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Abstract

In this paper we apply machine learning methods for predicting protein interactions in fungal

secretion pathways. We assume an inter-species transfer setting, where training data is

obtained from a single species and the objective is to predict protein interactions in other,

related species. In our methodology, we combine several state of the art machine learning

approaches, namely, multiple kernel learning (MKL), pairwise kernels and kernelized struc-

tured output prediction in the supervised graph inference framework. For MKL, we apply

recently proposed centered kernel alignment and p-norm path following approaches to inte-

grate several feature sets describing the proteins, demonstrating improved performance.

For graph inference, we apply input-output kernel regression (IOKR) in supervised and

semi-supervised modes as well as output kernel trees (OK3). In our experiments simulating

increasing genetic distance, Input-Output Kernel Regression proved to be the most robust

prediction approach. We also show that the MKL approaches improve the predictions com-

pared to uniform combination of the kernels. We evaluate the methods on the task of pre-

dicting protein-protein-interactions in the secretion pathways in fungi, S.cerevisiae, baker’s

yeast, being the source, T. reesei being the target of the inter-species transfer learning. We

identify completely novel candidate secretion proteins conserved in filamentous fungi.

These proteins could contribute to their unique secretion capabilities.

Introduction

Protein secretion is a fundamental cellular process that is required for transporting proteins

into cellular compartments, the cell surface and the external space of the cell as well as for cova-

lent modification i.e. disulphide bond formation and glycosylation of proteins. As can be

expected from its central role, the protein secretion machinery is conserved in eukaryotes. Fun-

damental research to unravel its functioning has been carried out in the fungus Saccharomyces

cerevisiae [1]. However, the baker’s yeast S. cerevisiae of the subphylum Saccharomycotina

does not naturally secrete large amounts of proteins unlike the filamentous fungi of the sub-

phylum Pezizomycotina. For example the Pezizomycotina Trichoderma reesei (Hypocrea jecor-

ina) is able to secrete its native cellulase proteins with yields of over 100 g/l in industrial
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cultivations [2]. With their protein secretion capabilities Pezizomycotina are central to indus-

trial biotechnology. However, compared to S. cerevisiae their protein secretion machinery has

not been studied in detail.

Protein-protein interaction data is very useful in defining cellular functions of proteins. Pro-

tein-protein interaction (PPI) is a term that covers various possible interactions between pairs

of proteins from stable physical interactions to functional associations. While in many cases

the molecular function of a new protein can be determined by sequence similarity searches, the

molecular function tells little about the cellular function the protein might be carrying out in

given conditions. However, the actual high throughput experimental measurement of protein-

protein interactions has been limited to the most studied organism such as E. coli, S. cerevisiae

andHomo sapiens.

The availability of verified annotations on protein function and interactions especially out-

side model organisms is currently a major bottleneck. In May 2015 the Genomes OnLine Data-

base (https://gold.jgi-psf.org/) contained entries for almost 60 000 organisms. The number of

sequenced species is growing exponentially and most importantly improvements in sequencing

techniques allow the assembly of genome sequences of uncultivable micro-organisms from

metagenomics samples [3]. In parallel the version 10.0 of protein-protein interaction database

STRING [4] contained 2031 organisms. STRING combines a number of data sources, i.e. geno-

mic neighbourhood, gene fusion, species co-occurrence, gene co-expression, experimental pro-

tein-protein interaction data and text mining results to predict protein-protein interactions.

Furthermore, all taxonomic groups of organisms typically contain 10–20 percentage of lineage

restricted genes i.e. genes that are not found in other taxonomic lineages [5]. Outside model

organisms the function of these genes is typically unknown. With sequencing of uncultivable

micro-organisms this percentage is likely to increase.

To bridge this gap computational PPI prediction has been intensely studied in the last

decade. Early approaches focused on inferring functional PPIs from genomic context such as

gene neighbors, gene clusters, Rosetta stone, and phylogenetic profiles as well as protein

sequence co-evolution as reviewed in [6]. Lately, the research field has developed methods for

predicting PPI networks of physical interactions [7, 8], pathway memberships [7] and more

general biological networks such as gene regulatory networks and metabolic networks [8, 9].

Commonly experimental data is used as input features such as microarray/co-expression [8, 9],

sometimes also more high level features such as domain knowledge, phylogenetic profiles and

interologs [7]. In [8] a good review on approaches for de novo as well as for supervised biologi-

cal network inference is given.

Transfer of protein interactions based on sequence homology is a widely used technique,

but requires strict amino acid sequence identity cut-offs, for example above 80 percent, to be

reliable [10, 11]. This limits its use to lineages where not much sequence diversification has

occurred. For example homologous genes between species belonging to the fungal genus

Aspergilli, of the subphylum Pezizomycotina, have only 68 percent average amino acid identity

[12]. Furthermore, recently duplicated and hence sequence wise similar genes often change

their function i.e. neofunctionalise. When comparing duplicated genes between species it has

been found that orthologous gene pairs are more likely to retain functions than paralogous (for

review [13]). However, using the orthology-paralogy relationships in function transfer would

require that they would be first solved. Although numerous methods exist for this, on genome

scale this is still not a trivial task. For example, the commonly used best-bi-directional hit tech-

nique can easily be misled in multigene families.

To overcome the sequence similarity requirement of annotation transfer, machine learning

methods have been developed for PPI prediction over the last decade. In particular, the super-

vised network inference paradigm [14] takes the PPI prediction as a binary classification
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problem, to predict, whether a pair of proteins interact or not. Thus, any general model for

classification learning is applicable in this setting, including ensemble learners [15–17], Naive

Bayes, and support vector machines (SVM). SVMmodels rely on so called pairwise kernels,

where the similarities of protein pairs are compared to each other. Another class of PPI learn-

ing methods aim to predict interaction patterns by learning similarities between proteins in the

protein interaction network. Output kernel trees [18] and input-output kernel regression [19]

are recent examples of this kind of methods.

The above approaches have not been explicitly applied to cross-species transfer learning,

perhaps due to the limited amount of verified PPIs in a majority of species. Beyond basic

sequence comparisons, more advanced computational methods have been applied in the cross-

species setting only sparingly. In [20], a cross-species cluster co-conservation method is pro-

posed, that exploits phylogenetic profiles for predicting protein interaction networks. In [21], a

link propagation approach was proposed relying on gene expression and sequence similarity,

applied to cross-species metabolic network reconstruction.

There is a dire need for novel function and interaction prediction methods that would be

locally available, able to cross large sequence similarity distances and not require the solving of

orthology-paralogy relationships to cope with the rising amount of genomes. In this paper, we

introduce a framework of machine learning methods that can be used for predicting physical

or functional protein-protein interaction or more specific biological networks i.e. metabolic

pathways depending on what type of training labels are used. Our method uses as features vari-

ous sequence similarity and protein family analysis derived from the CoReCo pipeline [22].

Although our method relies partly on sequence similarity, it is, through a combination of meth-

ods, still able to predict for proteins that do not belong into any known protein family. Hence

our method can give clues for PPIs of previously unknown proteins. Our method introduces

recently proposed multiple kernel learning (MKL) methods [23] to supervised network infer-

ence, thus boosting the performance of the latter method family and making full use of the

wide array of sequence-derived features.

We focus in predicting the secretion machinery in industrially relevant fungi, in particular,

T.reesei. Our focus is in predicting functional protein-protein interactions (PPI) in the secre-

tory pathway. As there are no verified protein interaction data available for these organisms,

we assume the cross-species transfer learning setting, where the training data comes from S.

cerevisiae, and prediction targets is T.reesei.

Materials and Methods

Data and preprocessing

Sequence data. In this paper the models are based on features that can be computational

derived from protein sequence data. The sequence data for the two studied organisms were

downloaded from SGD database (http://www.yeastgenome.org) for S. cerevisiae and from JGI

Mycocosm database (http://genome.jgi.doe.gov/Trire2/Trire2.home.html) for T. reesei.

Protein-protein interaction data. The machine learning methods require a set of known

PPIs to be used as ground truth for the model output, used for training and testing the model.

We obtained our PPI data from the recently published genome-scale model of the yeast secre-

tory machinery [24] that gathers knowledge of 50 years of research on secretion in S.cerevisiae.

The authors identified 162 proteins to be involved in secretion that are assigned to 16 subsys-

tems such as translocation, ER glycosylation, COP, Golgi processing etc. These protein com-

plexes give 2200 undirected interactions between the 162 secretion proteins which are used as

training labels.
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Feature extraction. For our models we use several types of features to characterize the

similarity of proteins as well as the similarity of protein pairs. For all protein sequences of the 2

organisms we computed the following features using the CoReCo pipeline [22]: sequence align-

ment with BLAST against the UniProt database as well as Global Trace Graph (GTG) [25],

protein domains and functional sites gathered by InterProScan [26] from its member data-

bases: Pfam [27], Panther [28], Gene3D [29], PRINTS [30], Prosite [31], PIRSF [32], SMART

[33], and SUPERFAMILY [34] (See S1 Table for details on these data sources).

Artificial sequences. We used artificial data to test if the different biological network

inference algorithm that have been developed for intra-species prediction also work for inter-

species prediction with low sequence similarity. They are well below commonly used amino

acid sequence identity cut-off values. For obtaining artificial sequences with varying levels of

sequence similarity we altered the sequences of the 162 secretion proteins of S. cerevisiae based

on Blosum matrices [35]. These matrices represent the substitution probabilities from an

amino acid to an other amino acid in natural sequence data sets. Hence, they allow approxima-

tion of natural sequence evolution. We created four different data sets where we deleted and

mutated 70%, 60%, 38% and 20% of the amino acids according to the Blosum30, Blosum40,

Blosum62 and Blosum80 respectively. The Blosum matrices were downloaded from NCBI

Blast site (ftp://ftp.ncbi.nih.gov/blast/matrices/). Each different Blosum matrix has been made

by combining proteins that are no more similar than a given percentage (30%, 40%, 62% and

80%) to one single sequence and then comparing only those sequences [35]. In Fig 1, the per-

centage of amino acid sequence identity between the artificially mutated protein sequences of

S. cerevisiae and T. reesei based on the Smith-Waterman alignment is shown. Based on visual

comparison, the generated Blosum30 data set has a similar level of sequence similarity to S. cer-

evisiae as T. reesei. In the experiments, the artificially perturbed sequences were coupled with

the labels of the corresponding labels of the original sequences.

Transcriptomic data analysis for biological network validation. The transcriptomic data

for the validation of T. reesei PPI network was composed by eight publicly available data sets

taken from Gene expression omnibus [36] plus eight in-house data sets. The public data sets

contained 76 samples all together and the in-house data sets 499 samples. Once combined the

Fig 1. Frequency distribution of percentage of amino acid sequence identity between natural S.
cerevisiae sequences and (1) sets of artificial sequences created from from S. cerevisiaewith
different Blosummatrices, (2) natural T. reesei sequences.

doi:10.1371/journal.pone.0159302.g001
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final data set contained 575 samples and 9078 genes. Each data set was normalized separately

using quantile normalization [37] and normalized again after they were combined using COM-

BAT normalization [38].

Problem formalization

Supervised graph inference has been introduced a decade ago in [14] and has been widely used

for biological network reconstruction subsequently. Given a set of nodes V = v1, .. ,vm a biologi-

cal network can be defined as an undirected graph G = (V, E) where E� V × V are the edges

between them vertices. The graph can be represented by a symmetric adjacency matrix Y =

(yij) of sizem ×m where yij = yji = 1 if the nodes vi and vj are connected and yij = yji = 0 other-

wise. We will also use the shorthand yðviÞ ¼ ðyijÞ
m

j¼1
to denote the connectivity pattern of pro-

tein vi in the network. In addition, we assume that each node has assigned features x(vi) 2 χ,

for some input space χ.

The learning task is then defined as follows: given partial knowledge of the graph G = (V, E)

and the feature representation of the nodes, determine a function f: V × V! {0, 1} that best

approximates the unknown edges of the graph.

Note that the main difficulty for solving this problem is that the features are assigned to

individual nodes and the labels to pairs of nodes [9]. To transform the task into a standard clas-

sification problem, we use a global approach that tries to find a feature representation for pairs

of nodes. Another issue inherent to biological network inference is the substantial class imbal-

ance since the number of positive interactions is small compared to the number of all possible

interactions. Thus special care is needed for setting up the evaluation experiments, see e.g. [39].

First of all, the evaluation metrics should be chosen such that the class imbalance does not lead

to incorrect conclusions (e.g AUPR metric explained below). Secondly, methods that predict

for each protein an interaction profile (see OK3 and IOKR below), represented as a multilabel,

a binary vector containing interaction labels for all other proteins, are able to mitigate the class

imbalance, since in general the set of multilabels are diverse with no very frequent multilabel.

In [9] it is recommended to perform cross validation on the nodes as cross validation on pairs

tends to give too optimistic results. A schematic representation of the duality between the bio-

logical network and the adjacency matrix and the cross validation on nodes is given in Fig 2.

Finally, for performing inter-species biological network inference we use the protein

sequences and their interactions from one species as training set and the protein sequences

from the second species as testing set. Note that in this setting the training-testing interactions

are not of interest and that the feature representation needs to be the same for training and test-

ing proteins.

Fig 2. Schematic representation of the duality between (A) the PPI network and (B) the adjacency
matrix for the proteins in the training set (blue) and testing set (yellow) and their interactions: training
interactions (black), training-testing interactions (gray) and testing interactions (white).

doi:10.1371/journal.pone.0159302.g002
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Inference Algorithms

In this section we present three different approaches for supervised network inference that we

have applied to inter-species PPI network prediction. Additionally, we present different

approaches for learning kernels that account for the relevance of a data source for the learning

task.

Output kernel trees (OK3). have been proposed by [18] and are based on the kernel

embedding of the graph where the kernel function is defined as kY: V × V!< with kY(v, v
0) =

hψ(v), ψ(v0)i. The kernel kY(v, v
0) is defined such that adjacent vertices have higher values of kY

than non-adjacent ones. To achieve this, the diffusion kernel is commonly used KY = exp(−βL)

where L is the Laplacian matrix of the graph L = D − Y with D being the degree matrix and Y

the adjacency matrix. Additionally, β> 0 is a user defined parameter that controls the diffusion

degree.

The OK3 algorithm relies on the top-down induction algorithm widely used to learning

decision trees (e.g. CART [40]). The methods start with a tree represented by a single leaf and

then recursively partition (or split) the input data S until the data is homogeneous enough (in

our case: the proteins in S have similar connectivity patterns). The data arriving to leaf L of the

decision tree is split into two parts Sl and Sr, using a binary test Tt(x) 2 {0, 1} based on a value

of a single input feature of x (e.g. does protein have a given motif or not). The two sets Sl = {x 2

S|T(x) = 0} and Sr = {x 2 S|T(x) = 1} will be recursively used to grow subtrees which then will

be attached as the children of L.

For learning the decision trees on the input vectors xi = x(vi), i = 1..m the following score is

maximized to select a test T to be inserted in the decision tree leaf given the set of inputs S

routed to the current decision tree leaf:

ScoreðT; SÞ ¼ varfcðvÞ j Sg �
Nl

N
varfcðvÞ j Slg �

Nr

N
varfcðvÞ j Srg ð1Þ

where ψ(v) is the output feature vector, N, Nl and Nr are the sizes of the training sample S and

its left and right split, Sl and Sr, respectively. The variance of the output feature vectors in the

set S can be easily computed using the kernel trick:

varfcðvÞ j Sg ¼
1

N

X

N

i¼1

kYðvi; viÞ �
1

N2

X

N

i;j¼1

kYðvi; vjÞ

One main advantage of the OK3 approach is that the decision tree on the input features

results in a ranking of relevant features for the learning task.

Then for prediction each leaf L is labeled with a prediction ĉL ¼
1

Nl

PNL

i¼1
cðviÞ analog to

standard regression trees where NL are the number of samples that reach the leaf. Finally, the

kernel value between two vertices v and v0 where x(v) reaches leaf L1 and x(v
0) leaf L2 respec-

tively can be approximated by thresholding

k̂Yðv; v
0Þ ¼

1

NL1
NL2

X

NL1

i¼1

X

NL2

j¼1

kYðv
1

i ; v
2

j Þ

where vki ; i ¼ 1; . . . ;NLk
enumerate the vertices routed to leaf Lk. For improving the accuracy

of the method an ensemble of decision trees also known as a random forest is used. In our

experiments we used the C code provided by the authors [18].

Kernels on protein pairs. The main idea of the biological network reconstruction meth-

ods presented in [8] is to reformulate the task as a pattern recognition problem: given a training

Machine Learning of Protein Interactions in Fungal Secretory Pathways
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set τ = {(u1, t1),(u2, t2), .. ,(uN, tN)} of patterns ui 2 <q with a binary label ti 2 {−1, 1} infer a

function f: <q ! {−1, 1} for any new pattern u. The main hindrance in doing so is that in net-

work reconstruction the labels are defined on pairs of vertices and the input features or patterns

on individual vertices. Thus in a first step a so called linear kernel on pairs of vertices induced

by their input features is defined by their inner product kX(v, v
0) = x(v)T x(v0). These kernels kX

represent the similarity of any pair of protein sequences that are then used to compute kernels

on pairs of protein pairs as follows

1. Direct product kernel: kDRCT((a, b), (c, d)) = kX(a, c)
� kX(b, d)

2. Tensor product pairwise kernel: kTPPK((a, b), (c, d)) = kX(a, c)
� kX(b, d) + kX(a, d)

� kX(b, c)

3. Metric learning pairwise kernel: kMLPK((a, b), (c, d)) = (kX(a, c) − kX(a, d) − kX(b, c) + kX(b,

d))2

Now a standard support vector machine (SVM) can be used to solve the binary classification

task. Since PPI networks are undirected the tensor product kernel kTPPK and the metric learn-

ing pairwise kernel kMLPK are best suited for modelling the similarity between protein pairs.

Despite the method’s good predictive performance it has a major drawback: the kernels

between pairs of proteins can become quickly very large even for a reasonable amount of pro-

tein sequences. The space complexity for storing the kernel matrix turns out to be O(m4) where

m is the number of proteins in the biological network which leads to serious scalability prob-

lems and usage of computational resources [21].

Input-Output Kernel Regression (IOKR). This method combines elements of the two

previous algorithms that circumvent their respective disadvantages—on the input side it uses

the simple kernels on protein pairs and on the output side it uses the diffusion kernel built

from the adjacency matrix of the output graph. But the classification problem is addressed by

solving a kernel learning problem using regularized regression [19, 41]. The method comes in

two flavors: the supervised version learns only the kernel ridge regression model and the semi

supervised one adds a smoothness constraint using the inputs of labeled data and auxiliary

data, called unlabeled data.

As the OK3 method, IOKR proposes to solve the link prediction problem by learning an

output kernel kY : V � V ! R, that encodes the similarities between the proteins in the inter-

action network. After learning this kernel, positive interactions can be predicted for the kernel

values that are higher than some threshold θ:

fyðv; v
0Þ ¼ sgnðk̂Yðv; v

0Þ � yÞ

As kY is a kernel, its values can be written as: kY(v, v
0) = hψ(v), ψ(v0)i, where ψ is called the

output feature map. The IOKR method approximates the output feature map ψ with a function

h and then build an approximation of the output kernel kY by taking the inner product between

the values of this function:

k̂Yðv; v
0Þ ¼ hhðvÞ; hðv0Þi :

Thus learning fθ reduces to learn the single variable function h.

Then given models of the general form hM(v) =Mϕ(v) and assuming a regularized square

loss function the parameters of the supervised IOKR model can be estimated based on l train-

ing samples as follows:

argminM

X

l

1

k hMðviÞ � cðviÞk
2 þ l

1
k M k2F

Machine Learning of Protein Interactions in Fungal Secretory Pathways
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where λ1 > 0 is a regularization parameter that is tuned with cross validation for the

experiments.

The method has also been extended to the semi-supervised setting where the input of unla-

beled data is taken into account. The new cost function that has to be minimized is:

argminM

X

l

1

k hMðviÞ � cðviÞk
2 þ l

1
k M k2F þl

2
traceðhMLXn

hT
MÞ

where LXn
= exp(−β(Dn − KXn

)) denotes the diffusion kernel associated to input kernel matrix

on labeled and unlabeled data. The last term constrains proteins that are similar to each other

in input to be similar in the predicted interaction network. λ1 > 0 and λ2 > 0 are two regulari-

zation parameters that are tuned with cross validation for the experiments. Both minimisation

problems lead to a closed form solution that can be found in Propositions 4 and 6 of [19].

Multiple Kernel Learning (MKL). The heterogeneous set of features that we extracted

from the protein sequences is expected not to uniformly contribute information to the learned

model which makes the uniform combination of the kernels over the different data sources

suboptimal. Therefore we apply Multiple Kernel Learning (MKL) to take the feature’s relevance

into account. We focus on linear mixtures of kernels,

K
μ
¼

X

r

q¼1

mqKq

where the weights μq are typically restricted to be non-negative to ensure the PSD property of

the resulting mixture. Note that setting μq = 1 for all kernels yields the uniform kernel combi-

nation. A major step forward in the MKL field was learning kernels based on centered kernel-

target alignment [23]

r̂ðK;KYÞ ¼
hKc;KYiF

k KckF k KYkF

where h.iF is the Frobenius product, k.kF the Frobenius norm, KY is a target kernel and Kc

denotes a centered version of the input kernel K, achieved by the centering operation

Kc ¼ I�
11T

m

� �

K I�
11T

m

� �

where 1 denotes the vector of ones and I is the identity matrix.

This gives a simple improvement over the uniform combination of kernels be directly using

the kernel-target alignment scores r̂ðKq;KYÞ as a mixture weights:

K
μ
/

X

p

k¼1

r̂ðKk;KYÞKk

This MKL method is called ALIGN. In [23] it is claimed that the kernel centering is critical for

the kernel alignment score to correlate well with performance.

The previously presented independent kernel alignment neglects the correlation between

the base kernels which can be overcome by jointly maximization the alignment between the

convex combination kernel with the target kernel and is also referred to as ALIGNF:

max
μ

hK
μ
;KYiF

k K
μ
kF

With the constraints that kμk2 = 1 and μ� 0 the alignment maximization problem can be
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rewritten as:

μ
� ¼ argmax

μ

μ
TaaTμ

μTMμ

where a = (hK1c, KYiF, . . ., hKrc, KYiF)
T records the kernel-target alignments of the input ker-

nels andM = (Mql)ql withMql = hKqc,KlciF contains the pairwise kernel alignments between the

input kernels. The problem can be solved by quadratic programming [23].

Another approach for optimizing the kernel target alignment has been proposed in [42].

The method aims at sparse combinations of kernels by regularizing the kernel weights by ℓp-

norm, where 1� p is simultaneously optimized. The proposed generalized ℓp-norm kernel

target alignment formulation is as follows:

min
μ�0

l
1
k μ� μ

0
k2
2
þl

2

X

r

i¼1

m
p
i �

X

r

i¼1

mia

The squared Euclidean distance in the first term is an instantiation of Bregman divergence

[42]

�BFðμÞ ¼ FðμÞ � ðμ� μ
0
Þ
T
rFðμ

0
Þ

for F(μ) = hμ, μi, and μ0 is a fixed point in the domain of F (Following [42] we used μ0 = 0 in

our experiments.). Additionally, λ1 � 0 and λ2 � 0 are the regularization parameters. For

implementing the sparsity inducing lp regularizer p is systematically reduced towards unity till

a sufficient level of sparsity is obtained. The solution of the path following is computed with a

Predictor-Corrector algorithm [42].

Evaluation metrics for Binary Predictions

Binary classification problems are typically evaluated with the accuracy measure which is com-

puted as the number of correctly predicted pairs divided by the total number of pairs. For

highly imbalanced problems like network inference accuracy is not an appropriate measure

because it favours the majority class and thus the non-interactions. In the following Receiver-

Operator-Characteristic (ROC) and Precision-Recall (PR) curves are presented which are bet-

ter suited for evaluating network inference predictions [43].

Both measures are based on a so called confusion matrix which is 2 x 2 for binary classifica-

tion with the columns and rows representing the predicted and the actual classes respectively.

Denoting interactions as positive and non-interactions as negative the confusion matrix is

given in Table 1.

From this matrix several measures for model evaluation can be derived:

• True positive rate (TPR): also known as sensitivity or recall, is the number of true positives

divided the number of the actual positives TP/P

Table 1. Confusion matrix indicating True positive (TP), False positive (FP), False negative (FN) and
True negative predictions.

Ground truth

P—Positive N—Negative

Predicted Positive TP—True Positive FP—False Positive

Predicted negative FN—false negative TN—true negative

doi:10.1371/journal.pone.0159302.t001
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• True negative rate (TNR): also known as specificity, is the number of true negatives divided

by the number of actual negatives TN/N

• False positive rate (FPR): is the number of false positives divided by the number of actual

negatives FP/N

• False negative rate (FNR): is the number of false negatives divided by the number of actual

positives FN/P

• Precision: is the number of true positives divided by the number of predicted positives TP/

(TP + FP)

All of these measures need to be combined in order to give a reliable performance measure

of an algorithm e.g. specificity and sensitivity or precision and recall. Note as well that a thresh-

old needs to be defined if predictions are confidence scores. For evaluating algorithms with

varying confidence thresholds ROC and PR curves can be used.

ROC curves. plot the TPR over the FPR for varying confidence thresholds. More specifi-

cally, each threshold corresponds to a different confusion matrix and thus a different pair of

values for TPR and FPR and a point on the ROC curve. The end points are always (0, 0) and (1,

1) and a perfect classifier would pass through the point (0, 1), while a random classifier would

be a diagonal connecting (0, 0) and (1, 1). A common summary statistic of the ROC curve is

the area under the ROC curve (AUROC). AUROC is one for a perfect classifier and 0.5 for a

random one. For the highly imbalanced network prediction tasks even moderate FPR can lead

to more FP predictions than TP predictions and hence a very low precision.

PR curves. plot the precision over the recall for varying confidence thresholds. The curve

starts at a pseudo point (0, 1) and ends at (1, P/(P + N)) which corresponds to to predicting all

pairs as positive. An optimal classifier would pass as well through (1, 1). The area under the PR

curve (AUPR) is also a common summary statistic. As for AUROC one assumes that the higher

the AUPR the better the performance of the method. One advantage of PR curves over ROC

curves is that they allow to measure early precision where recall is low and thus gives a tool to

evaluate the quality of the top ranks of the result list.

Results

We report here on three sets of experiments. First, we evaluate how the prediction methods

perform under simulated sequence data, representing differing amount of genetic distance

between the source and target species. Second, we check how well the methods separate the

secretory pathway from the rest of the genome. Third, we evaluate the PPI prediction in the

cross-species transfer learning from S. cerevisiae to T. reesei.

Network reconstruction for evolutionary distant sequences

Here we compare the performance of the network inference methods Output Kernel Trees

(OK3), Tensor kernel SVM on protein pairs (PP), and supervised and semi-supervised Input-

Output Kernel Regression (IOKR) for evolutionary distant species. As training data, we use the

S. cerevisiae secretory pathway protein sequences as input and their functional interactions as

labels. Then we try to predict these interactions in secretory pathway protein sequences that

were perturbed using different BLOSUMmatrices that correspond to different genetic

distances.

Fig 3 depicts the Receiver operating characteristic curves (ROC) with associated area-

under-curve (AUC) statistics for each inference method for the different evolutionary dis-

tances. As expected, all methods predict the better the smaller the distance with BLOSUM80
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curves having the highest AUC and being closest to the top-left corner of the plots. The curves

are averages of 20-fold cross-validation experiment.

In terms of AUC, OK3 obtains the best results, tensor kernel (PP) the second best and the

IOKR methods being somewhat less accurate. However, closer examination of the method’s

Fig 3. ROC curves for predicting PPIs in different artificial data sets with Output Kernel trees (OK3), Tensor kernels on protein pairs (Tensor
Kernel on PP), and supervised and semi-supervised Input-Output Kernel Regression (IOKR). AUROC statistic of the associated curve is depicted
in the figure legend (standard deviation in parenthesis).

doi:10.1371/journal.pone.0159302.g003
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prediction performance for top-ranked interactions (FPR< 0.1) reveals that the IOKR meth-

ods in fact have the best early precision, thus would get the top-ranked interactions more accu-

rately predicted than the competing methods.

The AUC statistics and the ROC curves of OK3 follow a smoothly worsening pattern with

respect to the increasing evolutionary distance, while the other methods manifest a step change

so that BLOSUM30 is markedly worse in AUC and lies clearly below the other curves.

Fig 4 depicts the Precision-Recall (PR) curves of the same experiment. Here, the IOKR

methods clearly perform best, having close to perfect precision regardless of the evolutionary

distance until recall level of 0.5 and then a sharp drop at recall levels of 0.7–0.9 depending on

the evolutionary distance. In contrast, OK3 manifests a close to one precision only for BLO-

SUM80 and for recall levels up to 0.3. Pairwise kernels do not obtain a high precision and pro-

duces a pattern that is inverted with respect to the evolutionary distance, indicating a high

number of false positives in the SVM classifier and possible overfitting when the evolutionary

distance is small.

The ROC and PR curves together indicate IOKR as the best compromise, given that both a

high overall accuracy and high initial precision are desirable for network reconstruction.

Identifying secretory pathway PPIs from full genome

Next, we check how well transfer learning of the secretory pathway works in the basic case of

the source and target species being the same. In this experiment, the inference models were

trained on the S. cerevisiae secretion proteins and their functional interactions, and the goal is

to test the ability of the models to correctly identify the secretion pathway proteins among all S.

cerevisiae proteins. In this setup, the ground truth is composed of PPIs between two secretory

pathway proteins as the positive class and all other interactions as the negative class (true inter-

actions between one or two non-secretory proteins as well as missing interactions between

pairs of secretory pathway proteins).

Fig 5 depicts the results of a 5-fold cross-validation experiment for the different network

inference methods. In the ROC space (left pane), Pairwise kernels and the two IOKR methods

are close in performance, with the semi-supervised IOKR being marginally better than the

two others. OK3, however, performs significantly worse than the other three methods. In the

precision-recall space (right pane), the two IOKR methods are the most robust in the low-

recall regime, with the semi-supervised variant maintaining 0.7 precision rate up to 0.6 recall

rate. Pairwise kernels and OK3 demonstrate a different pattern: they suffer from a high false

positive rate in the low-recall regime, but have a good precision in mid-recall regime, before

tailing off.

Analyzing the ROC and PR results together, semi-supervised IOKR emerges as the best

compromise, due to its good ROC behaviour and good precision in the low-recall regime. It

appears that the semi-supervised aspect gives some protection for the method against false pos-

itives in the low to mid-recall levels.

Comparison of Multiple Kernel Learning methods

Next, we compare the different MKL methods ALIGN, ALINGF and p-norm path following

on the reconstruction of the set of secretion proteins from the full genome of S. cerevisiae when

using semi-supervised IOKR as predictor.

The results are shown in Fig 6. It can be seen that the MKL methods perform better than

the simple sum of input kernels (UNIMKL) in terms of ROC curve as well as PR curves.
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Nonetheless, the gains of MKL are smaller than we expected them to be. Looking at the ROC

curves, the p-norm path following MKL outperforms the other methods, whereas for the PR

measure the simpler ALIGNF outperforms all other methods with p-norm path following

being the second best.

Fig 4. Precision-Recall (PR) curves for predicting PPIs in different artificial data sets with Output Kernel trees (OK3), Tensor kernels on protein
pairs (Tensor Kernel on PP), and supervised and semisupervised Input-Output Kernel Regression (IOKR). AUPR statistic is shown in the legend
for each curve (standard devation in parenthesis.

doi:10.1371/journal.pone.0159302.g004
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Secretion network prediction for Trichoderma reesei

Finally, we evaluate the PPI prediction quality in an inter-species setup, where the training data

comes from S. cerevisiae and the target species is T. reesei. However, no experimental protein

interaction data exists for T. reesei that could be used as the ground truth. Thus we focus on

qualitative analysis of the predicted T. reesei secretion network by expert knowledge. For

Fig 5. ROC curves and Precision-Recall (PR) curves for predicting secretory PPIs from the full S. cerevisiae genomewith
Output Kernel trees (OK3), Tensor kernels on protein pairs (Tensor Kernel on PP), and supervised and semi-supervised
Input-Output Kernel Regression (IOKR). AUCROC and AUPR statistics are shown in the legend for each curve.

doi:10.1371/journal.pone.0159302.g005

Fig 6. ROC curves and Precision-Recall (PR) curves for predicting secretory PPIs from the full S. cerevisiae genomewith
semi-supervised Input-Output Kernel Regression (IOKR) and different Multiple Kernel Learning (MKL) methods compared
to no MKL (UNIMKL). AUCROC and AUPR statistics are shown in the legend for each curve.

doi:10.1371/journal.pone.0159302.g006
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predicting the PPI in T. reesei we used semi-supervised IOKR and p-norm path following for

learning the input kernel, since this method combination achieved the best performances in

the previous experiments.

In order to validate the predicted T. reesei secretion network, its genes (T. reesei genome ver-

sion 2.0 [44]) were annotated with a combination of sequence similarity based methods: best

BLASTp [45] match to S. cerevisiae proteins, best BLASTp match to UniProtKB/Swiss-Prot

[46], Interproscan domain predictions [26], PANNZER description line and GO-category pre-

dictions [47] and a manually curated set of Aspergillus niger protein secretion related genes

[48].

The T. reesei secretion network contains in total 320 genes. According to the annotation

described above 27 genes belong to the heterokaryon incompatibly family and are sequence

wise very similar. This family contains a GTPase domain that could contain similar features as

GTPases involved in secretion. 51 genes belong to other than secretion related categories of cel-

lular function. 18 genes were annotated to be related to cell growth, cell wall synthesis and cell

motility and six were found to be related to chromatin modification. In general these 24 pro-

teins contain domains related to small molecule modifications of macromolecules such as gly-

cosylation, phosphorylation, ubiquitinylation and methylation. Similar molecular functions are

abundant in the known secretion pathway enzymes. 14 of the 51 were annotated as molecular

and cellular function unknown (Column ‘Class’ in Table 2). Hence, manual annotation based

Table 2. Unknown genes and genes without any interactions in STRING in predicted T. reesei secretion network. Column ‘Gene’ contains the T. ree-

sei gene ID. ‘In STRING’ tells if the gene has interactions in STRING. Columns ‘Btw’ and ‘Deg’ denote the betweenness and degree network statistics of the
corresponding gene. Columns ‘Class’ and ‘Putative secretion pathway component’ are author assigned classifications. ‘Taxon specificity’ gives the largest
taxonomic group the gene was found in.

Gene STRING Btw Deg Class Protein family or Molecular
function

Putative secretion pathway
component

Taxon specificity

104448 NO 4075.6 66 Unknown Protein folding Pezizomycotina

111569 NO 217.4 43 Unknown COPII Pezizomycotina

112222 NO 1.0 2 Unknown Tetratricopeptide-like helical ? Pezizomycotina

46764 NO 0.4 7 Unknown Protein glycosylation Sordariomycetes

120000 YES 0.2 11 Unknown Homeodoman superfamily Protein folding Trichoderma

105729 YES 0.0 11 Unknown GPI-biosynthesis Trichoderma

122293 NO 0.0 9 Unknown Protein folding Pezizomycotina

4791 NO 0.0 7 Unknown COPII Pezizomycotina

62041 NO 0.0 5 Unknown Protein folding Pezizomycotina

110342 YES 0.0 3 Unknown Protein glycosylation Pezizomycotina

104336 NO 0.0 2 Unknown SnoaL-like domain COPII Trichoderma

110791 NO 0.0 2 Unknown Protein glycosylation Trichoderma

112490 NO 0.0 1 Unknown ? Pezizomycotina

47424 YES 0.0 6 Unknown GPI-biosynthesis Sordariomycetes

65060 NO 0.0 17 Secretion Golgi mannosyltransferase complex
subunit

Golgi processing Pezizomycotina

81211/
ANP1

NO 0.0 2 Secretion Golgi mannosyltransferase complex
subunit

Golgi processing Fungi

78463 NO 0.0 1 Regulatory functions TPR repeat protein Pezizomycotina

5275 NO 0.0 1 Chromatin
modification

Fungi

27219 NO 0.0 2 Cell growth, wall,
motility

Alpha-galactosidase Trichoderma

65137 NO 0.0 2 Cell growth, wall,
motility

Endo-1,3-beta-glucanase Pezizomycotina

doi:10.1371/journal.pone.0159302.t002
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on sequence similarity suggests a minimum of 75% true positive rate and a maximum of 20%

false positive rate. The predicted secretion network, excluding heterokaryon incompatibility

family and other than secretion related genes in order to ease visual inspection of know genes,

is shown in Fig 7. An alternative layout (S1 Fig) and a table format (S2 Table) of the network

are also provided as supplementary material.

Fig 7. Predicted T. reesei secretion network. A) The proteins annotated as secretory (242) and unknown (14) are included. Proteins are nodes and
they are labelled with best matching S. cerevisiae protein name or if no match was found with T. reesei gene ID number. Thick edges signify either
negative (red) or positive (green) absolute Pearson correlation of > 0.3 in transcriptomic data. Pink nodes do not have any interactions in STRING. B) Pie
chart of functional classes of the 320 proteins included in the T. reesei secretion network.

doi:10.1371/journal.pone.0159302.g007

Machine Learning of Protein Interactions in Fungal Secretory Pathways

PLOS ONE | DOI:10.1371/journal.pone.0159302 July 21, 2016 16 / 20



16 of the 320 genes were found to have no interactions in the protein-protein interaction

database STRING [4] (Column ‘In STRING’ in Table 2). For 2 of these we found strong simi-

larity based evidence that they are part of the Golgi mannosyltransferase complex and could be

considered as false negative predictions by STRING.

For each gene annotated as unknown, a putative role in the secretion pathway machinery

was assigned based on their position in the predicted network (Column ‘Putative secretion

pathway component’ in Table 2). To estimate the novelty of such secretion pathway compo-

nents the taxonomic distribution of the unknown genes was estimated with multi-genome

protein clustering [49] (Column ‘Taxon Specificity’ in Table 2). All unknown genes were

found to be restricted to the subphylum Pezizomycotina or a smaller taxon with-in

Pezizomycotina.

In order to further validate the T. reesei secretion network we used a combined transcrip-

tomics data set of public and in-house data (see Methods). Pearson correlation of the expres-

sion values of all gene pairs that have a predicted PPI (an edge in the PPI network) was

computed. The average of absolute values of these correlations was found to be 0.2 with an

empirical p-value of p< 0.05. This p-value was calculated by rewiring the network 1000 times

with the igraph function ‘rewire’ [50] and counting the average of absolute correlation each

time. Absolute correlations above 0.3 are highlighted in Fig 7.

Discussion

Experimental measurement of protein-protein interactions is technically demanding and often

different methods can give conflicting results [7, 51]. Also, even a reliably measured interaction

might not have a detectable biological function. To circumvent such challenges we use an

expert curated interaction network of functional associations derived from numerous experi-

ments [24].

We tested several recent machine learning methods for the task of PPI prediction. Classifi-

cation models tested included pairwise kernels, output kernel trees as well as supervised and

semi-supervised input-output kernel regression. The methods differed in performance depend-

ing on whether ROC or PR was used as the evaluation metric. Semi-supervised IOKR proved

to be the best compromise when both evaluation metrics were taken into account: it had the

best PR performance and a reasonable ROC—this choice puts an emphasis on good perfor-

mance in the positive class, required for reliable network reconstruction.

Multiple kernel learning methods tested included uniform kernel combination, methods

based on centered kernel alignment as well as the newly proposed p-norm path following algo-

rithm. In our tests, we found that generally p-norm path following performed best in the ROC

metric while other methods were close to each other in performance. In the PR metric,

ALIGNF outperformed the other methods and p-norm path following being second best. Alto-

gether, p-norm path following seems to give the best performance, although the improvements

of MKL over no MKL were smaller than expected.

To demonstrate our prediction approach we predict protein secretion network for T. reesei,

an industrially important protein production organism, which has no experimentally verified

PPIs to date. Novel understanding of their protein secretion network machinery could have

significant impact in the generation of improved protein production strains through targeted

engineering.

For T. reesei we find that the predicted network is well supported by sequence similarity

based manual annotation and by transcriptomics data. Most importantly the predicted net-

work includes 14 previously unknown genes that are taxonomically restricted to Pezizomyco-

tina and hence could explain their exceptional protein secretion capabilities.
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Finally we note that our set up does not need complex external database systems or special-

ized experimental data to be generated, but relies on data available through standard sequence

searches, evaluated through fast machine learning models. Hence, our methods are amenable

to local implementation as part of a genome annotation pipeline.
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