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Machine learning of correlated 
dihedral potentials for atomistic 
molecular force fields
Pascal Friederich1, Manuel Konrad1, Timo Strunk2 & Wolfgang Wenzel1

Computer simulation increasingly complements experimental efforts to describe nanoscale structure 
formation. Molecular mechanics simulations and related computational methods fundamentally 

rely on the accuracy of classical atomistic force fields for the evaluation of inter- and intramolecular 
energies. One indispensable component of such force fields, in particular for large organic molecules, 
is the accuracy of molecule-specific dihedral potentials which are the key determinants of molecular 
flexibility. We show in this work that non-local correlations of dihedral potentials play a decisive role 
in the description of the total molecular energy—an effect which is neglected in most state-of-the-
art dihedral force fields. We furthermore present an efficient machine learning approach to compute 
intramolecular conformational energies. We demonstrate with the example of α-NPD, a molecule 
frequently used in organic electronics, that this approach outperforms traditional force fields by 
decreasing the mean absolute deviations by one order of magnitude to values smaller than 0.37 kcal/
mol (16.0 meV) per dihedral angle.

Molecular dynamics (MD) methods are widely used for the simulation of inorganic and organic materials at the 
atomistic level, for example in the �eld of computational biology and drug design but also in the �eld of organic 
electronics for organic light emitting diodes, organic solar cells and other technologically relevant applications. 
Computational material characterization and development of organic semiconductors is based in large parts on 
force �eld based methods to simulate the structure of molecular materials during thin �lm formation. Such atom-
istic simulations help to gain insight into experimentally accessible microscopic processes and mechanisms. Force 
�eld based approaches can furthermore be combined with other simulation techniques such as density functional 
theory or continuum simulations to scale bridging simulation work�ows1–3. Such multiscale modeling techniques 
can be used to generate a fully operational digital twin of real devices. �is digital pendant can be analyzed and 
optimized to reduce costly experiments and to �nally gain better insight into device functionality and the inter-
play of processes on di�erent length and time scales4–6. High accuracy in each of the multiscale simulation steps 
is required to generate reliable and predicitve models.

MD simulations use classical force �elds to describe the interaction between atoms and molecules. Essentially 
all state-of-the-art force �elds, such as the OPLS, AMBER and GROMOS force �elds consist of terms which 
describe bonded and non-bonded interactions of molecular materials7,8. �e bonded interactions model intra-
molecular potentials and typically consist of bond length contributions, angle contributions and dihedral angle 
contributions. �e latter are parameterized using linear combinations of periodic functions of individual dihedral 
angles φ:
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Vi and φi are dihedral speci�c force �eld parameters obtained from ab initio calculations or empirical studies. 
�ese models work with su�cient accuracy for speci�c classes of materials, while other materials, especially 
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organic molecules consisting of several �exibly bound aromatic ligands and side groups, require molecule-speci�c 
dihedral potentials9. �ese are parameterized using scans of the intramolecular energy of a molecule during inde-
pendent rotation of each dihedral angle. �e potential energies are then either used to parameterize models as 
shown in Equation (1) or are directly tabulated and used during the force �eld evaluation. Recognizing the prob-
lem of missing correlation terms there have been e�orts to de�ne and parameterize correlated force �elds, such as 
the class 2 force �eld10 COMPASS11, which includes correlation terms between bond lengths and dihedral angles. 
�ese correlations terms drastically increase the number of free force �eld parameters making generic as well as 
molecule-speci�c parameterization costly and di�cult.

We show here that for many molecules an accurate description of the total energy requires correlated force 
�elds which concurrently consider several dihedral angles. Consequently, the standard approach to model the 
energy as a sum of terms depending only on one dihedral angle leads to signi�cant deviations between the energy 
as determined by electronic structure methods and the force �eld energy. �ese deviations result in part from 
branched molecular structures and delocalized electronic states (see Fig. 1) which result in correlations of quan-
tum mechanical origin between dihedral angles that are di�cult to capture in state-of-the-art force �elds. �ese 
e�ects are particularly important for large organic molecules with bulky ligands, such as those used in applica-
tions of organic electronics.

We furthermore show in this paper that the abovementioned problem of missing correlations in standard 
force �elds can be solved using machine learning models which accurately predict internal molecular energies of 
random dihedral conformations of molecules. As a proof of principle we discuss how this approach can directly 
be used in our Metropolis Monte Carlo based simulated annealing protocol12,13 for the generation of large amor-
phous morphologies, which only requires energy evaluations. We �nally discuss straightforward extensions of 
the arti�cial neural network approach for gradient prediction which is necessary for the application in widely 
used MD models.

Uncorrelated dihedral force fields
To investigate the accuracy of di�erent dihedral force �elds, we parameterize molecule-speci�c force �elds for 
a set of molecules (see Fig. 2) using semi-empirical PM7 calculations as implemented in MOPAC 201614,15. �e 
selected molecules comprise of three or more rigid subunits connected by dihedral angles in a linear or branched 
way. During parameterization, we keep bond lengths and angles within the molecular subunits constant to avoid 
mixing of dihedral potentials with contributions coming from variation of bond lengths and angles.

After parameterization of the molecule-specific uncorrelated force field, we generate random dihedral 
con�gurations and compare the force �eld energies of these con�gurations to their respective PM7 energies. 
Figure 3 shows the comparison of intramolecular force �eld energies and PM7 energies of benzene-1,4-diol 
(BD12), benzene-1,4-diol (BD13), benzene-1,4-diol (BD14), 1,4-Diphenylbenzol (DPB), triphenylamine (TPA), 
N-diphenyl 1-naphthylamine (DPNA) and N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)−4,4′-diamine 
(α-NPD). We �nd good agreement between the uncorrelated force �eld energy and the PM7 energy for the lin-
ear BD compounds and the linear TP, while for the branched amine based compounds TPA, DPNA and α-NPD 
the correlation is weak (pearson product moment correlation of −0.069, 0.492 and 0.181, respectively). For the 
benzene-diol compounds the force �eld accuracy increases with increasing distance of the hydroxyl groups. For 
branched aromatic molecules, such as TPA/DPNA and more complex derivatives such as α-NPD the force �eld 
approach fails to predict the internal molecular energy, indicating that the total energy of the molecule cannot 
be written as additive terms of the dihedral energies. �is can be attributed in part to the fact that for branched 
molecules with a particular dihedral conformation the electronic energy is a complex function of the internal 
degrees of freedom.

�ese data suggest that consideration of correlations between dihedral angles may improve the deviations of 
the uncorrelated force �eld approach and the PM7 energies. �e method which is presently used for the parame-
terization of uncorrelated dihedral potentials independently samples the rotation of each of the nd dihedral angles 
using ns sampling points. It thus requires ns·nd energy evaluations for the parameterization. A fully correlated 
model which systematically samples the entire conformational space requires n( )n

s
d energy evaluations, which is 

computationally infeasible for realistic molecules with 5–10 dihedral angles and sampling steps of e.g. 5° (ns = 72).

Figure 1. Lowest unoccupied molecular orbital (LUMO) of α-NPD at di�erent con�gurations of the central 
dihedral angle. �e localization of the orbital signi�cantly changes at approximately orthogonal ring planes.
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One possible solution to this problem are the use of machine learning algorithms with the ability to learn 
the optimal single angle dihedral potentials as well as their correlations. In the following sections we investigate 
an arti�cial neural network which is trained using random dihedral con�gurations of a molecule to predict the 
molecular energy of all possible con�gurations.

Training of the artificial neural network
For the prediction of correlated dihedral energies, we use arti�cial neural networks with one input layer, two or 
three hidden layers and one output layer. All hidden layers consist of logistic neurons with an activation function
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is the input of the activation function, evaluated using the output of the previous layer (i − 1) and the weight 
matrices ωi and the biases bi, which are optimized during the training.

�e input vector includes the values αi of the nd dihedral angles in a given molecular conformation as well as 
sine and cosine values of these angles (sin(kαi), cos(kαi)) with periodicities k in 0.5, 1.0, 2.0, …, 10.0. Training was 
performed using the stochastic gradient based Adam method16 and a mini batch size of 200. 72% of the samples 
were used for the training of the network. We used L2 regularization and early stopping with a validation set size 
of 13% of the input samples to overcome problems of over�tting. �e remaining 15% of the input samples were 
used to test the training e�ciency and to validate the force �eld. We furthermore used di�erent numbers and sizes 
of hidden layers and used model averaging17 to improve the accuracy of the results. In particular, we averaged 
over predictions by the �ve arti�cial neural networks shown in Table 1. For training of the arti�cial neural net-
work, we use the implementation in the python scikit-learn package18.

Correlated dihedral force fields
�e input conformations for the training of the arti�cial neural network were generated using random sets of 
dihedral angles. Each conformation was checked for clashes which were de�ned as non-bonded atom distances 
below 2.1 Å. Conformations with clashes were disregarded and replaced by valid random conformations. �e 
total energies of conformations were calculated using the semi-empirical PM7 method and shi�ed by the energy 
of the optimized dihedral conformation with the globally lowest energy.

We tested the method on the seven molecules shown in Fig. 2 including, as the most complex example, 
α-NPD, a widely used hole transport material for applications in organic light emitting diodes4,19,20. For the 
α-NPD molecule, we stochastically generated 150,000 dihedral con�gurations and calculated the energies of 
these con�gurations. We then trained and evaluated the arti�cial neural network as described in the last section 
using these 150,000 input samples. 108,000 samples (72%) were used for training, 19500 samples (13%) were used 

Figure 2. Molecules used as test cases for the dihedral energy calculation: (a) BD12, (b) BD13, (c) BD14, (d) 
DPB, (e) TPA, (f) DPNA and (g) α-NPD.
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for validation (early stopping) and 22500 samples (15%) were used as test cases. We furthermore calculated the 
conformational energies using an uncorrelated force �eld which we parameterized using independent energy 
scans of all dihedral angles (see also Fig. 2). For the BD materials, we used 3000 random dihedral con�gurations 
while for DPB, TPA and DPNA we used 10000 random conformers. �e percentages used for training, validation 
and testing were the same for all materials.

Figure 3. Correlation between the internal energy of random con�gurations of the molecules shown in Fig. 2 
evaluated using a non-correlated force �eld approach and using the semi-empirical PM7 method. Panels a–g 
show the results of a molecule-speci�c dihedrals-only force �eld, while panels h-i show the energies predicted 
by the standardized GROMOS 54A7 force �eld21 parameterized using the Automatic Topology Builder22.

Number of hidden units

Hidden layer 1 Hidden layer 2 Hidden layer 3

Network 1 30 10 —

Network 2 100 10 —

Network 3 110 7 —

Network 4 60 30 10

Network 5 50 20 8

Table 1. Parameters of the �ve arti�cial neural networks used for the prediction of intramolecular energies of 
molecules with random dihedral con�gurations.
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�e results in Fig. 3 show that the dihedral-angle-only force �elds using uncorrelated terms struggle to accu-
rately reproduce the PM7 energies. Also the standard GROMOS 54A7 force �eld21–29 which, apart from dihedral 
potentials also contains explicit Lennard-Jones and internal electrostatic terms which in principle lead to correla-
tions between the dihedral angles, fails to predict the PM7 energies of DPB and TPA (see Fig. 3h,i). �e arti�cial 
neural network approach (Fig. 4) on the other hand accurately predicts the PM7 energies of 22500 random dihe-
dral con�gurations which were not used in the training of the net. In case of α-NPD, the accuracy (mean absolute 
deviation) of the arti�cial neural network is 0.37 kcal/mol (16.0 meV) per dihedral angle, while the uncorrelated 
model (Fig. 2) shows a mean deviation of 4.63 kcal/mol (200.7 meV) per dihedral angle. For conformations with 
energies smaller than 11.5 kcal/mol (0.5 eV) the accuracy of the arti�cial neural network approach increases and 
the mean deviation reduces to 0.29 kcal/mol (12.6 meV) per dihedral angle. �e Pearson product-moment cor-
relation coe�cients for TPA, DPNA and α-NPD are 0.944, 0.984 and 0.995, respectively. �e deviation of the 
uncorrelated model mainly arises from overestimation of the conformational energies, which is re�ected in a 
shi� of the peak position in the energy histogram in Fig. 5. �e distribution of energies predicted by the arti�cial 
neural network nicely matches the energy distribution of the target energies. Once the arti�cial neural network is 
trained, the energy evaluation is a simple series of matrix-vector multiplications which can easily be parallelized 
for e�cient force �eld evaluation. �e application in a force �eld based Monte Carlo approach as well as further 
extensions of the model will be discussed in the next section. An analysis of the arti�cial neural network coe�-
cients is shown in Figure S2.

Low energy classification
E�cient application of the arti�cial neural network approach in force �eld based simulations requires a fast com-
putation of the internal molecular energy and thus a fast evaluation of the arti�cial neural network. �e dihedral 
force �eld has to be evaluated in each simulation step which requires an e�cient implementation of the forward 
pass which is basically a series of matrix vector multiplications. In Monte Carlo based approaches as described in 
Neumann et al.12,13, and Friederich et al.30,31, each Monte Carlo steps consists of a random change in the system 
followed by the evaluation of the Metropolis Monte Carlo criterion which compares the system before and a�er 
each random move. �e probability p of accepting moves which increase the energy by ∆E drops exponentially 
as p ∝ exp(−∆E/(kBT)). During the simulation of a molecular system at a given temperature T, intermolecular 
alignment reduces the energy of the total system while the internal energy of single molecules increases as a 
trade-o�. It is therefore su�cient to accurately predict conformational energies which are equal to typical van der 
Waals bonds between molecules. Conformational energies of more than 23–46 kcal/mol (1–2 eV) are unlikely to 
occur at typical simulation temperatures between 300 K and 400 K.

Figure 4. Correlation between the internal energy of random con�gurations of the molecules shown in Fig. 2 
evaluated using the arti�cial neural network and using the semi-empirical PM7 method.
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To avoid the arti�cial neural network based energy calculation for high energy conformations occurring dur-
ing the random moves of a Monte Carlo algorithm, a fast classi�er to distinguish between low and high energy 
conformations is needed. We therefore implemented a fast classi�cation network to separate low from high 
energy conformations. �e much larger arti�cial neural network for energy prediction will then only be used in 
case the faster classi�cation network recognizes a low energy conformation. �e classi�cation network was trained 
using threshold energy of 46 kcal/mol (2 eV) on the α-NPD input data used in the last section. We again use �ve 
di�erent arti�cial neural network parameters (see Table 2) and average the results of all 5 networks, leading to 

Figure 5. Histogram of conformational energies of α-NPD calculated using PM7, the arti�cial neural network 
and an uncorrelated conventional force �eld model.

Number of hidden units

Hidden layer 1 Hidden layer 2

Network 1 30 —

Network 2 40 —

Network 3 50 —

Network 4 5 5

Network 5 10 3

Table 2. Parameters of the �ve arti�cial neural networks used for the classi�cation of intramolecular energies of 
molecules with random dihedral con�gurations.

Figure 6. Prediction of the classi�cation network with the task to identify conformations with energies smaller 
than 46 kcal/mol (2 eV). �e solid line shows a moving average of the predictions shown as black dots. �e 
confusion matrix is shown in Table 3.
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classi�cation probabilities 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. �e results are shown in in Fig. 6. �e averaged solid line 
shows that most of the dihedral con�gurations with energies smaller than 46 kcal/mol (2.0 eV) are recognized as 
low energy conformations. �e confusion matrix which measures the number of true positive (TP), false positive 
(FP), false negative (FN) and true negative (TN) samples is given in Table 3, with a sensitivity of the prediction of 
TP/P = 96.5%, a speci�city of TN/N = 88.3%, an accuracy of (TP + TN)/(TP + TN + FP + FN) = 94.2% and a F1 
score of 2TP/(2TP + FP + FN) = 96.0%. �e network furthermore detects conformations with energies smaller 
than 23 kcal/mol (1 eV) with a probability of 100%. �e strongly reduced size of the arti�cial neural network used 
for classi�cation compared to the neural network for energy prediction (compare Tables 2 and 3) makes energy 
classi�cation much faster compared to neural network based energy prediction. By avoiding many costly but 
unnecessary evaluations of high energy conformations, the combination of both neural networks will speed up 
the computation time in a Monte Carlo based protocol for morphology simulation.

Conclusions
In this work, we demonstrated that an arti�cial neural network can serve for energy of the intramolecular degrees 
of freedom of complex organic molecules. In principle, this approach can be extended to gradients, by either 
taking the derivative of the network energy function or training additional networks. We have not pursued this 
here because energy gradients are not used in the Monte Carlo method which we use to generate the morpholo-
gies of the components in organic devices2,6. When the model is trained to predict a vector of torsion gradients, 
Cartesian gradients for each atom are easily obtained by transformation of the internal gradients which only 
requires the moments of inertia of the rigid molecular subunits.

�e method presented here can furthermore be used to parameterize so� degrees of freedom such as dihedral 
rotations in coarse grained force �elds. Here, comparably rigid molecular subgroups are represented by single 
pseudo-atoms connected by �exible or rotatable bonds. Dihedral rotations are in many cases the only intramo-
lecular degrees of freedom taken into account in coarse grained representations of molecules, making an accurate 
parameterization of these degrees of freedom even more relevant. �e missing substructure of the pseudo-atoms 
of coarse grained models and thus missing explicit intramolecular Lennard Jones interaction between atoms pose 
additional challenges to coarse grained force �elds which are at least partially solved in the approach presented 
in this study.

We have shown in this investigation that a multi-layer arti�cial neural network can e�ciently and accurately 
capture the correlations of dihedral angles in complex organic molecules and generate an accurate potential for 
all dihedral angles, while conventional uncorrelated force �elds struggle to give proper estimates of the confor-
mational energy. �e arti�cial neural network is trained on random conformations and reproduces the con-
formational energies with high accuracy. �is method can directly be applied in force �eld based Monte Carlo 
simulations of small molecules, as used for the simulation of e.g. organic electronic devices such as organic light 
emitting diodes12. It can furthermore be extended to calculate energy gradients and forces for atomistic molecular 
mechanics simulations.

For future applications, it may be possible to extend this approach to train intramolecular force �elds for larger 
molecular structures such as polymers and proteins for which highly accurate force �elds are required for reliable 
structure prediction. To achieve this generalization of the method, the moderately local nature of the correlated 
torsion angles can be exploited.

Availability of materials and data. �e force �eld parameterization and the parameters of the arti�cial 
neural networks generated during the current study are available from the corresponding author on reasonable 
request.
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