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Brain imaging is a natural intermediate phenotype to understand the link between genetic

information and behavior or brain pathologies risk factors. Massive efforts have been

made in the last few years to acquire high-dimensional neuroimaging and genetic data

on large cohorts of subjects. The statistical analysis of such data is carried out with

increasingly sophisticated techniques and represents a great computational challenge.

Fortunately, increasing computational power in distributed architectures can be harnessed,

if new neuroinformatics infrastructures are designed and training to use these new tools

is provided. Combining a MapReduce framework (TomusBLOB) with machine learning

algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with

non-parametric statistics on high-dimensional data. End-users describe the statistical

procedure to perform and can then test the model on their own computers before

running the very same code in the cloud at a larger scale. We illustrate the potential

of our approach on real data with an experiment showing how the functional signal

in subcortical brain regions can be significantly fit with genome-wide genotypes. This

experiment demonstrates the scalability and the reliability of our framework in the cloud

with a 2 weeks deployment on hundreds of virtual machines.
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1. INTRODUCTION

Using genetics information in conjunction with brain imaging

data is expected to significantly improve our understanding of

both normal and pathological variability of brain organization.

It should lead to the development of biomarkers and in the

future personalized medicine. Among other important steps, this

endeavor requires the development of adapted statistical methods

to detect significant associations between the highly heteroge-

neous variables provided by genotyping and brain imaging, and

the development of software components with which large-scale

computation can be done.

In current settings, neuroimaging-genetic datasets consist of

a set of (1) genotyping measurements at given genetic loci,

such as Single Nucleotide Polymorphisms (SNPs) that repre-

sent a large amount of the genetic between-subject variability,

and (2) quantitative measurements at given locations (voxels) in

three-dimensional images, that represent e.g., either the amount

of functional activation in response to a certain task or an

anatomical feature, such as the density of gray matter in the corre-

sponding brain region. These two sets of features are expected to

reflect differences in brain organization that are related to genetic

differences across individuals.

Most of the research efforts so far have been focused on design-

ing association models, while the computational procedures used

to run these models on actual architectures have not been consid-

ered carefully. Voxel intensity and cluster size methods have been

used for genome-wide association studies (GWAS) (Stein et al.,

2010), but the multiple comparisons problem most often does

not permit to find significant results, despite efforts to estimate

the effective number of tests (Gao et al., 2010) or by paying the

cost of a permutation test (Da Mota et al., 2012). Working at the

genes level instead of SNPs (Hibar et al., 2011; Ge et al., 2012) is
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a promising approach, especially if we are looking at monogenic

(or few causal genes) diseases.

For polygenic diseases, gains in sensitivity might be provided

by multivariate models in which the joint variability of sev-

eral genetic variables is considered simultaneously. Such models

are thought to be more powerful (Meinshausen and Bühlmann,

2010; Vounou et al., 2010; Bunea et al., 2011; Kohannim et al.,

2011; Floch et al., 2012), because they can express more com-

plex relationships than simple pairwise association models. The

cost of unitary fit is high due to high-dimensional, potentially

non-smooth optimization problems and various cross-validation

loops needed to optimize the parameters; moreover, permuta-

tion testing is necessary to assess the statistical significance of

the results of such procedures in the absence of analytical tests.

Multivariate statistical methods require thus many efforts to be

tractable for this problem on both the algorithmic and implemen-

tation side, including the design of adapted dimension reduction

schemes. Working in a distributed context is necessary to deal

efficiently with the memory and computational loads.

Today, researchers have access to many computing capabilities

to perform data-intensive analysis. The cloud is increasingly used

to run such scientific applications, as it offers a reliable, flexible,

and easy to use processing pool (Vaquero et al., 2008; Jackson

et al., 2010; Hiden et al., 2012; Juve et al., 2012). The MapReduce

paradigm (Chu et al., 2006; Dean and Ghemawat, 2008) is the

natural candidate for these applications, as it can easily scale the

computation by applying in parallel an operation on the input

data (map) and then combine these partials results (reduce).

However, some substantial challenges still have to be addressed

to fully exploit the power of cloud infrastructures, such as data

access, as it is currently achieved through high latency protocols,

which are used to access the cloud storage services (e.g., Windows

Azure Blob). To sustain geographically distributed computation,

the storage system needs to manage concurrency, data placement

and inter-site data transfers.

We propose an efficient framework that can manage infer-

ences on neuroimaging-genetic studies with several pheno-

types and permutations. It combines a MapReduce framework

(TomusBLOB, Costan et al., 2013) with machine learning algo-

rithms (Scikit-learn library) to deliver a scalable analysis tool. The

key idea is to provide end-users the capability to easily describe

the statistical inference that they want to perform and then to test

the model on their own computers before running the very same

code in the cloud at a larger scale. We illustrate the potential of

our approach on real data with an experiment showing how the

functional signal in subcortical brain regions of interest (ROIs)

can be significantly predicted with genome-wide genotypes. In

section 2, we introduce methodological prerequisites, then we

describe our generic distributed machine learning approach for

neuroimaging-genetic investigations and we present the cloud

infrastructure. In section 3, we provide the description of the

experiment and the results of the statistical analysis.

2. MATERIALS AND METHODS

2.1. NEUROIMAGING-GENETIC STUDY

Neuroimaging-genetic studies test the effect of genetic variables

on imaging target variables in presence of exogenous variables.

The imaging target variables are activation images obtained

through functional Magnetic Resonance Imaging (fMRI), that

yield a standardized effect related to experimental stimulation

at each brain location of a reference brain space. For a study

involving n subjects, we generally consider the following model:

Y = Xβ1 + Zβ2 + ǫ,

where Y is a n × p matrix representing the signal of n subjects

described each by p descriptors (e.g., voxels or ROIs of an fMRI

contrast image), X is the n × q1 set of q1 explanatory variables and

Z the n × q2 set of q2 covariates that explain some portion of the

signal but are not to be tested for an effect. β1 and β2 are the fixed

coefficients of the model to be estimated, and ǫ is some Gaussian

noise. X contains genetic measurements and variables in Z can be

of any type (genetic, artificial, behavioral, experimental, . . . ).

2.1.1. The standard approach

It consists in fitting p Ordinary Least Square (OLS) regressions,

one for each column of Y, as a target variable, and each time per-

form a statistical test (e.g., F-test) and interpret the results in term

of significance (p-value). This approach suffers from some limita-

tions. First, due to a low signal-to-noise ratio and a huge number

of tests, this approach is not sensitive. Moreover, the statistical

score only reflects the univariate correlation between a target and

a set of q1 explanatory variables, it does not inform on their

predictive power when considered jointly. Secondly, with neu-

roimaging data as a signal, we are not in a case vs. control study. It

raises the question whether the variability in a population can be

imputed to few rare genetic variants or if it is the addition of many

small effects of common variants. Unfortunately, the model holds

only if n ≫ (q1 + q2), which is not the case with genome-wide

genotypes.

2.1.2. Heritability assessment

The goal of our analysis is to estimate the proportion of dif-

ferences in a trait between individuals due to genetic variabil-

ity. Heritability evaluation traditionally consists in studying and

comparing homozygous and dizygous twins, but recently it has

been shown that it can be estimated using genome-wide geno-

types (Lee et al., 2011; Lippert et al., 2011; Yang et al., 2011b).

For instance, common variants are responsible of a large por-

tion of the heritability of human height (Yang et al., 2010) or

schizophrenia (Lee et al., 2012). These results show that the vari-

ance explained by each chromosome is proportional to its length.

As we consider fMRI measurements in an unsupervised setting

(no disease), this suggests to use regression models that do not

enforce sparsity. Like the standard approach, heritability has some

limitations. In particular, the estimation of heritability requires

large sample sizes to have an acceptable standard error (at least

4000 according to Lee et al., 2012). Secondly, the heritability is the

ratio between the variance of the trait and the genetic variance in a

population. Therefore, for a given individual, a trait with an heri-

tability at 0.6 does not mean it can be predicted at 60% on average

with the genotype. It means that a fraction of the phenotype vari-

ability is simply explained by the average genetic structure of the

population of interest.
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2.1.3. High-dimensional statistics

The key point of our approach is to fit a model on training
data (train set) and evaluate its goodness on unseen data (test
set). To stabilize the impact of the sets for training and testing,
a cross-validation loop is performed, yielding an average predic-
tion score over the folds. This score yields a statistic value and a
permutation test is performed to tabulate the distribution of this
statistic under the null hypothesis and to estimate its significance
(p-value). In practice, this corresponds to swapping the labels
of the observations. As a prediction metric we generally choose
the coefficient of determination (R2), which is the ratio between
the variance of the prediction and the variance of the pheno-
types in the test set. If we consider all the genotypes at the same
time, this approach is clearly related to heritability, but focuses on
the predictive power of the model and its significance. Through
cross-validation, the estimation of the CV-R2 with an acceptable
standard error does not require as large sample sizes as for the
estimation of heritability (Yang et al., 2011a).

CV-R2 = 1 − mean(train, test) ∈ split(n)
‖Y

test − X
testβ train

1 − Z
testβ train

2 ‖2

‖Y
test − Z

testβ train
2 ‖2

2.2. GENERIC PROCEDURE FOR DISTRIBUTED MACHINE LEARNING

If one just wants to compute the prediction score for few phe-

notypes, a multicore machine should be enough. But, if one is

interested in the significance of this prediction score, one will

probably need a computers farm (cloud, HPC cluster, etc.) Our

approach consists in unifying the description and the computa-

tion for neuroimaging-genetic studies to scale from the desktop

computer to the supercomputing facilities. The description of the

statistical inference is provided by a descriptive configuration in

human-readable and standard format: JSON (JavaScript Object

Notation). This format requires no programming skills and is far

easier to process as compared to the XML (eXtensible Markup

Language) format. In a sense, our approach extends the Scikit-

learn library (cf. next paragraph) for distributed computing, but

focuses on a certain kind of inferences for neuroimaging-genetic

studies. The next paragraphs describe the strategy, framework

and implementation used to meet the heritability assessment

objective.

2.2.1. Scikit-learn

Scikit-learn is a popular machine learning library in

Python (Pedregosa et al., 2011) designed for a multicore

station. In the Scikit-learn vocabulary, an estimator is an

object that implements a fit and a predict method. For

instance a Ridge object (lines 12–13 of Figure 1) is an estimator

that computes the coefficients of the ridge regression model

on the train set and uses these coefficients to predict data

from the test set. If this object has a transform method, it is

called a transformer. For instance a SelectKbest object (lines

10–11 of Figure 1) is a transformer that modifies the input

data (the design matrix X) by returning the K best explana-

tory variables w.r.t. a scoring function. Scikit-learn defines a

Pipeline (lines 8–13 of Figure 1) as the combination of several

transformers and an final estimator: It creates a combined

estimator. Model selection procedures are provided to evaluate

with a cross-validation the performance of an estimator (e.g.,

cross_val_score) or to select parameters on a grid (e.g.,

GridSearchCV).

2.2.2. Permutations and covariates

Standard machine learning procedures have not been designed

to deal with covariates (such as those assembled in the

matrix Z), which have to be considered carefully in a permutation

test (Anderson and Robinson, 2001). For the original data, we fit

an Ordinary Least Square (OLS) model between Y and Z, then we

consider the residuals of the regression (denoted RY|Z) as the target

for the machine learning estimator. For the permutation test, we

permute RY|Z (the permuted version is denoted RY|Z
∗), then we fit an

OLS model between RY|Z
∗ and Z, and we consider the residuals as

the target for the estimator (Anderson and Robinson, 2001). The

goal of the second OLS on the permuted residuals is to provide an

optimal approximation (in terms of bias and computation) of the

exact permutation tests while working on the reduced model.

2.2.3. Generic problem

We identify a scheme common to the different kinds of infer-

ence that we would like to perform. For each target phenotype

we want to compute a prediction score in the presence of covari-

ates or not and to evaluate its significance with a permutation

test. Scikit-learn algorithms are able to execute on multiple CPU

cores, notably cross-validation loop, so a task will be executed on

a multicore machine: cluster nodes or multicore virtual machine

(VM). As the computational burden of different machine learn-

ing algorithms is highly variable, owing to the number of samples

and the dimensionality of the data, we thus have to tune the

number of tasks and their average computation time. An opti-

mal way to tune the amount of work is to perform several

permutations on the same data in a given task to avoid I/O

bottlenecks. Finally, we put some constraints on the descrip-

tion of the machine learning estimator and the cross validation

scheme:

• The prediction score is computed using the Scikit-learn

cross_val_score function and the folds for this cross valida-

tion loop are generated with a ShuffleSplit object.

• An estimator is described with a Scikit-learn pipelinewith one

or more steps.

• Python can dynamically load modules such that a program

can execute functions that are passed in a string or a config-

uration file. To notify that a string contains a Python module

and an object or function to load, we introduce the prefix

DYNAMIC_IMPORT::

• To select the best set of parameters for an estimator, model

selection is performed using Scikit-learn GridSearchCV and a

5-folds inner cross-validation loop.

2.2.4. Full example (cf. script in Figure 1)

• General parameters (Lines 1–3): The model contains covariates,

the permutation test makes 10,000 iterations and only one per-

mutation is performed in a task. 10,000 tasks per brain target

phenotypes will be generated.

• Prediction score (Lines 4–7): The metrics for the cross-validated

prediction score is R2, the cross-validation loop makes 10
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FIGURE 1 | Top: Representation of the computational framework: given

the data, a permutation and a phenotype index together with a

configuration file, a set of computations are performed, that involve two

layers of cross-validation for setting the hyper-parameters and evaluate

the accuracy of the model. This yields a statistical score associated

with the given phenotype and permutation. Bottom: Example of

complex configuration file that describes this set of operations. General
parameters (Lines 1–3): The model contains covariates, the permutation

test makes 10,000 iterations and only one permutation is performed in

a task. Prediction score (Lines 4–7): The metrics for the cross-validated

prediction score is R2, the cross-validation loop makes 10 iterations,

20% of the data are left out for the test set and the seed of the

random generator was set to 0. Estimator pipeline (Lines 8–13): The

first step consists in filtering collinear vectors, the second step selects

the K best features and the final step is a ridge estimator. Parameters
selection (Lines 14–16): Two parameters of the estimator have to be

set: the K for the SelectKBest and the alpha of the Ridge regression.

A set of 3 × 5 parameters are evaluated.

iterations, 20% of the data are left out for the test set and the

seed of the random generator was set to 0.

• Estimator pipeline (Lines 8–13): The first step consist in filtering

collinear vectors, the second step selects the K best features and

the final step is a ridge estimator.

• Parameters selection (Lines 14–16): Two parameters of the esti-

mator have to be set: the K for the SelectKBest and the alpha

of the Ridge regression. A set of 3 × 5 parameters are evaluated.

2.3. THE CLOUD COMPUTING ENVIRONMENT

Although researchers have relied mostly on their own clusters

or grids, clouds are raising an increasing interest (Jackson et al.,

2010; Simmhan et al., 2010; Ghoshal et al., 2011; Hiden et al.,

2012; Juve et al., 2012). While shared clusters or grids often

imply a quota-based usage of the resources, those from clouds are

owned until they are explicitly released by the user. Clouds are

easier to use since most of the details are hidden to the end user

(e.g., network physical implementation). Depending on the char-

acteristics of the targeted problem, this is not always an advantage

(e.g., collective communications). Last but not least, clouds avoid

owning expensive infrastructures—and associated high cost for

buying and operating—that require technical expertise.

The cloud infrastructure is composed of multiple data cen-

ters, which integrate heterogeneous resources that are exploited

seamlessly. For instance, the Windows Azure cloud has five sites

in United States, two in Europe and three in Asia. As resources

are granted on-demand, the cloud gives the illusion of infinite

resources. Nevertheless, cloud data centers face the same load

problems (e.g., workload balancing, resource idleness, etc.) as

traditional grids or clusters.

In addition to the computation capacity, clouds often provide

data-related services, like object storage for large datasets (e.g.,

S3 from Amazon or Windows Azure Blob) and queues for short

message communication.

2.4. NEUROIMAGING-GENETICS COMPUTATION IN THE CLOUD

In practice, the workload of the A-Brain application 1 is more

resource demanding than the typical cloud applications and could

induce two undesirable situations: (1) other clients do not have

enough resource to lease on-demand in a particular data center;

(2) the computation creates performance degradations for other

applications in the data center (e.g., by occupying the network

bandwidth, or by creating high number of concurrent requests

on the cloud storage service). Therefore, we divide the workload

into smaller sub-problems and we select the different datacenters

in collaboration with the cloud provider.

1http://www.irisa.fr/kerdata/abrain/
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For balancing the load of the A-Brain application, the compu-

tation was distributed across four deployments in the two biggest

Windows Azure datacenters. In the cloud context, a deployment

denotes a set of leased resources, which are presented to the user

as a set of uniform machines, called compute nodes. Each deploy-

ment is independent and isolated from the other deployments.

When a compute node starts, the user application is automati-

cally uploaded and executed. The compute nodes of a deployment

belong to the same virtual private network and communicate with

the outside world or other deployments either through public end-

points or using the cloud storage services (i.e., Windows Azure

Blob or Queue).

TomusBlobs (Costan et al., 2013) is a data management sys-

tem designed for concurrency-optimized PaaS-level (Platform

as a Service) cloud data management. The system relies on the

available local storage of the compute nodes in order to share

input files and save output files. We built a processing frame-

work (called TomusMapReduce) derived from MapReduce (Chu

et al., 2006; Dean and Ghemawat, 2008) on top of TomusBlobs,

such that it leverages its benefits by collocating data with com-

putation. Additionally, the framework is restricted to associa-

tive and commutative reduction procedures (Map-IterativeReduce

model Tudoran et al., 2012) in order to allow efficient out-of-

order and parallel processing for the reduce phase. Although

MapReduce is designed for single cluster processing, the lat-

ter constraint enables straightforward geographically distributed

processing. The hierarchical MapReduce (which is described

in Costan et al., 2013) aggregates several deployments with

MapReduce engines and a last deployment that contains a

MetaReducer, that computes the final result, and a Splitter, that

partitions the data and manages the overall workload in order to

leverage data locality. Job descriptions are sent to the MapReduce

engines via Windows Azure Queue and the MetaReducer collects

intermediate results via Windows Azure Blob. For our applica-

tion, we use the Windows Azure Blob storage service instead of

TomusBlobs for several reasons: (1) concurrency-optimized capa-

bilities are not relevant here; (2) for a very long run, it is better to

rely on a proven storage; (3) TomusBlob storage does not support

yet multi-deployments setting. An overview of the framework is

shown in Figure 2.

For our application, the Map step yields a prediction score for

an image phenotype and a permutation, while the reduce step

consists in collecting all results to compute statistic distribution

and corrected p-values. The reduce operation is trivially commu-

tative and associative as it consists in searching the maximum of

the statistic for each permutation (Westfall and Young, 1993). The

upper part of Figure 1 gives an overview of the generic mapper.

2.5. IMAGEN: A NEUROIMAGING-GENETIC DATASET

IMAGEN is a European multi-centric study involving adoles-

cents (Schumann et al., 2010). It contains a large functional

neuroimaging database with fMRI associated with 99 different

contrast images for 4 protocols in more than 2000 subjects, who

gave informed signed consent. Regarding the functional neu-

roimaging data, we use the Stop Signal Task protocol (Logan,

1994) (SST), with the activation during a [go wrong] event, i.e.,

when the subject pushes the wrong button. Such an experimental

contrast is likely to show complex mental processes (inhibition

failure, post-hoc emotional reaction of the subject), that may be

hard to disentangle. Our expectation is that the amount of Blood

Oxygen-Level Dependent (BOLD) response associated with such

events provides a set of global markers that may reveal some

heritable psychological traits of the participants. Eight differ-

ent 3T scanners from multiple manufacturers (GE, Siemens,

Philips) were used to acquire the data. Standard preprocessing,

including slice timing correction, spike and motion correction,

temporal detrending (functional data) and spatial normaliza-

tion (anatomical and functional data), were performed using

the SPM8 software and its default parameters; functional images

were resampled at 3 mm resolution. All images were warped in

the MNI152 coordinate space. Obvious outliers detected using

simple rules such as large registration or segmentation errors

or very large motion parameters were removed after this step.

BOLD time series was recorded using Echo-Planar Imaging,

with TR = 2200 ms, TE = 30 ms, flip angle = 75◦ and spatial

resolution 3 × 3 × 3 mm. Gaussian smoothing at 5 mm-FWHM

FIGURE 2 | Overview of the multi site deployment of a hierarchical

Tomus-MapReduce compute engine. (1) The end-user uploads the data

and configures the statistical inference procedure on a webpage. (2) The

Splitter partitions the data and manages the workload. The compute

engines retrieves job information trough the Windows Azure Queues.

(3) Compute engines perform the map and reduce jobs. The

management deployment is informed of the progression via the Windows

Azure Queues system and thus can manage the execution of the global
reducer. (4) The user downloads the results of the computation on the

webpage of the experiment.
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was finally added. Contrasts were obtained using a standard

linear model, based on the convolution of the time course of

the experimental conditions with the canonical hemodynamic

response function, together with standard high-pass filtering

procedure and temporally auto-regressive noise model. The esti-

mation of the first-level was carried out using the SPM8 soft-

ware. T1-weighted MPRAGE anatomical images were acquired

with spatial resolution 1 × 1 × 1 mm, and gray matter proba-

bility maps were available for 1986 subjects as outputs of the

SPM8 New Segmentation algorithm applied to the anatomical

images. A mask of the gray matter was built by averaging and

thresholding the individual gray matter probability maps. More

details about data preprocessing can be found in Thyreau et al.

(2012).

DNA was extracted from blood samples using semi-

automated process. Genotyping was performed genome-wide

using Illumina Quad 610 and 660 chips, yielding approximately

600,000 autosomic SNPs. 477,215 SNPs are common to the

two chips and pass plink standard parameters (Minor Allele

Frequency >0.05, Hardy-Weinberg Equilibrium P < 0.001, miss-

ing rate per SNP <0.05).

3. AN APPLICATION AND RESULTS

3.1. THE EXPERIMENT

The aim of this experiment is to show that our framework

has the potential to explore links between neuroimaging and

genetics. We consider an fMRI contrast corresponding to events

where subjects make motor response errors ([go wrong] fMRI

contrast from a Stop Task Signal protocol). Subjects with too

many missing voxels or with bad task performance were dis-

carded. Regarding genetic variants, 477,215 SNPs were available.

Age, sex, handedness and acquisition center were included in the

model as confounding variables. Remaining missing data were

replaced by the median over the subjects for the correspond-

ing variables. After applying all exclusion criteria 1459 subjects

remained for analysis. Analyzing the whole brain with all the

genetic variants remains intractable due to the time and mem-

ory requirements and dimension reduction techniques have to be

employed.

3.1.1. Prior neuroimaging dimension reduction

In functional neuroimaging, brain atlases are mainly used to

provide a low-dimensional representation of the data by consid-

ering signal averages within groups of neighboring voxels. In this

experiment we focus on the subcortical nuclei using the Harvard–

Oxford subcortical atlas. We extract the functional signal of 14

regions of interest, 7 in each hemisphere: thalamus, caudate,

putamen, pallidum, hippocampus, amygdala and accumbens (see

Figure 4). White matter, brain stem and ventricles are of no inter-

est for functional activation signal and were discarded. This prior

dimension reduction decreases the number of phenotypes from

more than 50,000 voxels to 14 ROIs.

3.1.2. Configuration used (cf. script in Figure 3)

• (Lines 1–3): covariates, 10,000 permutations and 5 permuta-

tions per computation unit (mapper).

• (Lines 4–7): 10-folds cross-validated R2.

• (Lines 9–11): The first step of the pipeline is an univariate fea-

tures selection (K = 50, 000). This step is used as a dimension

reduction so that the next step fits in memory.

• (Lines 12–13): The second and last step is the ridge estimator

with a low penalty (alpha = 0.0001).

The goal of the experiment described by this configuration file

is to evaluate how the 50,000 mostly correlated genetic variants,

once taken together, are predictive of each ROI and to associate a

p-value with these prediction scores. Note that more than 50,000

covariates would not fit into memory. This configuration gener-

ates 28,000 map tasks (14 × 10, 000/5), but we can set to 1 the

number of permutations per task, which means that the compu-

tation can use up to 140,000 multicore computers in parallel, and

thus millions of CPU cores.

3.1.3. The cloud experimental setup

The experiment was performed using the Microsoft Windows

Azure PaaS cloud in the North and West US datacenters, that were

recommended by the Microsoft team for their capacity. We use

the Windows Azure storage services (Blob and Queue) in both

datacenters in order to take advantage of the data locality. Due to

our memory requirements, the Large VM type (4 CPU cores, 7

GB of memory and 1000 GB of disk) is the best fit regarding the

Azure VMs offer2.

3.1.4. TomusBlobs

We set up two deployments in each of the two recommended sites

for a total of four deployments. It used 250 large VM nodes, total-

izing 1000 CPUs: each of the 3 MapReduce engines deployments

had 82 nodes and the last deployment used 4 nodes. The reduc-

tion process was distributed in approximately 600 reduce jobs.

3.2. RESULTS

3.2.1. Cloud aspects

The experiment timespan was 14 days. The processing time for

a single map job is approximately 2 h. There are no notice-

able time differences between the execution times of the map

jobs with respect to the geographical location. In large infras-

tructures like the clouds, failures are possible and applications

need to cope with this. In fact, during the experiment the Azure

services became temporary inaccessible 3, due to a failure of a

secured certificate. Despite this problem, the framework was able

to handle the failure with a fault tolerance mechanism which sus-

pended the computation until all Azure services became available

again. The monitoring mechanism of the Splitter, that supervises

the computation progress, was able to restore aborted jobs. The

IterativeReduce approach eliminates the implicit barrier between

mappers and reducers, but yields negligible gains due to the huge

workload of the mappers. The effective cost of the experiment

was approximately equal to 210,000 h of sequential computation,

which corresponds to almost $20,000 (VM pricing, storage and

outbound traffic).

2http://msdn.microsoft.com/fr-fr/library/windowsazure/dn197896.aspx
3Azure Failure Incident: http://readwr.it/tAq
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FIGURE 3 | Configuration used for the experiment. (Lines 1–3): Covariates,

10,000 permutations and five permutations per computation unit (mapper).

(Lines 4–7): 10-folds cross-validated R2. (Lines 9–11): The first step of the

pipeline is an univariate features selection (K = 50, 000). This step is used as a

dimension reduction so that the next step fits in memory. (Lines 12–13): The

second and last step is the ridge estimator with a low penalty (alpha = 0.0001).

FIGURE 4 | Results of the real data analysis procedure. (Left)

predictive accuracy of the model measured by cross-validation, in the

14 regions of interest, and associated statistical significance obtained

in the permutation test. (Up right) distribution of the CV -R2 at

chance level, obtained through a permutation procedure. The

distribution of the max over all ROIs is used to obtain the

family-wise error corrected significance of the test. (Bottom right)

outline of the chosen ROIs.

3.2.2. Application side

Figure 4 shows a summary of the results. Despite the fact that

some prediction scores are negative, the activation signal in each

ROI is fit significantly better than chance using the 50,000 best

genetic variants over the 477,215. The mean BOLD signal is bet-

ter predicted in the left and right thalamus. The distribution of the

CV-R2 is also very informative, showing that by chance the mean

prediction score is negative (familywise-error corrected or not).

While this phenomenon is somewhat counter-intuitive within the

framework of classical statistics, it should be pointed out that

the cross-validation procedure used here opens the possibility of

negative R2: this quantity is by definition a model comparison

statistic that takes the difference between a regression model

with a non-informative model; in high-dimensional settings, a

poorly fitting linear model performs (much) worse than a non-

informative model. Hence a model performing at chance gets

a negative score: This is actually what happens systematically

when the association between y and X is broken by the per-

mutation procedure, even if we consider the supremum over

many statistical tests (Westfall and Young, 1993). A slightly neg-

ative value can thus be the marker of a significant association

between the variables of interest. Twin and SNP-based studies

suggest high heritability of structural brain measures, such as

total amount of gray and white matter, overall brain volume and
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addiction-relevant subcortical regions. Heritability estimates for

brain measures are as high as 0.89 (Kremen et al., 2010) or even

up to 0.96 (van Soelen et al., 2012) and subcortical regions appear

to be moderately to highly heritable. One recent study on subcor-

tical volumes (den Braber et al., 2013) reports highest heritability

estimates for the thalamus (0.80) and caudate nucleus (0.88) and

lowest for the left nucleus accumbens (0.44). Despite the fact that

the CV-R2 metric is not exactly an heritability measurement, our

metric evaluates the predictability of the fitted model (i.e., how

well it predicts the activation signal of a brain region with genetic

measurements on unseen data) which is a good proxy for heri-

tability. Thus, our results confirm that brain activation signals are

an heritable feature in subcortical regions. These experiments can

be used as a basis to further localize the genetic regions (pathways

or genes) that are actually predictive of the functional activation.

An important extension of the present work is clearly to extend

this analysis to the cortical regions.

4. CONCLUSION

The quantitative evaluation of statistical models with machine

learning techniques represents an important step in the com-

prehension of the associations between brain image pheno-

types and genetic data. Such approaches require cross validation

loops to set the hyper-parameters and to evaluate performances.

Permutations have to be used to assess the statistical significance

of the results, thus yielding prohibitively expensive analyses. In

this paper, we present a framework that can deal with such a

computational burden. It relies on two key points: (1) it wraps

the Scikit-learn library to enable coarse grain distributed com-

putation. Yet it enforces some restrictions, i.e., it solves only a

given class of problems (pipeline structure, cross-validation pro-

cedure and permutation test). The result is a simple generic code

(few lines) that provides the user a quick way to conduct early,

small-scale investigations on its own computer or at a larger scale

on a high-performance computing cluster. With JSON we pro-

vide a standard format for the description of statistical inference

so that no programming skills are required and so that it can

be easily generated from a webpage form. (2) TomusBLOB per-

mits to execute seamlessly the very same code on the Windows

Azure cloud. We could also disable some parts of TomusBLOB

to achieve a good compromise between the capabilities and the

robustness. We demonstrate the scalability and the efficiency of

our framework with a 2 weeks geographically distributed execu-

tion on hundreds of virtual machines. The results confirm that

brain activation signals are an heritable feature.
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