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Machine-Learning-Powered EM-Based Framework
for Efficient and Reliable Design of Low

Scattering Metasurfaces
Slawomir Koziel , Senior, Member, IEEE, and Muhammad Abdullah

Abstract— Popularity of metasurfaces has been continuously
growing due to their attractive properties including the ability
to effectively manipulate electromagnetic (EM) waves. Meta-
surfaces comprise optimized geometries of unit cells arranged
as a periodic lattice to obtain a desired EM response. One
of their emerging application areas is the stealth technology,
in particular, realization of radar cross section (RCS) reduc-
tion. Despite potential benefits, a practical obstacle hindering
widespread metasurface utilization is the lack of systematic
design procedures. Conventional approaches are largely intuition-
inspired and demand heavy designer’s interaction while exploring
the parameter space and pursuing optimum unit cell geometries.
Not surprisingly, these are unable to identify truly optimum
solutions. In this article, we introduce a novel machine-learning-
based framework for automated and computationally efficient
design of metasurfaces realizing broadband RCS reduction. Our
methodology is a three-stage procedure that involves global
surrogate-assisted optimization of the unit cells, followed by their
local refinement. The last stage is direct EM-driven maximization
of the RCS reduction bandwidth, facilitated by appropriate
formulation of the objective function involving regularization
terms. The appealing feature of the proposed framework is that
it optimizes the RCS reduction bandwidth directly at the level
of the entire metasurface as opposed to merely optimizing unit
cell geometries. Computational feasibility of the optimization
process, especially its last stage, is ensured by high-quality initial
designs rendered during the first two stages. To corroborate
the utility of our procedure, it has been applied to several
metasurface designs reported in the literature, leading to the RCS
reduction bandwidth improvement by 15%–25% when compared
with the original designs. Furthermore, it was used to design a
novel metasurface featuring over 100% of relative bandwidth.
Although the procedure has been used in the context of RCS
design, it can be generalized to handle metasurface development
for other application areas.
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I. INTRODUCTION

METASURFACES are planar patterned surfaces com-
posed of subwavelength periodic arrays of unit cells [1].

Within the past decade, their unique ability to manipulate
the wavefront fostered utilization in many important applica-
tions, for example, beam-switching antennas, polarization con-
verters, invisibility cloaks, gradient index lenses, holograms,
stealth technology, and many others [2]–[6]. In the stealth
technology, the main bottleneck is to reduce the radar cross
section (RCS) to avoid detection by the enemy’s radar. This
can be accomplished by minimizing the backscattered elec-
tromagnetic (EM) energy from the metallic objects [7]. Some
of the techniques implemented to accomplish RCS reduction
include object reshaping method [8], invisibility cloaking [9],
using radar absorbing materials (RAMs) [10], and active and
passive cancellation [9]. Nevertheless, the downsides of the
aforesaid techniques are narrow RCS reduction bandwidth,
structural complexity, and severe losses.

An alternative approach to reduce the backscattered EM
energy is to replace the conventional metallic surface with arti-
ficially engineered materials (metamaterials). The two promi-
nent design strategies in this regard are to use metamaterials
as an absorber [11]–[14] or to exploit their distinctive property
of manipulating the phase reflection characteristics. In the
former case, the incident EM energy transforms into heat;
hence, backscattering energy can be diminished. Notwithstand-
ing, the RCS reduction bandwidth still remains limited. The
latter involves a periodic combination of artificial magnetic
conductors (AMCs), and perfect electric conductors (PECs),
arranged to attain the desired phase reflection characteristics.
Two types of structures have been proposed that capitalize
on this concept, that is, the EM gradient surface (EGS) [15]
and the checkerboard metasurface [6]. In EGS, the metallic
portion of the surface is substituted by the periodic arrays
of AMC and PEC cells. When the plane wave is incident
from the normal direction, the backscattered energy is tilted
from that direction, thereby reducing the RCS. The funda-
mental condition in EGS is to maintain equal phase difference
between the AMC and PEC unit cells [16]. The nonlinear
relationship between the phase reflection characteristics and
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frequency poses considerable challenges in satisfying the equal
phase difference requirement over a wide frequency band.
In the case of a checkerboard metasurface, the AMC and PEC
cells are organized in an alternate fashion, and the objective
is to maintain 180◦ phase difference between the AMC and
PEC cells. By doing so, the incident EM energy scatters at
four lobes in the diagonal plane [17], leading to low scattering
property of the surface. The main advantages of the afore-
mentioned surfaces include structural simplicity, robustness,
and low profile [18]. However, the AMC structure exhibits
relatively narrowband characteristics; outside the operating
bandwidth, it starts resembling PEC. Consequently, the 180◦

phase difference condition no longer holds. To tackle this
situation, de Cos et al. [19], [20] suggested utilization of two
AMC cells instead of one to realize a dual resonance structure
[21], [22]. The PEC unit cells are replaced by an additional
AMC cell operating at a different resonant frequency. When
exploiting such a structure to accomplish RCS reduction over
a broad frequency band, the phase difference between the two
AMC cells should remain 180◦ while retaining their reflection
amplitudes identical and equal to 1 [17], [23]. In other words,
the phase reflection curves of a pair of unit cells should remain
equidistant over the frequency band where RCS reduction is
to be achieved. Due to the presence of ohmic and tangent
losses, the reflection amplitudes of the combined unit cells are
not precisely the same. Therefore, it has been established that
–10-dB RCS reduction can be maintained over a frequency
band if the phase difference between the two AMC cells
remains within the 143◦–217◦ range (i.e., 180◦± 37◦) [24].
More recently, the concepts of coding metasurfaces [25], diffu-
sion metasurfaces [26], [27], programmable metasurfaces [30],
Huygens’ metasurfaces [31], and cloaking structures [32] have
been proposed, which offer a control over the wavefront in a
more sophisticated manner. The primary advantage of coding
and diffusion metasurfaces over the checkerboard type surfaces
is that it scatters the incident EM waves into all directions.
In addition, coding metasurfaces are also being exploited as
an absorptive surface to realize essential RCS reduction [33].

To date, many metasurface architectures have been proposed
to accomplish wideband RCS reduction [17], [19]–[29]. Due
to the lack of reliable theoretical models, the conventional
design methodologies mostly rely on empirical reasoning,
physical intuition, or trial and error. Additionally, a consider-
able involvement of human interaction makes such methods
laborious and time-consuming, also because full-wave EM
simulations have to be used to evaluate metasurface charac-
teristics in a reliable manner. Altogether, the aforementioned
downsides pose serious questions concerning the efficacy of
experience-driven methods, and their capability of finding truly
optimum designs. Considering the practical design measures,
the problem is additionally exacerbated by highly nonlinear
input–output relationships. Efficient development of high-
performance metasurfaces requires a new algorithmic frame-
work that goes beyond interactive approaches and permits
design automation, reliability, and computational efficiency.
At this point, it should be mentioned that unprecedented
advancements in computing hardware and software consider-
ably increased the popularity and widespread use of rigorous

EM-driven design methodologies, primarily based on numer-
ical optimization [34]. However, direct EM optimization of
metasurface designs when using conventional algorithms may
be prohibitively expensive, especially when global search is
required. A practical workaround is utilization of machine
learning methods [35]–[39], including surrogate modeling
techniques [41]–[44]. Shifting the computational burden to
a cheaper representation of the structure at hand and the
incorporation of other means such as problem decomposition
[45] may expedite the parameter tuning process and enable
globalized search, otherwise infeasible when operating directly
on EM simulation models. At this point, it should be men-
tioned that more generic approaches are also possible, where
parametric optimization of the unit cells (and the metasurface)
of a fixed geometry is replaced by topology optimization. In
this case, the entire geometry of the metasurface is subject to
the optimization process, which brings in additional degrees
of freedom. This type of tasks is often handled using inverse
modeling methods (see [46], [47]).

This article describes a rigorous machine-learning-based
framework for efficient EM-driven design of low scattering
metasurfaces. Its basic components include surrogate modeling
of AMC cells and their concurrent optimization using a
combination of global search and local refinement, as well
as direct local tuning of the entire metasurface. Utilization
of surrogate models allows for expediting the process of
parameter adjustment that aims at broadening the frequency
range for which the phase difference between two AMC
cells remains within the 143◦–217◦ range. Having optimum
unit cell geometries, further EM-driven tuning of the cell
parameters is carried out at the level of the entire checkerboard
metasurface. The process is fast due to the availability of a
good initial design produced at the earlier stages, as well as
utilization of trust-region (TR) gradient algorithm with sparse
sensitivity updates [45]. Moreover, a regularization approach
is used to efficiently handle frequency-localized violations of
the RCS reduction threshold that occur while enhancing the
overall reduction bandwidth. To calculate the RCS reduction
bandwidth of a metasurface, a PEC surface of a similar size is
implemented to be used as a reference surface. In this study,
we considered checkerboard metasurfaces to demonstrate the
utility our framework; nevertheless, the introduced design
optimization methodology is not limited to this particular class
of structures. The presented procedure is generic and can be
applied to any type of metasurface architecture. At the same
time, it should be emphasized that the proposed optimization
procedure addresses the problem of parameter adjustments
of unit cells and metasurfaces of fixed geometry. Topology
optimization is outside the scope of this work.

The presented framework addresses the key challenges of
metasurface design as elaborated on earlier in this section.
It enables fully automated and optimum design within the
assumed parameter space. The design methodology is vali-
dated both numerically and experimentally. The technical nov-
elty and major contributions of this article can be summarized
as follows: 1) the development of machine-learning-powered
framework for reliable and efficient EM-based optimization
of checkerboard metasurfaces; 2) demonstrating the practical
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utility of our approach in the context of broadband meta-
surface design using three application examples; and 3) the
development of a high-performance checkerboard metasur-
face featuring over 100% relative RCS reduction bandwidth.
To the authors’ knowledge, the proposed framework is the first
systematic procedure proposed in the literature for globally
optimum design of low scattering checkerboard metasurfaces.

The remaining part of the article is organized as follows.
In Section II, we formulate the metamodeling-based procedure
for concurrent optimization of the pairs of unit cell geome-
tries. Subsequently, a regularization-based formulation of the
metasurface design problem is provided for broadband RCS
reduction, followed by a complete optimization procedure.
In Section III, we demonstrate the performance of the pro-
posed procedure using three benchmark examples. Section IV
provides experimental validation of the metasurface design
featuring over 100% RCS reduction bandwidth. Section V
concludes the article.

II. MACHINE-LEARNING-POWERED EM-BASED

METASURFACE DESIGN

This section provides a comprehensive description of the
proposed machine-learning-powered EM-driven design pro-
cedure. We start by presenting the metamodel-based proce-
dure for concurrent optimization of the pairs of unit cells
for required reflection phase characteristics. Subsequently,
a regularization-based formulation of the metasurface design
problem is provided for broadband RCS reduction. The section
is concluded with a summary of a complete optimization
procedure. Application of the proposed framework to low
scattering metasurface design will be provided in Section III.

A. Concurrent Unit Cell Optimization by Machine Learning

The purpose of the machine-learning-based optimization
procedure is to find a pair of unit cell designs featuring
the phase difference within the range of 180◦ ± αmax over
a possibly broad frequency range F . Here, αmax is set to 37◦,
as suggested in [24]. The vectors of designable variables for
a pair of unit cells will be denoted as x1 = [x1.1…x1.n]T ∈

X1 and x2 = [x2.1 . . . x2.n]T ∈ X2, and their EM simulated
responses will be represented by P1(x) and P2(x), respectively.
The latter denotes the phase reflection characteristics. The
parameter space X i is determined by the user-defined lower
and upper bounds li = [li.1 . . . li.n]T and ui = [ui.1 . . . ui.n]T so
that li.l ≤ xi.l ≤ ui.l , l = 1,…, n and i = 1, 2. Notwithstanding,
in many practical cases, the topology and hence the vector of
designable variables for the two unit cells is identical.

Initially, the acquisition of the training data is carried out by
uniformly allocating N samples within the parameter spaces,
X1 and X2, and evaluating the EM simulation model to obtain
the corresponding responses. Subsequently, the metamodels S1

and S2 are constructed within X1 and X2 using kriging interpo-
lation [40], [41]. The model is trained using the data samples
{x

(k)
i , Pi (x(k)

i )}k=1,...,Ni , where Pi (x
(k)
i ) and Ni denotes the

EM-simulated response of the kth design and the total number
of training samples for the i th unit cell, respectively. The data
samples are arranged on a rectangular grid, which is a suitable

design of experiment strategy for a low-dimensional case. The
allocation of the grid nodes in each direction is decided based
on the large-scale sensitivity analysis.

Kriging is a Gaussian process-based modeling technique
[40] widely used for constructing interpolating surrogates in a
broad range of applications. For the convenience of the reader,
a brief outline of the technique is provided below assuming
scalar output. Generalization for vector-valued functions is
straightforward. The function of interest is assumed to be of
the form

f (x) = g(x)T β + Z(x) (1)

where g(x) = [g1(x) g2(x)…gN (x)]T are known (here, EM-
simulated) system responses, β = [β1β2 . . . βN ]T are the
unknown hyperparameters, and Z (x) is a realization of a
normally distributed Gaussian random process with zero mean
and variance σ 2. The regression component g(x)T β serves
as a trend function for f , whereas Z (x) manages localized
variations from the trend. The covariance matrix of Z (x) is

Cov
[

Z
(

x(i)
)

Z
(

x( j)
)]

= σ 2 R
([

R
(

x(i), x( j)
)])

(2)

where R is a p × p correlation matrix with Ri j = R(x(i),
x( j)), and R(x(i), x( j)) is the correlation function between data
samples x(i) and x( j). Here, we use a Gaussian correlation
function of the form

R(x, y) = exp

[

−

n
∑

k=1

θk |xk − yk |
2

]

(3)

where θk are the unknown correlation parameters, and xk and
yk are the kth elements of the vectors x and y, respectively.
The kriging model is defined as [40]

s(x) = g(x)T β + rT (x)R−1(h − Gβ) (4)

where

r(x) =
[

R
(

x, x(1)
)

. . . R
(

x, x(p)
)]

(5)

f =
[

f
(

x(1)
)

f
(

x(2)
)

. . . f
(

x(p)
)]T

(6)

and G is a p × N matrix with G i j = Pj (x(i)). The vector of
model parameters β can be computed as

β =
(

GT R−1G
)−1

GT R−1 f . (7)

Finally, model fitting is accomplished by maximum likeli-
hood scheme for θk

−
[

p ln
(

σ 2
)

+ ln |R|
]

/2. (8)

Here, both σ 2 and R are the functions of θk . The com-
ponents of the vector-valued metamodels S1 and S2 of the
phase characteristics P1 and P2, respectively, are the kriging
interpolation surrogates rendered for phase responses at all
individual frequencies in the considered frequency sweep.

Having the trained metamodels S1 and S2, the concurrent
unit cell optimization is carried out over the joint parameter
space of the pair of cells, that is, the Cartesian product X1×X2.
The goal of the optimization procedure is to find a pair of unit
cell designs x∗

p = [(x∗
1)

T (x∗
2)

T ]T maximizing the frequency
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range for which the phase difference between the two satisfies
the condition

180◦ − αmax ≤ �P

(

[

(

x∗
1

)T (

x∗
2

)T
]T

)

≤ 180◦ + αmax. (9)

Specifically, the design task can be formulated as follows:

x∗
p = arg min

x p∈X1×X2

U
(

�P
(

x p

))

(10)

and the objective function U is defined as

U
(

�P
(

x p

))

= −
[

fR

(

x p

)

− fL

(

x p

)]

(11)

where fL and fR are the frequencies defining the largest
continuous frequency range for which condition (9) is satisfied.
The minus sign in (11) turns the maximization task into the
minimization one.

Global optimization is performed based on a structured grid
(in an exhaustive manner). Let Mm1...mn be a rectangular grid
such that xi ∈ Mi.m1...mn if and only if xi = [xi.1…xi.n]T is
of the form xi.k = li.k + ji.k[(ui.k–li.k)/m i.k], k = 1,…, n, and
i = 1, 2, where m i.k is a grid-defining integer for the kth
variable of i th unit cell, and ji.k ∈ {0, 1,…, m i.k}. The initial
approximation x(0)

p of the global optimum of S1 and S2 is
found as

x(0)
p = arg min

x1∈M1.m1 ...mn

x2∈M2.m1 ...mn

U
(

�P
([

(x1)
T (x2)

T
]))

. (12)

In other words, x(0)
p is obtained by exploring all possi-

ble combinations of unit cell designs x1 ∈ M1.m1...mn and
x2 ∈ M2.m1...mn and identifying the one that minimizes U .
After determining x(0)

p , the local refinement is executed using
gradient-based search [48]. The computational cost of the
global and local optimization process is negligible because it
is executed at the level of the fast kriging metamodels S1 and
S2. Additionally, the complete procedure is implemented in a
vectorized manner to further speed-up its operation. Clearly,
there is an initial cost associated with the acquisition of the
training data for surrogate model construction. The latter is
unavoidable to render the aforementioned computational ben-
efits and to enable global search in the first place. The details
concerning the acquisition cost are provided in Section III
in the context of specific verification examples considered
therein.

B. EM-Driven Metasurface Refinement for RCS Reduction

Bandwidth Enhancement

Upon adjusting the unit cell parameters as described in
Section II-A, EM-driven refinement of the entire metasurface
is carried out. This stage is necessary because optimized
dimensions of the cells do not translate into optimum design
of the entire structure; recall that the unit cells were tuned
to satisfy the phase condition (9). To obtain the best possible
performance, the enhancement of the RCS bandwidth has to
be performed directly.

Let xA denote the aggregated (n1 + n2)× 1 geometrical
parameter vector of the pair of the unit cells. Furthermore,
let Rred(xA, f ) represent the frequency characteristics repre-
senting the RCS reduction, that is, the difference between the

Fig. 1. Exemplary RCS reduction characteristics with the RCS bandwidth
marked using the thick horizontal line and representing the largest (contin-
uous) frequency range satisfying the condition Rred( xA, f ) ≥ rmax; here,
rmax = 10 dB.

Fig. 2. Practical issues related to conventional RCS bandwidth reduction
definition. The sequence of plots from (a) to (c) indicates RCS characteristics
at (a) initial design, (b) intermediate design, and (c) optimum design featuring
the largest bandwidth. Because the intermediate design exhibits violation
of the rmax threshold, the bandwidth at this design is significantly smaller
than around the initial design and the optimum design. In other words,
a discontinuity occurs, which can make the optimum design unattainable
from the given initial design when using local optimization routine (the only
practical option for direct EM-driven metasurface design).

monostatic RCS of a reference (metallic) surface and that of
the considered metasurface, where f stands for the frequency.
Conventionally, the RCS reduction bandwidth BRCS to be
maximized is defined as the broadest continuous frequency
range satisfying the condition Rred(xA, f ) ≥ rmax, where rmax

stands for the acceptance threshold (e.g., 6 or 10 dB).
This is illustrated in Fig. 1. The problem with this definition

has been indicated in Fig. 2. If the initial and the optimum
design are separated by the designs that violate the acceptance
threshold rmax [see Fig. 2(b)], a discontinuity of the bandwidth
value will be observed along the path connecting the two
designs, which essentially prevents local (e.g., gradient-based)
optimization algorithm from reaching the optimum.

The latter is the only practical option for direct EM-driven
metasurface tuning due to high costs incurred by structure
evaluation. On the other hand, a situation as illustrated in Fig. 2
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Fig. 3. Exemplary RCS characteristic with the lower frequency fL , upper
frequency f H , and rmax violation dr marked to indicate the defining quantities
of the objective function for RCS reduction bandwidth improvement.

is a commonplace because the optimum design would often
correspond to the RCS characteristics almost violating the
threshold at certain frequencies [see Fig. 2(c)]. Consequently,
an efficient adjustment of metasurface parameters needs a
different formulation of the objective function.

Consider Fig. 3, where the frequencies fL and fH stand
for the minimum and the maximum frequencies (within
the considered simulation range) for which the condition
Rred(xA, f ) ≥ rmax is satisfied. Let dr stand for the maxi-
mum violation of the above condition within the frequency
interval [ fL fH ]. Using these, the objective function URCS for
metasuface tuning will be defined as

URCS(x A) = −[ fH (x A) − fL(x A)] + βcr (x A)2. (13)

The first term in (5) is the negative RCS reduction band-
width (to turn the task into a minimization problem). The sec-
ond component is a regularization term with the function cr

defined as cr (xA) = dr if dr > 0 and zero otherwise. Its
purpose is to increase the objective function if violation of the
acceptance threshold is detected.

The contribution of the regularization term is controlled by
coefficient β. Here, it is set to β = 1, but this value is not
critical. Nevertheless, it can be used to control the amount of
violation that can be tolerated.

The most important advantage of formulation (13) is that is
effectively alleviates the difficulty related to conventional for-
mulation. In particular, the objective function does not exhibit
discontinuities related to in-band violation of the acceptance
threshold, which makes the optimum design attainable through
local search for situations depicted in Fig. 2.

The optimization process is realized using the TR gradient
search algorithm [48], [50]. The parameter tuning task is
formulated as

x∗
A = arg min

x A∈X1×X2

URCS(x A). (14)

The TR algorithm renders a series of approximations x
( j)
A ,

j = 0, 1,…, to x∗
A as

x
( j+1)
A = arg min

x∈X1×X2

x
( j )
A −d( j )≤xA≤x

( j )
A −d( j )

L
( j)
RCS(x A) (15)

where L
( j)
RCS is the objective function of the form of (13)

but computed from the first-order Taylor expansion model of
Rred(xA, f ) established at the current iteration point x

( j)
A .

The construction of the Taylor model requires the knowl-
edge of the Jacobian matrix of Rred, which is estimated using
finite differentiation in the first iteration and then updated by
the adaptive application of the rank-one Broyden formula [45].
Using this approach, the tuning process can be realized at a low
computational cost, typically about M · n of EM simulations
of the metasurface, where n is the number of geometrical
parameters, and M = 3–4. The TR size vector d( j) is adjusted
by means of the standard TR rules [48].

C. Optimization Framework

The algorithm starts by defining the lower and upper bounds
to determine the parameter spaces X i and allocating Ni

samples. The rectangular grids Mi (see Section II-A) are
established by investigating the large-scale sensitivities of
the unit cell responses to their geometrical parameters. The
training data are obtained by evaluating the EM simulation
model at the assigned locations. In the next step, the kriging
metamodels S1 and S2 are constructed and used as predictors
of a unit cell reflection phase characteristics over the spaces
X i . The concurrent unit cell optimization is then carried out
to find a pair of cell designs featuring the phase difference
within a particular range.

The first stage of this process is a global search (4), followed
by local (gradient-based) tuning. Having the optimum pair
of unit cells, their periodic arrays are used in an alternate
manner to characterize a checkerboard metasurface. Finally,
EM-driven fine tuning of the cell parameters is carried out at
the level of the entire surface. This stage follows the procedure
described in detail in Section II-B.

The proposed framework enables expedited and effi-
cient development of high-performance metasurfaces featuring
broadband RCS reduction characteristics. The flow diagram
of the machine-learning-powered EM-based design framework
has been shown in Fig. 4, whereas Fig. 5 shows the flow
diagram of the local tuning procedure.

III. APPLICATION EXAMPLES

This section presents the operation and performance of
the machine-learning-powered EM-based design procedure
using three application case studies. We start by applying the
proposed framework to a geometrically simple structure. This
example is also used to explain and emphasize the impor-
tance of various components of the algorithmic procedure.
Subsequently, two more cases are considered featuring more
complex unit cell geometries. The obtained RCS reduction
bandwidths are compared with those reported in the source
article. A discussion of the results and various aspects of the
presented framework is also provided in the last part of this
section. The experimental validation of one of the considered
metasurfaces will be discussed in Section IV.

A. Case 1: Checkerboard EBG Surface Utilizing Rectangular

and Circular Cell Topologies

Our first application example is a checkerboard surface
consisting of a rectangular and circular shape unit cells. The
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Fig. 4. Flow diagram of the proposed machine-learning-powered EM-based
framework for developing low scattering metasurfaces.

Fig. 5. Flow diagram of the EM-based local refinement stage.

cell geometries and the entire surface configuration are shown
in Figs. 6 and 8, respectively. The structure is based on a
design proposed in [23]. It is implemented on a ground-
backed Rogers RT/duroid 5880 lossy substrate (εr = 2.2,
h = 6.35 mm, tanδ = 0.0009). During the simulations,
metallization is represented as perfect electrical conductor
(PEC). The overall size of a single unit cell is Ws × Ls =

15 × 15 mm2. As shown in Fig. 6, there are two geometrical
parameters l and w, for Cell 1, and one parameter d for Cell 2
that control the design topology of a corresponding unit cell.

Fig. 6. Geometries of the optimized unit cell designs: Cell 1 (left), and Cell
2 (right).

Fig. 7. Reflection performance of the optimized unit cells: reflection
amplitude (top) and reflection phase (bottom). The responses of Cell 1 and
Cell 2 are marked gray and black, respectively, whereas the blue curve
indicates the reflection phase difference. The gray-shaded area in the bottom
plot indicates the range of acceptable phase differences.

Fig. 8. Geometry configuration of the optimized metasurface (after three-
stage optimization procedure).

Hence, the vectors of designable variables are x1 = [lw]T and
x2 = [d]T ; Ls , Ws , Wss , Lss , and s are all fixed. The sample
spaces X1 and X2 are defined by the lower and upper bounds
as: l1 = [12 12]T , u1 = [14.9 14.9]T , and l2 = 1, u2 = 5; all
dimensions are in millimeters.

For constructing metamodels S1 and S2, the training points
are arranged in a uniform grid M14.14 and M100 (see Section
II-A) with a total of 196 and 100 samples in the sample
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spaces X1 and X2, respectively. A joint parameter space is the
Cartesian product X1× X2. The acquired data are divided into
the training (85%) and the test data (15%) to be used for split-
sample error estimation. The frequency-domain solver of the
CST Microwave Studio is used to evaluate the phase reflection
responses of the unit cell.

The trained metamodels have been used at the concurrent
unit cell optimization stages (procedure of Section II-A) to
find the pair of designs, and the optimal geometries obtained
in the process are x∗

1 = [13.5263, 13.0684]T and x∗
2 = 2.2814.

Their topologies are shown in Fig. 6, and the EM-simulated
reflection response along with the reflection phase difference
between the two cells are presented in Fig. 7. It can be
observed that condition (1) is satisfied for the continuous range
of frequencies from 3.6 to 8.2 GHz, and hence the latter can
be anticipated as the approximate RCS reduction bandwidth
of the entire metasurface.

Having the optimal pair of unit cell designs, their periodic
arrays are implemented in an alternate manner to characterize
a 2 × 2 checkerboard metasurface; see Fig. 8. Each lattice
of a periodic surface comprises 16 elements, that is, 4 × 4
planar array of Cell 1 or Cell 2. The total size of the surface
is Wss × Lss = 120 × 120 mm2. The interelement spacing
of individual unit cells in an array is s = 15 mm. Again,
the surface is implemented on a Rogers RT/duroid 5880 lossy
substrate. To characterize the RCS reduction performance,
a PEC surface of a similar size is also used. Hereafter, the EM-
driven approach (see Section II-B) is adopted to fine-tune the
RCS reduction bandwidth in the vicinity of the optimal cell
geometries, following their surrogate-assisted global optimiza-
tion and local refinement. To this end, the time-domain solver
of CST Microwave Studio, MATLAB R2018a, and MATLAB-
to-CST socket (for communication with the EM solver) is
used.

To obtain the best possible performance, the optimization
of the RCS reduction bandwidth has to be performed at the
level of the entire metasurface. The availability of a good
starting point, identified earlier, is critical to ensure reliability
of the tuning process. In particular, it makes the utilization
of the gradient-based algorithm sufficient to find a global
optimum with a high likelihood. This is due to optimizing
the unit cells in a global sense and the fact that the properties
of the phase difference characteristics are good estimators of
the RCS reduction bandwidth at the metasurface level. At the
same time, utilization of the local optimization algorithm with
its low computational cost is the only practical option when
optimizing the EM model of the entire structure.

The optimum design obtained after the completion of the
procedure given in Section II-B is x∗

A = [13.952, 5.824,
3.151]T . To corroborate the utility of a proposed design frame-
work in the context of broadband RCS reduction, the mono-
static RCS performance for the normal incidence has been
determined. For the sake of comparison, the RCS perfor-
mance reported in [23], the RCS reduction bandwidth obtained
after designing the surface based on the optimum geometries
identified after the procedure of Section II-A, and the final
RCS characteristic upon accomplishing the metasurface opti-
mization are all gathered in Fig. 9. It can be observed that

Fig. 9. Monostatic RCS performance of the metasurface design reported
in [23] (gray), performance after the first and the second optimization stages
(Section II-A) (black), and the performance of the final design (Section II-B)
(blue). The horizontal red line represents the 10-dB RCS reduction threshold
relative to the PEC surface.

the machine-learning-based concurrent unit cell optimization
considerably increases the bandwidth compared with the con-
ventional design approach. The EM-driven optimization of the
entire structure further extends the RCS reduction bandwidth.
It should be noted that the violation of the 10-dB threshold
occurring at certain frequencies upon metamodeling-assisted
cell optimization is efficiently handled by the TR algorithm.
The 10-dB RCS reduction bandwidth at the final design
extends from 4.1 to 9.7 GHz. This result corroborates the
importance of EM-driven optimization at the metasurface level
and demonstrates the efficacy of the methodology proposed in
this work. The computational cost of the first and the second
stage (machine-learning-powered unit cell optimization) is
negligible, whereas the cost of EM-driven refinement stage
is 15 metasurface simulations.

Throughout this work, Intel Xeon E5540 dual-core machine
with 18-GB RAM is used. The EM simulation model of the
unit cell and the entire surface contains about 19 000 and 563
000 mesh cells, respectively. The simulation time of the unit
cell and the metasurface is about 40 s and 2 min, respectively.
The CPU time required for training data acquisition is about
3 h, whereas the time required for the refinement stage is
30 min. As mentioned before, the cost of global and local
optimization of the unit cells (conducted at the level of the
kriging surrogate) is negligible. Consequently, the overall CPU
time of the entire design optimization procedure is about 3 h
30 min.

The bistatic RCS performance versus the elevation angle
theta θ along the principal and the diagonal planes is shown
in Fig. 10. The results demonstrate that the metasurface
exhibits more than the 15-dB RCS reduction in the principal
and the diagonal planes, compared with the metallic surface.
This reduction occurs because the reflected fields are redi-
rected into four main lobes, instead of the single main lobe in
the case of the metallic surface.
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Fig. 10. Bistatic RCS performance at 5.5 GHz along the principal planes
(top) and along the diagonal planes (bottom). The curves corresponding to
the two planes ϕ = 0/45 and ϕ = 90/135 are marked in blue and gray,
respectively, whereas the black curve indicates the scattered field from the
PEC surface.

Fig. 11. Geometries of the optimized unit cell designs (upon applying the
procedure of Section II-A): Cell 1 (left) and Cell 2 (right).

B. Case 2: Checkerboard Metasurface Applying

Mushroom-Like Cell Topologies

The second structure under consideration is more chal-
lenging in the sense of being based on more complex unit
cell geometries described by a larger number of designable
parameters. It is a checkerboard metasurface comprising
mushroom-like unit cells; see Figs. 11 and 13. The structure is
implemented on a ground-backed Arlon AD250 lossy substrate
(εr = 2.5, h = 1.5 mm, tanδ = 0.0018). The overall size
of a single unit cell is Ws × Ls = 6 × 6 mm2. There
are three geometrical parameters that determine the shape of
each unit cell designs, that is, Cell 1 and Cell 2. Therefore,
the two vectors of designable variables are x1 = [p1b1 d1]T

and x2 = [p2b2d2]T ; Ls , Ws , Lss , Wss , and s are all fixed.
The parameter space X1 = X2 = X is determined by the
user-defined lower and upper bounds as: l = [3.5 0.3 0.2]T ,
u = [10 1.6 2.4]T ; all dimensions are in millimeters. In this
case study, the underlying topology of the two unit cells is the
same, as opposed to the previous case study, where the two
unit cells were based on entirely different structures.

For constructing a metamodel S, the training points are
arranged in a uniform grid M7.12.7 (see Section II-A) with

Fig. 12. Reflection performance of the optimized unit cells: reflection
amplitude (top) and reflection phase (bottom). The responses of Cell 1 and
Cell 2 are marked in black and gray, respectively, whereas the blue curve
indicates the reflection phase difference. The gray-shaded area in the bottom
plot indicates the range of acceptable phase differences.

Fig. 13. Geometry configuration of the optimized metasurface (after three-
stage optimization procedure).

a total of 588 samples in the space X . As mentioned earlier,
the underlying topologies of both the cells are identical, and
therefore, only a single metamodel is needed. Similarly as for
the first example, the accumulated data are divided into the
training (85%) and the test data (15%) to be used for split-
sample error estimation. The frequency-domain solver of the
CST Microwave Studio is used to evaluate the phase reflection
responses of the unit cell.

Having a trained metamodel S, the concurrent unit cell
adjustment is performed (see the procedure of Section II-A)
to find a pair of optimum designs. The geometries obtained
after completion of the surrogate-assisted global and local
optimization are x∗

1 = [4.222, 1.600, 2.400]T and x∗
2 =

[4.944, 0.878, 0.930]T . The designs are shown in Fig. 11,
whereas their EM-simulated reflection performance along with
the reflection phase difference are presented in Fig. 12. The
expected RCS reduction bandwidth that can be deduced from
the phase reflection response is from 17 to above 35 GHz.

After finding the optimized pair of unit cells, the checker-
board metasurface is characterized following a similar proce-
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Fig. 14. Monostatic RCS of a metasurface after first and second optimization
stages (see Section II-A) (black) and the RCS performance after the final
stage (Section II-B) (blue). The horizontal red line represents the 6-dB RCS
reduction threshold relative to the PEC surface.

dure as discussed for the first application example. The surface
configuration is shown in Fig. 13. The total size of the surface
is Wss× Lss = 48 × 48 mm2. The interelement spacing of
individual unit cells in an array is s = 6 mm. The surface is
implemented on Arlon AD250 lossy substrate.

Again, the EM-driven local tuning is performed at this
stage (see Section II-B). The design obtained at the final
optimization stage is x∗

A = [4.492, 1.601, 4.296, 3.485, 0.795,
0.382]T . To quantify the performance of the proposed design
framework, the RCS reduction bandwidth obtained when the
metasurface is implemented using the cell designs identified
by the procedure of Section II-A, and the reduction bandwidth
obtained at the final design is demonstrated in Fig. 14.

It can be observed that the machine-learning-based cell
optimization procedure already ensures a broadband RCS
reduction performance. However, the performance is consid-
erably improved after applying the EM-driven optimization.
The 6-dB RCS reduction bandwidth extends from 13 to over
40 GHz. Owing to the implemented acceleration mechanisms,
the cost of the final refinement stage is only 32 EM simulations
of the metasurface.

In this case, the EM simulation model of the unit cell and
the entire surface contains about 22 000, and 2 400 000 mesh
cells, respectively. The corresponding simulation times are 70 s
and 30 min, respectively. The CPU time required for training
data acquisition is about 11 h, whereas the time required for
the refinement stage is about 15 h. Consequently, the overall
CPU time of the entire design optimization procedure is about
26 h.

Finally, the scattered field as a function of the elevation
angle theta θ along the principal and the diagonal planes are
presented in Fig. 15. The bistatic RCS performance of the
metasurface is compared with the PEC surface of similar size.
The results indicate that the metasurface offers nearly 20-dB
RCS reduction in both the principal and the diagonal planes.

Fig. 15. Bistatic RCS performance at 25 GHz along the principal planes
(top) and along the diagonal planes (bottom). The responses at the two planes
corresponding to ϕ = 0/45 and ϕ = 90/135 are marked in blue and gray,
respectively, whereas the black curve indicates the scattered field from the
PEC surface.

Fig. 16. Geometries of the optimized unit cell designs (as reported in [17]):
Cell 1 (left) and Cell 2 (right).

Fig. 17. Geometry configuration of the optimized metasurface (obtained
using the optimization procedure of Section II-B).

C. Case 3: Metasurface Using Jerusalem Cross-Shaped Unit

Cells

The final application example is based on a surface pre-
sented in [17]. It consists of a Jerusalem-cross-shaped unit
cell topology. The unit cell geometries and the entire surface
configuration are shown in Figs. 16 and 17, respectively. In
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Fig. 18. Monostatic RCS performance of a metasurface design reported in
[17] (gray) and after applying the proposed framework of Section II (blue).
The horizontal red line represents the 10-dB RCS reduction threshold relative
to the PEC surface.

this case, a ground-backed Rogers 3010 lossy substrate (εr =

10.2, h = 1.27 mm, tanδ = 0.0022) is used to design the
individual unit cells and the complete metasurface. The size
of a single unit cell is Ws × Ls = 4 × 4 mm2. There are three
geometrical parameters in both unit cells, and hence the two
vectors of designable variables are x1 = [l1l2w1]T and x2 =

[l3l4w2]T ; Ls , Ws , Lss , Wss , and s are all fixed. The sample
space X1 = X2 = X is determined by the lower and upper
bounds as: l = [0.5 0.2 0.1]T , u = [2 1 0.3]T ; all dimensions
are in millimeters.

For constructing a surrogate S, the training points are
arranged in a uniform grid M9.9.7 with a total of 567 samples
in the space X . Again, the accumulated data are divided into
the training (85%) and the test data (15%) to be used for split-
sample error estimation. As in the first and second examples,
the concurrent unit cell optimization is performed to find a pair
of designs. The optimal geometries obtained after completion
of the surrogate-assisted global and local optimization are
x∗

1 = [0.5408, 0.2704, 0.1769]T and x∗
2 = [1.9694, 0.9847,

0.3]T .
The checkerboard metasurface is implemented using the

optimum unit cell geometries; see Figs. 16 and 17. The overall
size of the metasurface is Wss × Lss = 48 × 48 mm2, and
the intercell spacing is s = 4 mm. The EM-driven design
optimization procedure is subsequently used in the final design
x∗

A = [0.668, 0.716, 0.201, 1.905, 0.902, 0.317]T . The cost
of the final tuning stage is only 56 EM simulations of the
metasurface. The monostatic RCS reduction performance as
a function of frequency is presented in Fig. 18. As expected,
the considerable threshold violations present after the first and
the second optimization stages are greatly reduced at the final
design.

In this case, the EM simulation model of the unit cell
and the entire surface contains about 25 000 (simulation time
75 s) and 1 700 000 mesh cells (simulation time 33 min),
respectively. The simulation time required by the training stage

Fig. 19. Bistatic RCS performance at 17 GHz along the principal planes
(top) and along the diagonal planes (bottom). The characteristics at the two
planes corresponding to ϕ = 0/45 and ϕ = 90/135 are marked in blue and
gray, respectively, whereas the black curve indicates the scattered field from
the PEC surface.

TABLE I

DESIGN PERFORMANCE AT VARIOUS STAGES OF THE

PROPOSED FRAMEWORK

is approximately 12 h, and the total time required for entire
design optimization procedure to complete is about 42 h.

Notwithstanding, a 10-dB RCS reduction threshold is still
slightly violated at certain frequencies. Overall, the RCS
bandwidth is extended by about 3 GHz when compared with
the design reported in [17].

Fig. 19 shows the bistatic RCS performance versus the
elevation angle theta θ along the principal and the diagonal
planes. The results imply that the optimized metasurface
features more than the 15-dB RCS reduction in the principal
and the diagonal planes, compared with the PEC surface.

D. Discussion

The breakdown of the results obtained at different stages
of the proposed design optimization framework is provided
in Table I. It can be observed that for the first verification
case, the machine-learning-assisted unit cell optimization itself
yields 9% enhancement of the fractional RCS reduction band-
width when compared with the previously reported results,
based on the traditional design methods. The EM-driven fine-
tuning leads to additional 10% improvement. In the second
application example, the improvement is as high as over 21%
due to EM-based tuning of the metasurface. Note that the
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Fig. 20. Photograph of the prototyped checkerboard metasurface.

absence of any prior work for this geometry only allows
us to compare the performance of individual components of
our framework. A similar trend has been observed for the
third example where application of the proposed algorithmic
framework improves the fractional RCS reduction bandwidth
from 39% to about 56%. Altogether, it can be concluded
that our procedure allows for significant fractional bandwidth
enhancements at the level of 15%–25%, when compared with
the existing methodologies.

In more general terms, it should be emphasized that the
presented design procedure offers several advances over the
traditional methods. First, a machine-learning-powered unit
cell optimization ensures globally optimum solution within the
parameter space which was not previously achievable using
experience-driven methods. Having a good initial design upon
the accomplishment of the first and the second stages of the
algorithm, fine-tuning of the RCS reduction bandwidth through
EM-driven optimization can be realized efficiently. It is further
accelerated by means of sparse sensitivity updates.

It is worth mentioning that the employment of the reg-
ularization term allows for efficient handling of frequency-
localized violations, which leads to a seamless improvement of
the overall RCS reduction bandwidth, which is not achievable
using conventional formulation of the design task. Addition-
ally, our methodology is fully automated. Once the design
problem is formulated in a requisite manner, the algorithm
successfully finds the best possible design within a realistic
timespan and computational resources.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, the experimental validation of the metasur-
face using mushroom-like unit cell designs (see Section III-B)
is presented. The monostatic RCS measurement setup is
described, and the simulation results are corroborated with the
corresponding measurements. Finally, the metasurface perfor-
mance is benchmarked against the state-of-the-art structures.

A. Measurement Setup and Experimental Validation

The structure described in Section III-B has been fabricated
to verify the EM simulation results. A photograph of the proto-
typed metasurface is shown in Fig. 20. The RCS performance
of a metasurface has been evaluated in terms of reflectivity,
owing to limited amenities. The equivalent PEC surface has
been used as a reference to quantify the RCS reduction of a
metasurface under consideration.

Fig. 21. Block diagram of the measurement environment.

Fig. 22. Measurement setup at Reykjavik University.

The measurement setup consists of a vector network
analyzer and the two linearly polarized horn antennas
(PE9850/2F-15), used as the transmitter and the receiver,
respectively. To certify normal incidence of the impinging
waves on a structure, the two antennas are place vertically to
the surface under test. The distance between the surface and
the antennas is maintained to ensure far-field conditions. The
schematic of the measurement setup can be found in Fig. 21.
The scattering performance of a surface under test is evaluated
by the antenna transmission coefficient, captured by the vector
network analyzer. In the same way, the reflection from the
equivalent PEC surface has been measured for comparison.
The measurements have been carried out using the anechoic
chamber of Reykjavik University (see Fig. 22).

Fig. 23 presents the simulation and measurement results
in a monostatic environment. There are several factors that
contribute to the slight disagreement between the two data
sets. The misalignment of the transmitting/receiving antenna
with respect to surface under test contributes predominantly.
Needless to say, proper orientation of a metasurface (realized
manually) is a challenging endeavor. A slight misalignment
here may lead to fairly large inconsistencies. However, it is
evident that the measured RCS reduction follows a similar
trend as its simulated counterpart. Additionally, the measured
RCS reduction performance agrees to the 6-dB threshold
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Fig. 23. Measured (black) and simulated (gray) RCS reduction performance
comparison. The red curve indicates the 6-dB RCS reduction threshold.

Fig. 24. RCS reduction characteristics of a 2 × 2 (black) and 6 × 6 (gray).
The red curve indicates the 6-dB RCS reduction threshold.

in the frequency range of 26.5–40 GHz. The measurement
has been limited to over 26.5 GHz due to the available
hardware. The above findings allow us to conclude that the
designed metasurface features low the scattering property in a
broadband frequency range, and therefore, it has the potential
to replace the metallic surfaces in applications where high
stealthiness is essential.

The primary reason for considering a 2 × 2 metasurface
throughout the study is that the RCS reduction performance
is always normalized to equivalent size PEC surface, and
therefore, the size of the metasurface is a nominal factor.
This issue has been discussed in the literature (see [17],
[23]). In particular, it has been argued that the RCS reduction
performance of a 2 × 2 metasurface with reference to a
metallic surface is a decent representative of the corresponding
structure of a larger size. This has been numerically corrobo-
rated through a comparative study carried out to compare the
RCS reduction performance of a 2 × 2 and 6 × 6 metasurface,
using the design described in Section III-B. Fig. 24 shows the
comparison between these two cases. It can be observed that
the RCS reduction responses are well-aligned, which can be
viewed as a comparison of the RCS performance invariance
with respect to the metasurface size in the considered context.

B. Benchmarking

The main purpose of this article was to propose a systematic
framework for computationally efficient and reliable design

TABLE II

DESIGNED METASURFACE VERSUS STATE-OF-THE-ART DESIGNS

optimization of low scattering metasurface. In the course
of verification of the presented methodology, it has been
demonstrated that it does allow for obtaining higher quality
designs than those produced by traditional design approaches.

Here, for the sake of supplementary validation, the meta-
surface considered in Section III-B is benchmarked against
the state-of-the-art designs from the literature to emphasize
that our approach is capable of yielding structures that are
competitive in terms of relevant performance figures. The
latter, for low observable metasurface designs, is primarily
the continuous range of frequencies rendering RCS reduction
characteristics, when compared with the equivalent metallic
surface. For fair assessment, the comparison is carried out
in terms of the fractional/relative RCS reduction bandwidth.
As indicated in Table II, the presented metasurface design out-
performs a number of other reported structures. Additionally,
our design covers several radar frequency bands, including Ku,
K, and Ka. Consequently, it can be used in a wide selection
of applications.

V. CONCLUSION

In this article, we proposed a machine-learning-powered
EM-driven design framework to enable the development
of high-performance metasurfaces featuring broadband RCS
reduction. The latter is particularly desirable in stealth tech-
nology, empowering combat aircrafts to potentially evade
the enemy’s radar to a satisfactory extent. Our framework
uses fast metamodels replacing CPU-intensive EM simulations
during the initial stages of the design procedure, followed
by the expedited EM-driven fine-tuning of the metasurface
geometry parameters. Using the surrogate as a fast predictor
replacing the EM-simulation model allows us to significantly
accelerate the process of determining globally optimal unit cell
geometries, that is, maximizing the frequency range for which
the required phase difference (here, 180◦± 37◦) is maintained.
The computational cost of the training stage is very much
practical (typically, up to a few hours), and it significantly
reduces the overall cost of the metasurface design procedure.
As a matter of fact, surrogate-assisted approach enables global
search, otherwise infeasible when using conventional means.
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Subsequently, EM-driven adjustment of the geometry para-
meters is carried out at the level of the entire metasurface
to directly extend the RCS reduction bandwidth. The opti-
mization is realized by applying TR gradient algorithm with
sparse sensitivity updates. Furthermore, the objective function
for the process is modified by incorporating a regularization
term to efficiently handle frequency-localized violations of the
RCS reduction threshold. This demonstrably leads to improved
reliability and quality of the design process when compared
with a conventional formulation of the optimization task.

The design utility of the proposed framework is compre-
hensively validated using three practical examples, also sup-
ported by the experimental validation of a high-performance
metasurface involving mushroom-like unit cells. Here, we only
considered checkerboard-type metasurfaces; nevertheless,
the introduced design optimization methodology is not limited
to this particular class of structures. The framework is generic,
and it can be applied to any other architecture as long as it is
of fixed topology (i.e., the design task can be formulated as the
adjustment of geometry/material parameters of the structure).
Optimization of the metasurface topology is out of the scope of
this work. The overall computational cost of the optimization
process typically corresponds to a few dozens of EM simula-
tions of the entire surface at hand, which is remarkably low
given that the design process is carried out in a global sense.

The prototyped metasurface has been benchmarked against
state-of-the-art designs and demonstrated to be superior in
terms of the RCS reduction bandwidth. This further corrobo-
rates the efficacy of the proposed algorithmic framework in
the development of minimum detectable metasurfaces. The
obtained results also reconfirm that optimization of small (2
× 2) surfaces is sufficient in the considered context (i.e., with
the reference to a metallic surface).

The authors believe that the algorithmic procedure proposed
in this work can be adopted to design of metamaterials and
metasurfaces for other application areas so as to address the
challenges specific to the respective fields. These include but
are not limited to high-gain antennas, optical filters, radomes,
and medical devices.
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