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Machine learning prediction 
in cardiovascular diseases: 
a meta‑analysis
chayakrit Krittanawong1,9*, Hafeez Ul Hassan Virk2, Sripal Bangalore3, Zhen Wang4,5, 
Kipp W. Johnson6, Rachel Pinotti7, HongJu Zhang8, Scott Kaplin9, Bharat Narasimhan9, 
takeshi Kitai10, Usman Baber9, Jonathan L. Halperin9 & W. H. Wilson Tang10

Several machine learning (ML) algorithms have been increasingly utilized for cardiovascular disease 
prediction. We aim to assess and summarize the overall predictive ability of ML algorithms in 
cardiovascular diseases. A comprehensive search strategy was designed and executed within the 
MEDLINE, Embase, and Scopus databases from database inception through March 15, 2019. The 
primary outcome was a composite of the predictive ability of ML algorithms of coronary artery 
disease, heart failure, stroke, and cardiac arrhythmias. Of 344 total studies identified, 103 cohorts, 
with a total of 3,377,318 individuals, met our inclusion criteria. For the prediction of coronary artery 
disease, boosting algorithms had a pooled area under the curve (AUC) of 0.88 (95% CI 0.84–0.91), and 
custom-built algorithms had a pooled AUC of 0.93 (95% CI 0.85–0.97). For the prediction of stroke, 
support vector machine (SVM) algorithms had a pooled AUC of 0.92 (95% CI 0.81–0.97), boosting 
algorithms had a pooled AUC of 0.91 (95% CI 0.81–0.96), and convolutional neural network (CNN) 
algorithms had a pooled AUC of 0.90 (95% CI 0.83–0.95). Although inadequate studies for each 
algorithm for meta-analytic methodology for both heart failure and cardiac arrhythmias because the 
confidence intervals overlap between different methods, showing no difference, SVM may outperform 
other algorithms in these areas. The predictive ability of ML algorithms in cardiovascular diseases is 
promising, particularly SVM and boosting algorithms. However, there is heterogeneity among ML 
algorithms in terms of multiple parameters. This information may assist clinicians in how to interpret 
data and implement optimal algorithms for their dataset.

Machine learning (ML) is a branch of arti�cial intelligence (AI) that is increasingly utilized within the �eld 
of cardiovascular medicine. It is essentially how computers make sense of data and decide or classify a task with 
or without human supervision. �e conceptual framework of ML is based on models that receive input data 
(e.g., images or text) and through a combination of mathematical optimization and statistical analysis predict 
outcomes (e.g., favorable, unfavorable, or neutral). Several ML algorithms have been applied to daily activities. 
As an example, a common ML algorithm designated as SVM can recognize non-linear patterns for use in facial 
recognition, handwriting interpretation, or detection of fraudulent credit card  transactions1,2. So-called boost-
ing algorithms used for prediction and classi�cation have been applied to the identi�cation and processing of 
spam email. Another algorithm, denoted random forest (RF), can facilitate decisions by averaging several nodes. 
While convolutional neural network (CNN) processing, combines several layers and apples to image classi�cation 
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and  segmentation3–5. We have previously described technical details of each of these  algorithms6–8, but no con-
sensus has emerged to guide the selection of speci�c algorithms for clinical application within the �eld of car-
diovascular medicine. Although selecting optimal algorithms for research questions and reproducing algorithms 
in di�erent clinical datasets is feasible, the clinical interpretation and judgement for implementing algorithms 
are very challenging. A deep understanding of statistical and clinical knowledge in ML practitioners is also a 
challenge. Most ML studies reported a discrimination measure such as the area under an ROC curve (AUC), 
instead of p values. Most importantly, an acceptable cuto� for AUC to be used in clinical practice, interpretation 
of the cuto�, and the appropriate/best algorithms to be applied in cardiovascular datasets remain to be evalu-
ated. We previously proposed the methodology to conduct ML research in  medicine6. Systematic review and 
meta-analysis, the foundation of modern evidence-based medicine, have to be performed in order to evaluate 
the existing ML algorithm in cardiovascular disease prediction. Here, we performed the �rst systematic review 
and meta-analysis of ML research over a million patients in cardiovascular diseases.

Methods
�is study is reported in accordance with the Preferred Reporting Information for Systematic Reviews and Meta-
Analysis (PRISMA) recommendations. Ethical approval was not required for this study.

Search strategy. A comprehensive search strategy was designed and executed within the MEDLINE, 
Embase, and Scopus databases from database inception through March 15, 2019. One investigator (R.P.) 
designed and conducted the search strategy using input from the study’s principal investigator (C.K.). Con-
trolled vocabulary, supplemented with keywords, was used to search for studies of ML algorithms and coronary 
heart disease, stroke, heart failure, and cardiac arrhythmias. �e detailed strategy is available from the reprint 
author. �e full search strategies can be found in the supplementary documentation.

Study selection. Search results were exported from all databases and imported into  Covidence9, an online 
systematic review tool, by one investigator (R.P.). Duplicates were identi�ed and removed using Covidence’s 
automated de-duplication functionality. �e de-duplicated set of results was screened independently by two 
reviewers (C.K. and H.V.) in two successive rounds to identify studies that met the pre-speci�ed eligibility cri-
teria. In the initial screening, two investigators (C.K. and H.V.) independently examined the titles and abstracts 
of the records retrieved from the search via the Covidence portal and used a standard extraction form. Con�icts 
were resolved through consensus and reviewed by other investigators. We included abstracts with su�cient eval-
uation data, including methodology, the de�nition of outcomes, and an appropriate evaluation matrix. Studies 
without any kind of validation (external validation or internal validation) were excluded. We excluded reviews, 
editorials, non-human studies, letters without su�cient data.

Data extraction. We extracted the following information, if possible, from each study: authors, year of 
publication, study name, test types, testing indications, analytic models, number of patients, endpoints (CAD, 
AMI, stroke, heart failure, and cardiac arrhythmias), and performance measures ((AUC, sensitivity, speci�city, 
positive cases (the number of patients who used the AI and were positively diagnosed with the disease), negative 
cases (the number of patients who used the AI and were negative with the AI test), true positives, false positives, 
true negatives, and false negatives)). CAD was de�ned as coronary artery stenosis > 70% using angiography or 
FFR-based signi�cance. Cardiac arrhythmias included studies involving bradyarrhythmias, tachyarrhythmias, 
atrial, and ventricular arrhythmias. Data extraction was conducted independently by at least two investigators 
for each paper. Extracted data were compared and reconciled through consensus. In case studies which did not 
report positive and negative cases, we manually calculated by standard formulae using statistics available in the 
manuscripts or provided by the authors. We contacted the authors if the data of interest were not reported in the 
manuscripts or abstracts. �e order of contact originated with the corresponding author, followed by the �rst 
author, and then the last author. If we were unable to contact the authors as speci�ed above, the associated stud-
ies were excluded from the meta-analysis (but still included it in the systematic review). We also excluded manu-
scripts or abstracts without su�cient evaluation data a�er contacting the authors.

Quality assessment. We created the proposed guidance quality assessment of clinical ML research based 
on our previous recommendation (Table  1)6. Two investigators (C.K. and H.V.) independently assessed the 
quality of each ML study by using our proposed guideline to report ML in medical literature (Supplementary 
Table S1). We resolved disagreements through discussion amongst the primary investigators or by involving 
additional investigators to adjudicate and establish a consensus. We scored study quality as low (0–2), moderate 
(2.5–5), and high quality (5.5–8) as clinical ML research.

Statistical analysis. We used symmetrical, hierarchical, summary receiver operating characteristic 
(HSROC) models to jointly estimate sensitivity, speci�city, and AUC 10. Seni and Spci denote the sensitivity and 
speci�city of the ith study. σ 2

Sen
 is the variance of µSen and σ 2

Spc is the variance of µspc.

µSeni = logit(Seni)

µspci = logit(Spci)
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�e HSROC model for study i �ts the following

πi1 = Seni and πi0 =1- Spci . Xij = −
1

2
 when no disease and Xij =

1

2
 for those with disease. And θi and αi follow 

normal distribution.
We conducted subgroup analyses strati�ed by ML algorithms. We assessed the performances of a subgroup-

speci�c and statistical test of interaction among subgroups. We performed all statistical analyses using Open-
MetaAnalyst for 64-bit (Brown University), R version 3.2.3 (Metafor and Phia packages), and Stata version 16.1 
(Stata Corp, College Station, Texas). �e meta-analysis has been reported in accordance with the Meta-analysis 
of Observational Studies in Epidemiology guidelines (MOOSE)11.

Results
Study search. �e database searches between 1966 and March 15, 2019, yielded 15,025 results. 3,716 dupli-
cates were removed by algorithms. A�er the screening process, we selected 344 articles for full-text review. A�er 
full text and supplementary review, we excluded 289 studies due to insu�cient data to perform meta-analytic 
approaches despite contacting corresponding authors. Overall, 103 cohorts (55 studies) met our inclusion crite-
ria. �e disposition of studies excluded a�er the full-text review is shown in Fig. 1.

Study characteristics. Table 2 shows the basic characteristics of the included studies. In total, our meta-
analysis of ML and cardiovascular diseases included 103 cohorts (55  studies) with a total of 3,377,318 indi-
viduals. In total, 12 cohorts  assessed cardiac arrhythmias (3,144,799 individuals), 45 cohorts are CAD-related 
(117,200 individuals), 34 cohorts are stroke-related (5,577 individuals), and 12 cohorts are HF-related (109,742 
individuals). �e characteristics of the included studies are listed in Table 2. We performed post hoc sensitivity 
analysis, excluding each study, and found no di�erence among the results.  

ML algorithms and prediction of CAD. For the CAD, 45 cohorts reported a total of 116,227 individu-
als. 10 cohorts used CNN algorithms, 7 cohorts used SVM, 13 cohorts used boosting algorithm, 9 cohorts used 
custom-built algorithms, and 2 cohorts used RF. �e prediction in CAD was associated with pooled AUC of 
0.88 (95% CI 0.84–0.91), sensitivity of 0.86 (95% CI 0.77–0.92), and speci�city of 0.70 (95% CI 0.51–0.84), for 
boosting algorithms and pooled of AUC 0.93 (95% CI 0.85–0.97), sensitivity of 0.87 (95% CI 0.74–0.94), and 
speci�city of 0.86 (95% CI 0.73–0.93) for custom-built algorithms (Fig. 2).

ML algorithms and prediction of stroke. For the stroke, 34 cohorts reported a total of 7,027 individu-
als. 14 cohorts used CNN algorithms, 4 cohorts used SVM, 5 cohorts used boosting algorithm, 2 cohorts used 
decision tree, 2 cohorts used custom-built algorithms, and 1 cohort used random forest (RF). For prediction 
of stroke, SVM algorithms had a pooled AUC of 0.92 (95% CI 0.81–0.97), sensitivity 0.57 (95% CI 0.26–0.96), 

(

µSeni

µspci

)

∼ N

{(

µSen

µSpc

)

,

(

σ
2
Sen σSenSpc

σSenSpc σ
2
Spc

)

logit(πij) =
(

θi + αiXij

)

exp(−βXij)

Table 1.  Proposed quality assessment of ML research for clinical practice.

Algorithms

Clarity of algorithms
Propose new algorithms
Select the proper algorithms
Compare alternative algorithms

Resources

Reliable database/center
Number of database/centers
Number of samples (patients/images)
Type and diversity of data

Su�cient reported data

Manuscript with su�cient supplementary information
Letter or editor, short article, abstract
Report baseline characteristics of patients

Ground truth

Comparison to expert clinicians
Comparison to validated clinical risk models

Outcome

Assessment of outcome based on standard medical taxonomy
External validation cohort

Interpretation

Report both discrimination and calibration metrics
Report one or more of the following: sensitivity, speci�city, positive, negative cases, balanced accuracy
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and speci�city 0.93 (95% CI 0.71–0.99); boosting algorithms had a pooled AUC of 0.91 (95% CI 0.81–0.96), 
sensitivity 0.85 (95% CI 0.66–0.94), and speci�city 0.85 (95% CI 0.67–0.94); and CNN algorithms had a pooled 
AUC of 0.90 (95% CI 0.83–0.95), sensitivity of 0.80 (95% CI 0.70–0.87), and speci�city of 0.91 (95% CI 0.77–
0.97) (Fig. 3).

ML algorithms and prediction of HF. For the HF, 12 cohorts reported a total of 51,612 individuals. 3 
cohorts used CNN algorithms, 4 cohorts used logistic regression, 2 cohorts used boosting algorithm, 1 cohort 
used SVM, 1 cohort used in-house algorithm, and 1 cohort used RF. We could not perform analyses because we 
had too few studies (≤ 5) for each model.

ML algorithms and prediction of cardiac arrhythmias. For the cardiac arrhythmias, 12 cohorts 
reported a total of 3,204,837 individuals. 2 cohorts used CNN algorithms, 2 cohorts used logistic regression, 
3 cohorts used SVM, 1 cohort used k-NN algorithm, and 4 cohorts used RF. We could not perform analyses 
because we had too few studies (≤ 5) for each model.

Discussion
To the best of our knowledge, this is the �rst and largest novel meta-analytic approach in ML research to date, 
which drew from an extensive number of studies that included over one million participants, reporting ML 
algorithms prediction in cardiovascular diseases. Risk assessment is crucial for the reduction of the world-
wide burden of CVD. Traditional prediction models, such as the Framingham risk  score12, the PCE  model13, 
 SCORE14, and  QRISK15 have been derived based on multiple predictive factors. �ese prediction models have 
been implemented in guidelines; speci�cally, the 2010 American College of Cardiology/American Heart Associa-
tion (ACC/AHA)  guideline16 recommended the Framingham Risk Score, the United Kingdom National Institute 
for Health and Care Excellence (NICE) guidelines recommend the QRISK3  score17, and the 2016 European 
Society of Cardiology (ESC) guidelines recommended the SCORE  model18. �ese traditional CVD risk scores 
have several limitations, including variations among validation cohorts, particularly in speci�c populations such 
as patients with rheumatoid  arthritis19,20. Under some circumstances, the Framingham score overestimates CVD 
risk, potentially leading to  overtreatment20. In general, these risk scores encompass a limited number of predic-
tors and omit several important variables. Given the limitations of the most widely accepted risk models, more 
robust prediction tools are needed to more accurately predict CVD burden. Advances in computational power to 
process large amounts of data has accelerated interest in ML-based risk prediction, but clinicians typically have 
limited understanding of this methodology. Accordingly, we have taken a meta-analytic approach to clarify the 
insights that ML modeling can provide for CVD research.

Unfortunately, we do not know how or why the authors of the analyzed studies selected the chosen algorithms 
from the large array of options available. Researchers/authors may have selected potential models for their 

Figure 1.  Study design. �is �ow chart illustrates the selection process for published reports.
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First author Analytic model Sample Indication Imaging Comparison Database

Cardiac arrhythmias

Alickovic et al. (2016) RF 47 Arrhythmia detection ECG

Five ECG signal patterns 
from MIT-BIH (normal 
(N), Premature Ventricu-
lar Complex (PVC), Atrial 
Premature Contraction 
(APC), Right Bundle 
Branch Block (RBBB) and 
Le� Bundle Branch Block 
(RBBB)) and four ECG 
patterns from St. -Peters-
burg Institute of Cardio-
logical Technics 12lead 
Arrhythmia Database (N, 
APC, PVC and RBBB)

St. Petersburg and MIT-
BIH database

Au-Yeung et al. (2018) 5sRF, 10sRF, SVM 788 Ventricular arrhythmia ICD Data SCD-HeFT study

Hill et al. (2018)
Logistic-linear regression, 
SVM, RF

2,994,837
Development of AF/�utter 
in gen pop

Clinical data
ML compared with con-
ventional linear statistical 
methods

UK Clinical Practice 
Research Datalink (CPRD) 
between 01–01-2006 
and 31–12-2016 was 
undertaken

Kotu et al. (2015) k-NN, SVM, RF 54
arrhythmic risk strati�ca-
tion of post MI patients

Cardiac MRI
Low LVEF and Scar versus 
textural features of scar

Single center

Ming-Zher Poh et al. 
(2018)

CNN 149,048 AF ECG

Several publicly acces-
sible PPG repositories, 
including the MIMIC-III 
critical care database,11 
the Vortal data set from 
healthy volunteers12 and 
the IEEE-TBME PPG Res-
piratory Rate Benchmark 
data set.1

Xiaoyan Xu et al. (2018) CNN 25 AF ECG
MIT-BIH Atrial Fibrilla-
tion database

MIT-BIH Atrial Fibrilla-
tion Database

Coronary artery disease

Araki et al. (2016)
SVM classi�er with �ve 
di�erent kernels sets

15 Plaque rupture prediction IVUS

40 MHz catheter utilizing 
iMap (Boston Scienti�c, 
Marlborough, MA, USA) 
with 2,865 frames per 
patient (42,975 frames) 
and (b) linear probe 
B-mode carotid ultra-
sound (Toshiba scCNNer, 
Japan)

Single center

Araki et al. (2016) SVM combined with PCA 19 Coronary risk assessment IVUS Single center

Arsanjani et al. (2013) boosting algorithm 1,181 Perfusion SPECT in CAD Perfusion SPECT
2 experts, combined 
supine/prone TPD

Single center

BaumCNN et al. (2017) Custom-built algorithm 258
ctFFR in detecting rel-
evant lesions

Invasive FFR determina-
tion of relevant lesions

the MACHINE Registry

Coenen (2018) Custom-built algorithm 351
Invasive FFR / Compu-
tational �ow dynamics 
based (CFD-FFR)

CT angiography
Invasive FFR / Compu-
tational �ow dynamics 
based (CFD-FFR)

5 centers in Europe, Asia, 
and the United States

Dey et al. (2015) boosting algorithm 37

Coronary CTA in 
ischemic heart disease 
patients to predict 
impaired myocardial �ow 
reserve

CCTA Clinical stenosis grading Single center

Eisenberg et al. (2018) boosting algorithm 1925 MPI in CAD SPECT Human visual analysis �e ReFiNE registry

Freiman et al. (2017) Custom-built algorithm 115
CCTA in coronary artery 
stenosis

CCTA Cardiac image analysis
�e MICCAI 2012 chal-
lenge

Guner et al. (2010) CNN 243 Stable CAD
Myocardial perfusion 
SPECT (MPS)

SPECT evaluation and 
human–computer interac-
tion
One expert reader who 
has 10 years of experience 
and six nuclear medicine 
residents who have two to 
four years of experience 
in nuclear cardiology took 
part in the study

Single center

Hae et al. (2018)
Logistic-linear regres-
sion, SVM, RF, boosting 
algorithm

1,132
Prediction FFR in stable 
and unstable angina 
patients

FFR, CCTA Single center

Han et al. (2017) Logistic-linear regression 252
Physiologically signi�cant 
CAD

CCTA and invasive frac-
tional �ow reserve (FFR

�e DeFACTO study

Hu (Xiuhua) et al. (2018) Custom-built algorithm 105
Intermediate coronary 
artery lesions

CCTA 
CCTA-FFR vs Invasive 
angiography FFR

Single center

Continued
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Hu et al. (2018) Boosting algorithm 1861 MPI in CAD SPECT True early reperfusion
Multicenter REFINE 
SPECT registry

Wei et al. (2014) Custom-built algorithm 83
Noncalci�ed plaques 
(NCPs) detection on 
CCTA 

CCTA Single center

Kranthi et al. (2017) Boosting algorithm 85,945 CCTA in CAD CCTA 
66 available parameters 
(34 clinical parameters, 32 
laboratory parameters)

Single center

Madan et al. (2013) SVM 407 Urinary proteome in CAD
global proteomic pro�le 
analysis of urinary 
proteome

Indian Atherosclerosis 
Research Study

Zellweger et al. (2018) Custom-built algorithm 987 CAD evaluation N/A Framingham scores
�e Ludwigshafen Risk 
and Cardiovascular Health 
Study (LURIC)

Moshrik Abd alamir et al. 
(2018)

Custom-built algorithm 923
ED patients with chest 
pain -CTA analysis

CT Angiography Single center

Nakajima et al. (2017) CNN 1,001
Previous myocardial 
infarction and coronary 
revascularization

SPECT
Expert consensus inter-
pretations

Japanese multicenter study

Song et al. (2014) SVM 208 Risk prediction in ACS N/A Single center

VanHouten et al. (2014)
Logistic-linear regres-
sion, RF

20,078 Risk prediction in ACS N/A Single center

Xiao et al. (2018) CNN 15
Ischemic ST change in 
ambulatory ECG

ECG
Long-Term ST Database 
(LTST database) from 
PhysioNet

Yoneyama et al. (2017) CNN 59
Detecting culprit coronary 
arteries

CCTA and myocardial 
perfusion SPECT

Single center

Stroke

Abouzari et al. (2009) CNN 300
SDH post-surgery out-
come prediction

CT head Single center

Alexander Roederer et al.
(2014)

Logistic-linear regression 81
SAH-Vasospasm predic-
tion

Passively obtained clinical 
data

Single center

Arslan et al. (2016)
Logistic-linear regression, 
SVM, boosting algorithm

80 Ischemic stroke EMR Single center

Atanassova et al. (2008) CNN 54 Major stroke Diastolic BP 2 CNNs compared Single center

Barriera et al. (2018) CNN 284
Stroke (ICH and ischemic 
stroke)

CT head
Stroke neurologists read-
ing CT

Single center

Beecy et al. (2017) CNN 114 Stroke CT head
Expert consensus inter-
pretations

Single center

Dharmasaroja et al. (2013) CNN 194
Stroke/intracranial hem-
orrhage

CT head
�rombolysis a�er 
ischemic stroke

Single center

Fodeh et al. (2018) SVM 1834 Atraumatic ICH EHR review Single center

Gottrup et al. (2005)
kNN, Custom-built 
algorithm

14 Acute ischemic stroke MRI
Applicability of highly 
�exible instance-based 
methods

Single center

Ho et al. (2016)
SVM, RF, and GBRT 
models

105 Acute ischemic stroke MRI
Classi�cation models for 
the problem of unknown 
time-since-stroke

Single center

Knight-Green�eld et al. 
(2018)

CNN 114 Stroke CT head
Expert consensus inter-
pretations

Single center

Ramos et al. (2018)
SVM, RF, Logistic-linear 
regression, CNN

317 SAH CT Head
Delayed cerebral ischemia 
in SAH detection

Single center

SÜt et al. (2012) MLP neural networks 584 Stroke mortality EMR data
Selected variables using 
univariate statistical 
analyses

N/A

Paula De Toledo et al. 
(2009)

Logistic-linear regression 441 SAH CT Head

Algorithms used were 
C4.5, fast decision tree 
learner, partial decision 
trees, repeated incremen-
tal pruning to produce 
error reduction, nearest 
neighbor with generaliza-
tion, and ripple down rule 
learner

Multicenter Register

�orpe et al. (2018) decision tree 66 Stroke Transcranial Doppler
Velocity Curvature Index 
(VCI) vs Velocity Asym-
metry Index (VAI)

Single center

Williamson et al. (2019)
BOOSTING algorithm, 
RF

483 Risk strati�cation in SAH True poor outcomes Single center

Xie et al. (2019) Boosting algorithm 512
Predict Patient Outcome 
in Acute Ischemic Stroke

CT Head and clinical 
parameters

Feature selections were 
performed using a greedy 
algorithm

Single center

Continued
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databases and performed several models (e.g., running parallel, hyperparameter tuning) while only reporting the 
best model, resulting in over�tting to their data. �erefore, we assume the AUC of each study is based upon the 
best possible algorithm available to the associated researchers. Most importantly, pooled analyses indicate that, 
in general, ML algorithms are accurate (AUC 0.8–0.9 s) in overall cardiovascular disease prediction. In subgroup 
analyses of each ML algorithms, ML algorithms are accurate (AUC 0.8–0.9 s) in CAD and stroke prediction. To 
date, only one other meta-analysis of the ML literature has been reported, and the underlying concept was similar 
to ours. �e investigators compared the diagnostic performance of various deep learning models and clinicians 
based on medical imaging (2 studies pertained to cardiology)21. �e investigators concluded that deep learning 
algorithms were promising but identi�ed several methodological barriers to matching clinician-level  accuracy21. 
Although our work suggests that boosting models and support vector machine (SVM) models are promising for 
predicting CAD and stroke risk, further study comparing human expert and ML models are needed.

First, the results showed that custom-built algorithms tend to perform better than boosting algorithm for 
CAD prediction in terms of AUC comparison. However, there is signi�cant heterogeneity among custom-built 
algorithms that do not disclose their details. �e boosting algorithm has been increasingly utilized in mod-
ern  biomedicine22,23. In order to implement in clinical practice, the essential stages of designing a model and 
interpretation need to be  uniform24. For implementation in clinical practice, custom-built algorithms must be 
transparent and replicated in multiple studies using the same set of independent variables.

Second, the result showed that boosting algorithms and SVM provides similar pooled AUC for stroke pre-
diction. SVMs and boosting shared a common margin to address the clinical question. SVM seems to perform 
better than boosting algorithms in patients with stroke perhaps due to discrete, linear data or a proper non-linear 
kernel that �ts the data better with improved generalization. SVM is an algorithm designed for maximizing a 
particular mathematical function with respect to a given collection of data. Compared to the other ML meth-
ods, SVM is more powerful at recognizing hidden patterns in complicated clinical  datasets2,25. Both boosting 
and SVM algorithms have been widely used in biomedicine and prior studies showed mixed results26–30. SVM 
seems to outperform boosting in image recognition  tasks28, while boosting seems to be superior in omic  tasks27. 
However, in subgroup analysis, using research questions or types of protocols or images showed no di�erence 
in algorithm predictions.

�ird, for heart failure and cardiac arrhythmias, we could not perform meta-analytic approaches due to 
the small number of studies for each model. However, based on our observation in our systematic review, SVM 
seems to outperform other predictive algorithms in detecting cardiac arrhythmias, especially in one large  study31. 
Interestingly, in HF, the results are inconclusive. One small study showed promising results from  SVM32. CNN 
seems to outperform others, but the results are  suboptimal33. Although we assumed all reported algorithms have 
optimal variables, technical heterogeneity exists in ML algorithms (e.g., number of folds for cross-validation, 

First author Analytic model Sample Indication Imaging Comparison Database

Heart failure

Andjelkovic et al. (2014) CNN 193
HF in congenital heart 
disease

Echocardiography Single center

Blecker et al. (2018) Logistic-linear regression 37,229 ADHF
Early ID of patients at risk 
of readmission for ADHF

4 algorithms tested Single center

Gleeson et al. (2016) Custom-built algorithm 534 HF
Echocardiography and 
ECG

Data mining was applied 
to discover novel ECG and 
echocardiographic mark-
ers of risk

Single center

Golas et al. (2018)
Logistic-linear regression, 
boosting algorithm, CNN

11,510 HF EHR
Heat failure patients to 
predict 30 day readmis-
sions

Several hospitals in the 
Partners Healthcare 
System

Mortazavi et al. (2016)
Random forests, boosting, 
combined algorithms or 
logistic regression

1653 HF
Surveys to hospital exami-
nations

Tele-HF trial

Frizzell et al
Random forest and gradi-
ent-boosted algorithms

56,477 HF EHR
Traditional statistical 
methods

GWTG-HF registry

Kasper Rossing et al. 
(2016)

SVM 33 HFpEF
Urinary proteomic 
analysis

Heart failure clinic (Single 
center)

Kiljanek et al. (2009) RF 1587 HF Clinical diagnosis
Development of conges-
tive heart failure a�er 
NSTEMI

CRUSADE registry

Liu et al. (2016)
Boosting algorithm, 
Logistic-linear regression

526 HF
Medical data, blood test, 
and echocardiographic 
imaging

Predicting mortality in HF Single center

Table 2.  Characteristics of the included studies. SVM support vector machine, RF random forest, CNN 
convolutional neural network, kNN k-nearest neighbors, PCA principal component analysis, GBRT gradient 
boosted regression trees, MLP multilayer perceptron, HER electronic health record, HF heart failure, HFpEF 
heart failure with preserved ejection fraction, ADHF acute decompensated heart failure, SAH subarachnoid 
hemorrhage, SDH subdural hematoma, ICH intracerebral hemorrhage, CAD coronary artery disease, ACS 
acute coronary syndrome, CCTA  coronary computed tomography angiography, FFR fractional �ow reserve, 
IVUS intravascular ultrasound, ICD implantable cardioverter-de�brillator, AF atrial �brillation, ECG 
electrocardiogram.
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bootstrapping techniques, how many run time [epochs], multiple parameters adjustments). In addition, optimal 
cut o� for AUC remained unclear in clinical practice. For example, high or low sensitivity/speci�city for each test 
depends on clinical judgement based on clinically correlated. In general, very high AUCs (0.95 or higher) are 
recommended, and it is known that AUC 0.50 is not able to distinguish between true and false. In some �elds such 
as applied  psychology34, with several in�uential variables, AUC values of 0.70 and higher would be considered 
strong e�ects. Moreover, standard practice for ML practitioners recommended reporting certain measures (e.g., 
AUC, c-statistics) without optimal sensitivity and speci�city or model calibration, while interpretation in clinical 
practice is challenging. For example, the di�erence in BNP cut o� for HF patients could result in a di�erence in 
volume management between diuresis and IV �uid in pneumonia with septic shock.

Compared to conventional risk scores, most ML models shared a common set of independent demographic 
variables (e.g., age, sex, smoking status) and include laboratory values. Although those variables are not well-
validated individually in clinical studies, they may add predictive value in certain circumstances. Head-to-head 
studies comparing ML algorithms and conventional risk models are needed. If these studies demonstrate an 
advantage of ML-based prediction, the optimal algorithms could be implemented through electronic health 
records (EHR) to facilitate application in clinical practice. �e EHR implementation is well poised for ML based 
prediction since the data are readily accessible, mitigating dependency on a large number of variables, such as 

Figure 2.  ROC curves comparing di�erent machine learning models for CAD prediction. �e prediction in 
CAD was associated with pooled AUC of 0.87 (95% CI 0.76–0.93) for CNN, pooled AUC of 0.88 (95% CI 0.84–
0.91) for boosting algorithms, and pooled of AUC 0.93 (95% CI 0.85–0.97) for others (custom-built algorithms).
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discrete laboratory values. While it may be di�cult for physicians in resource-constrained practice settings to 
access the input data necessary for ML algorithms, it is readily implemented in more highly developed clinical 
environments.

To this end, the selection of ML algorithm should base on the research question and the structure of the 
dataset (how large the population is, how many cases exist,  how balanced the dataset is,  how many available 
variables there are, whether the data is longitudinal or not, if the clinical outcome is binary or time to event, 
etc.) For example, CNN is particularly powerful in dealing with image data, while SVM can reduce the high 
dimensionality of the dataset if the kernel is correctly chosen. While when the sample size is not large enough, 
deep learning methods will likely over�t the data.  Most importantly, this study’s intent is not to identify one 
algorithm that is superior to others.

Figure 3.  ROC curves comparing di�erent machine learning models for stroke prediction. �e prediction 
in stroke was associated with pooled AUC of 0.90 (95% CI 0.83–0.95) for CNN, pooled AUC of 0.92 (95% CI 
0.81–0.97) for SVM algorithms, and pooled AUC of 0.91 (95% CI 0.81–0.96) for boosting algorithms.
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Limitations
Although the performance of ML-based algorithms seems satisfactory, it is far from optimal. Several methodo-
logical barriers can confound results and increase heterogeneity. First, technical parameters such as hyperpa-
rameter tuning in algorithms are usually not disclosed to the public, leading to high statistical heterogeneity. 
Indeed, heterogeneity measures the di�erence in e�ect size between studies. �erefore, in the present study, 
heterogeneity is inevitable as several factors can lead to this (e.g., �ne-tuning models, hyperparameter selection, 
epochs). It is also a not good indicator to use as, in our HSROC model, we largely controlled the heterogeneity. 
Second, the data partition is also arbitrary because of no standard guidelines for utilization. In the present study, 
most included studies use 80/20 or 70/30 for training and validation sets. In addition, since the sample size for 
each type of CVD is small, the pooled results could potentially be biased. �ird, feature selection methodolo-
gies, and techniques are arbitrary and heterogeneous. Fourth, due to the ambiguity of custom-built algorithms, 
we could not classify the type of those algorithms. Fi�h, studies report di�erent evaluation matrices (e.g., some 
did not report positive or negative cases, sensitivity/speci�city, F-score, etc.). We did not report the confusion 
matrix for this meta-analytic approach as it required aggregation of raw numbers from studies without adjusting 
for di�erence between studies, which could result in bias. Instead, we presented pooled sensitivity and speci�city 
using the HSROC model. Although ML algorithms are robust, several studies did not report complete evaluation 
metrics such as positive or negative cases, Beyes, bias accuracy, or analysis in the validation cohort since there 
are many ways to interpret the data  depending on the clinical context. Most importantly, some analyses did not 
correlate with the clinical context, which made it more di�cult to interpret. �e e�cacy of meta-analysis is to 
increase the power of the study by using the same algorithms. In addition, clinical data are heterogeneous and 
usually imbalanced. Most ML research did not report balanced accuracy, which could mislead the readers. Sixth, 
we did not register the analysis in PROSPERO. Finally, some studies reported only the technical aspect without 
clinical aspects, likely due to a lack of clinician supervision.

conclusion
Although there are several limitations to overcome to be able to implement ML algorithms in clinical practice, 
overall ML algorithms showed promising results. SVM and boosting algorithms are widely used in cardiovascular 
medicine with good results. However, selecting the proper algorithms for the  appropriate research questions, 
comparison to human experts, validation cohorts, and reporting of  all possible evaluation matrices are needed 
for study interpretation in the correct clinical context. Most importantly, prospective studies comparing ML 
algorithms to conventional risk models are needed. Once validated in that way, ML algorithms could be inte-
grated with electronic health record systems and applied in clinical practice, particularly in high resources areas.
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