected. Disease etiology was 

assigned as either “de novo” or “secondary MDS.” Azacytidine response 

was predicted with logistic regression using samples taken 0 to 365 

days before treatment start with an AUROC accuracy of 0.80 at tile 

level and 0.98 at TMA sample level. Due to the low number of available 

samples prior to azacytidine initiation, we did not evaluate treatment 

response in a separate test cohort. Samples taken during hypomethyl-

ating agent (HMA) treatment did not differ by their morphologic pro-

file from other samples, suggesting that HMA does not alter the BM 

morphology in a distinct fashion (Supplementary Fig. S8C and S8D).

Pixel Classification. Each RGB TMA spot image was analyzed 

with the Trainable Weka Segmentation module of the Fiji software 

using default parameters (29). With the assistance of hematopatho-

logic expertise, we manually delineated areas representing NHCs, 

RBCs, stroma, or lipid droplet/background from 10 images and 

trained a tissue pixel classifier. NHCs represented nucleated cells 

consisting primarily of leukocytes and occasional erythroblasts and 

megakaryocytes. Stroma included fibrotic stroma and bone trabecu-

lae, as both are associated with MDS pathology (30, 31). We manu-

ally annotated additional 10 test images to evaluate the accuracy 

of the classifier. Each pixel was classified with global 97% accuracy 

composed of NHC (99% accuracy), RBC (84% accuracy), stroma (80% 

accuracy), or lipid droplet/background (100% accuracy; Supplemen-

tary Fig. S9A and S9B). The relative area of individual classes was cal-

culated as their proportion to a binary tissue mask. The tissue mask 

was created by converting H&E images into binary format, where 

white areas represent tissue and black areas adipose tissue and empty 

background. Then, we performed mask dilatation, empty hole fill, 

and mask erosion steps to differ adipose tissue from the background 

(Supplementary Fig. S9C). Lipid droplets were defined as filled image 

holes from the initial tissue mask.

NHC Analysis. Each RGB TMA spot image was analyzed with the 

open-source software QuPath (v0.2.0; ref. 32). NHCs were segmented with 

the watershed cell detection and background radius 30 px, median filter 

radius 0 px, sigma 6 px, minimum area 10 px2, maximum area 10.000 px2, 

threshold 0.1, maximum background intensity 2, and cell expansion 5 px 

(Supplementary Fig. S10). Nucleus H&E staining intensity was defined 

as their optical density after color deconvolution. Nucleus size was cal-

culated on the basis of area and eccentricity based on the deviance from 

a perfect circle. These metrics were extracted for individual NHCs and 

averaged at the TMA spot level (Supplementary Table S2).

Statistical Analysis

Continuous variables were compared with Wilcoxon rank-sum test 

(unpaired, two-tailed) and correlated with Spearman rank correlation 

coefficient. Categorical variables were compared with χ2 test. P values 

were adjusted with Benjamini–Hochberg correction when necessary. 

The log-rank test for Kaplan–Meier analysis was used for survival 

analysis. Model fitness was assessed by calculating statistical signifi-

cance of the AUROC. AUROC values for predicting AML progression, 

OS, and IPSS-R were further compared with DeLong test.

For unsupervised analysis, we selected a UMAP method (33).  

Pheno Graph is a graph-based community detection method designed 

for high-resolution single-cell data analogous to visual features (34). 

Single tiles were clustered with PhenoGraph with default settings to 

attain higher granularity to distinguish morphologic features. K-means 

clustering was selected for sample grouping to simplify interpretation of 

TMA spot grouping. The k parameter was harmonized using the consen-

sus of 30 indices based on Euclidean distance and Ward agglomeration 

metrics (35). Feature extraction, regression models, and statistical analy-

sis were performed with R 3.5.1 (Supplementary Table S3).

Code and Data Availability

Codes used for data analysis are available at https://github.com/

obruck/MDS_HE_IA/. Image data and activation maps are available 

at http://hruh-20.it.helsinki.fi/mds_visualization.
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