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and higher temperature may provide a growth advantage for tox-

in-producing species (Kleinteich et al., 2012).

MCs, which are produced by several cyanobacteria species, 

e.g., Microcystis spp., Dolichospermum spp. or Planktothrix 

spp., in water bodies worldwide (Preece et al., 2017), represent 

one of the toxin types most frequently associated with drinking 

water, food supplement and/or food contamination and have re-

sulted in human health morbidity and mortality. Structurally, MC 

are cyclic heptapeptides consisting of common L-amino acids, 

but also uncommon and unique amino acids. Their general struc-

ture is cyclo([D-Ala1]-[L-X2]-[β-D-MeAsp3]-[L-Z4]-[Adda5]-
[γ-D-Glu6]-[Mdha7]). X and Z stand for variable L-amino ac-

ids, while β-D-MeAsp is erythro-β-D-methylaspartate, ADDA 
is (2S,3S,8S,9S,4E,6E)-3-amino-9-methoxy-2,6,8-trimethyl-10-
phenyl-4,6-decadienoic acid and Mdha is N-methyldehydroala-

nine. The variable positions, along with various (de)methylation 

sites (Fig. 1, Tab. S11), provide for currently 248 known MC con-

geners (Spoof and Catherine, 2017), albeit new MC congeners 

are continuously being discovered. However, contrary to a recent 

1  Introduction

Harmful (toxic) cyanobacterial blooms have become an import-

ant concern with regard to drinking water quality and safety. 

Some prominent examples are a bloom that affected almost 1000 

km of the Barwon-Darling River, New South Wales, Australia, in 

November and December 1991 (Bowling and Baker, 1996), the 
deaths of renal dialysis patients in 1996 in Caruaru, Brazil (Aze-

vedo et al., 2002), or the more recent closing of the drinking water 

supply for the inhabitants of Toledo, Ohio, USA, resulting from 

recurrent Microcystis aeruginosa blooms in Lake Erie (Berry et 

al., 2017). The impression that cyanobacterial blooms in surface 

waters appear to be increasing with climate change is of current 

concern (Huisman et al., 2018). It is of importance in conjunction 

with toxic cyanobacterial blooms that several different toxins and 

congeners of a given toxin (e.g., microcystins (MC)) can co-occur 

in a given bloom (Dietrich and Hoeger, 2005). Also, toxin con-

centrations per cyanobacterial cell can change more than ten-fold 

within the short time span of a bloom event (Wood et al., 2011), 
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Similarly, questions have arisen with regard to the toxicody-

namics of MC congeners. MC are very potent inhibitors of the 

catalytic subunits of ser/thr-protein phosphatases (PPP), however 

MC congeners differ with regard to their PPP inhibition capability 

(Hastie et al., 2005; Mackintosh et al., 1990; Hoeger et al., 2007). 
The family of PPPs in humans has seven members (PPP1, PPP2A, 

PPP2B (Calcineurin), PPP4, PPP5, PPP6 and PPP7), whose cat-
alytic subunits are structurally similar (Shi, 2009). They display 

protein sequence homology of up to 65% (checked with Clustal 
Omega) and have defined substrate specificities and therefore dif-
fering functions (Pereira et al., 2011). Most of the PPPs are ex-

pressed ubiquitously, albeit at different levels in the various or-

gans, while PPP7 is specific to retina and brain (Cohen, 2004). 
Inhibition of PPPs by MC occurs prima facie via reversible, fol-

lowed by covalent, binding of MC to the catalytic subunit of the 

respective PPP (Mackintosh et al., 1990). 

Dysregulated phospho-protein homeostasis subsequent to PPP 

inhibition, involving hyperphosphorylation of numerous phos-

phate-regulated enzymes and the deregulation of fundamental 
cellular processes, e.g., disruption of the cytoskeleton, thus rep-

resents the toxicodynamic process. As PPP differ in their suscepti-

bility to inhibition by MC (Hoeger et al., 2007) and congeners dif-

fer in their capacity to inhibit specific PPP (Hoeger et al., 2007), 
the observed toxicity manifested in the respective organs (liver, 

brain, kidney) is not only the result of MC toxicokinetics but also 

of toxicodynamics (Fischer et al., 2010). To date, research on MC 

toxicodynamics primarily has focused on the interaction of MC 

congeners with PPP1 and PPP2A, whereby only a few MC conge-

ners (predominantly MC-LR, -RR, -LA, and -LF) have been tested 

(Hoeger et al., 2007; Garibo et al., 2014). 

assertion (Huisman et al., 2018), the toxicity is known for only 

very few MC congeners. 

The World Health Organization’s provisional guideline value 
of 1 µg/L for the risk assessment of MC in drinking water (WHO, 

2017) is based entirely on the toxicological data of MC-LR and 

the assumption that MC-LR is the most toxic of the known MC 

congeners. This WHO guideline value is based on a 90-day toxici-

ty study in mice (Fawell et al., 1999). 

Toxicity can be split into two critical components: toxicoki-

netics (cellular uptake, distribution, metabolism and elimina-

tion) and toxicodynamics (the interaction with cellular mole-

cules resulting in an observable adverse outcome) (Dellafiora et 
al., 2018; EFSA PPR Panel et al., 2018). Cellular uptake of MC 
is primarily governed by organic anion polypeptide (OATP) and 

thus by the type and level of OATP expression in a given cell as 

well as by the affinity and capacity of the respective OATP for 
transporting the different MC congeners (Fischer et al., 2010). 

Cellular export of MC (conjugates) is still under debate, as the 

involved exporters have so far not been unambiguously deter-

mined. However, a comparison of rodents with humans demon-

strated that rodents are poor surrogates for humans with regard to 

the type of OATP expressed in the various tissues and the affin-

ity and capacity of expressed OATPs for specific MC congener 
transport (Feurstein et al., 2011). The observation that humans 

demonstrate major differences in OATP expression and thus sus-

ceptibility to MC (Fischer et al., 2010) only compounded the fact 

that current risk assessment premises, based on surrogate spe-

cies and one single MC congener, i.e., the WHO guideline value, 

could severely underestimate the potential toxicities of MC due 

to their congener-specific kinetics. 

Fig. 1: Consensus structure of 

microcystins and the synthetic 

variants produced for this study 

The dashed lines represent the single 

amino acids of the heptapeptide 

structure. Further details in Tab. 

S11. Amba = (2S,3S)-3-amino-

2-methylbutanoic acid, Anda = 

(2S,3S,4E,6E )-3-amino-2-methylnona-

4,6-dienoic acid, Dhb = (E)-2-amino-

2-butenoic acid, MSecPh = N-methyl-

Se-phenyl-L-selenocysteine, Prg = 

propargyl
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In view of the ever increasing number of identified MC conge-

ners (Spoof and Catherine, 2017), yet lacking the ability to syn-

thetize these in sufficient purity and amounts for in vitro or in vi-

vo testing, an in silico approach using toxicodynamic data could 

provide a first step towards a better toxicity assessment of unchar-
acterized MCs with relevance for humans. However, as there are 
no sufficiently robust testing systems to address the toxicokinetic 
component yet, only the toxicodynamic component, i.e., PPP in-

hibition, was addressed in the present work. 

Indeed, although a number of in vitro models have been put 

forward that allow studying the uptake of MC congeners (Fisch-

er et al., 2010; Monks et al., 2007; Feurstein et al., 2009, 2010, 
2011), studying the efflux from cells is much more difficult as in-

tracellular MC would kill the cells before a proper efflux model 
could be established. Thus, despite recent advances in studying 

MC efflux using in vitro membrane vesicle approaches (Kaur et 

al., 2019), complete kinetic models encompassing influx and ef-
flux kinetics of MCs have yet been impossible to establish. Ac-

cordingly, the aim of this study was to develop a comprehensive 

dataset of toxicodynamics, i.e., the PPP inhibitory capacities of a 

limited number of MC congeners. 

These in vitro data were then used as a comparative basis driv-

ing an in-silico approach using machine learning (ML). Thus, 

the PPP inhibition capacity (toxicity) of 18 structurally diverse 

MC congeners was determined using ser/thr-PPP (PPP1, PPP2A 

and PPP5) in a colorimetric protein phosphatase inhibition assay. 
For this, a number of synthetic MC derivatives were generated 

according to previously published procedures (Zemskov et al., 
2017; Fontanillo et al., 2016). Among these was a variant with 
modified stereochemistry at the Adda5 residue (i.e., the enan-

tiomer of Adda was used) ([enantio-Adda5]-MC-LF) as well as 
variants with simplified residues at the Adda5 position ([Anda5]-
MC-LY(Prg) and [Amba5]-MC-LY(Prg)). The modified amino 
acids in these synthetic MCs in positions other than X2 and Z4 
are indicated by adding the modification in square brackets before 
the name of the MC-XZ derivative. MC-LY(Prg) denotes vari-
ants with L-leucine in position X2 and O-propargylated L-tyro-

sine in position Z4 (Fig. 1, Tab. S11). Results were classified into 
three categories (toxic, less toxic, non-toxic) and the toxicity was 

predicted based on chemical structure via the ML approach de-

scribed below. 

Machine learning is widely used in the field of bioinformatics 
to predict bioactivity or molecular properties (e.g., solubility) of 

compounds, protein folding, etc. Despite recent advances, it is still 

difficult to employ ML in pharmacology or toxicology, as datasets 
are often smaller and more heterogeneous compared to datasets 

from other domains (Wu et al., 2018). Indeed, although ML has 

been employed for the prediction of cyanobacterial blooms based 

on satellite data (Chang et al., 2014) or the production of toxins 

based on environmental factors (Taranu et al., 2017), ML has so 

far not been used to predict the toxicity of MC congeners. 

To encode molecules or proteins for ML, a fixed size numeri-
cal vector is needed (Wu et al., 2018). Approaches to encode mol-

ecules and proteins are Mol2vec (Jaeger et al., 2018) and Prot-

Vec (Asgari and Mofrad, 2015), respectively, which are inspired 
by natural language processing. Both approaches are based on 

the Word2vec approach, which generates vector representation of 

words to capture semantic meaning (Mikolov et al., 2013). The 
vectors are obtained by training a deep neural network based on a 

database of text (so-called corpus) and results in a dense, high-di-

Fig. 2: Application of Word2vec to molecules and proteins

The procedure results in a lookup table, where 300-dimensional vectors can be extracted to have a numerical representation.  

A) For molecules, identifiers generated by Morgan fingerprint are considered as words, and their ordering as a sentence or molecule.  
B) For proteins, all possible 3-grams are considered as words, and by applying a sliding window over the protein sequence, three  

sentences are generated to represent a protein. Modified from Jaeger et al. (2018).
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lookup table of molecular substructures and vectors is generated, 

which is able to capture chemical relationships between substruc-

tures. To represent a new molecule, a Morgan fingerprint is gen-

erated, identifiers are extracted and looked up in the pre-trained 
model. Then, all substructure vectors are summed up to represent 

one molecule (Fig. 3), which results in a fixed size numerical rep-

resentation of the molecule (Jaeger et al., 2018). 

To encode a protein with the ProtVec approach (Fig. 2B), a large 

corpus of a database or collection of protein sequences has to be 

mensional representation of words. This procedure is a pre-train-

ing, resulting in a lookup table of words and vectors, which can be 

extracted later for various applications (e.g., ML).

To encode molecules with the Mol2vec approach, a large cor-

pus of a database or collection of molecular structures has to be 

generated (Fig. 2A). The Morgan fingerprint is calculated for each 
molecule, but instead of hashing identifiers of substructures in 
a bit vector, identifiers (or words) are extracted and ordered to a 
sentence to represent a molecule. By this procedure, a molecular 

Fig. 3: Workflow for feature generation for toxicity classification
After downloading a pre-trained model for molecular structures and pre-training a protein model, vectors are extracted for substructures of 

18 microcystin congeners and the 3-grams of the 3 PPPs. To represent a molecule or protein, the respective vectors are summed up.  

Then, either a 300-dimensional molecule vector is extracted, or combined with a protein vector, to build a 600-dimensional vector. As  

the dataset is highly imbalanced for the different classes, synthetic minority oversampling technique (SMOTE) was applied, to have the 

same number of compounds for each class. Modified from Jaeger et al. (2018).

Fig. 4: After feature generation and pre-processing of the data, respective target values (toxicity class) are combined with the 
feature vector and used for a machine learning classification
Two different validation methods were used. For both validation methods, three machine learning models were set up, and majority voting 

was used for final prediction, building a so-called consensus model. Afterwards, performance was evaluated with a confusion matrix and 
evaluation metrics.
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says for the different MC congeners (Tab. 1) were then classi-

fied into three toxicity classes (Tab. 2, Fig. 3), and ML models 
were generated using the encoded MC congeners and PPP vec-

tors (Fig. 2, 3). These were then trained with different features 
and classifiers to classify MC congeners into the toxicity classes, 
as shown in the ML flowchart (Fig. 4). The latter approach thus 
allowed us to predict the toxicity of MC congeners and to com-

pare the predictions with the true findings from the in vitro PPP 

inhibition assays.

generated. Therefore, all possible n-grams of a protein sequence are 

generated by applying a sliding window over a protein sequence. 

This results in n-sentences to represent a protein. Those n-sentenc-

es are then used to generate the lookup table of protein n-grams. To 

represent a new protein, all n-grams are generated, looked up in the 

pre-trained model, and summed up to represent a new protein (Fig. 

3), which results in a fixed size numerical representation of the pro-

tein (Jaeger et al., 2018; Asgari and Mofrad, 2015). 
PPP inhibition data (IC50 values) gained from the in vitro as-

Tab. 1: IC50 values of the tested MC congeners on rPPP1, hPPP2A and hPPP5 

IC50 were calculated after 5PL-nonlinear regression of at least 3 (hPPP2A) or 5 (rPPP1 and hPPP5) individual replicates using technical 

duplicates or triplicates. n.d. not determined (PPP2A no longer available, discontinued by manufacturer).

 rPPP1   hPPP2A   hPPP5

Congener IC50 CI95 (nM) R2 IC50 CI95 (nM) R2 IC50 CI95 (nM) R2 

 (nM)   (nM)   (nM)

MC-RR 1.5 1.3 - 1.8 0.95 1.6 1.4 - 1.7 0.99 11.7 8.3 - 16.5 0.96

MC-LR 0.3 0.2 - 0.4 0.93 0.5 0.4 - 0.5 0.99 5.1 4.0 - 6.6 0.97

MC-YR 1.3 – 0.99 n.d. n.d. n.d. 5.1 4.3 - 6.1 0.99

MC-WR 1.2 1.0 - 1.5 0.94 1.0 0.8 - 1.1 0.97 5.6 4.2 - 7.6 0.97

MC-LA 1.9 1.4 - 2.7 0.86 0.7 0.5 - 0-9 0.93 6.1 4.3 - 8.7 0.96

MC-LY 0.8 0.7 - 0.9 0.99 n.d. n.d. n.d. 4.1 3.1 - 5.4 0.97

MC-LF 2.0 1.5 - 2.6 0.90 1.4 1.3 - 1.4 0.99 4.7 3.5 - 6.3 0.97

MC-LW 1.2 1.0 - 1.4 0.97 0.7 0.7 - 0.8 0.99 2.5 2.0 - 3.2 0.98

MC-HilR 0.6 0.5 - 0.8 0.99 n.d. n.d. n.d. 4.2 3.5 - 5.1 0.99

MC-HtyR 0.7 0.6 - 0.8 0.99 n.d. n.d. n.d. 4.7 3.6 - 6.0 0.96

[β-D-Asp3]-MC-RR 45.0 39.3 - 51.6 0.99 n.d. n.d. n.d. 167.1 131.8 - 211.8 0.97
[β -D-Asp3]-MC-LR 0.9 0.7 - 1.0 0.99 n.d. n.d. n.d. 10.2 8.3 - 12.5 0.99
[β -D-Asp3, Dhb7]-MC-RR 62.0 51.7 - 74.3 0.96 84.3 80.7 - 87.8 0.99 877.1 692.6 - 1111 0.97
MC-LY(Prg) 1.7 1.3 - 2.2 0.95 0.4 0.2 - 0.3 0.99 1.7 1.2 - 2.6 0.95

[MSecPh7]-MC-LY(Prg) 1.9 1.6 - 2.4 0.97 0.9 0.7 - 1.1 0.94 18.2 10.7 - 31.1 0.91
[enantio-Adda5]-MC-LF – – – – – – – – –
[Amba5]-MC-LY(Prg) 520,817 449,800 -  0.98 2,135 1,991 - 2,291 0.99 54,063 37,431 - 78,087 0.95 

  603,048 

[Anda5]-MC-LY(Prg) 1,724 1,434 - 0.98 n.d. n.d. n.d. 2,420 1,690 - 3,467 0.96 

  2,072 

Tab. 2: Toxicity classes assigned to MC congeners  
Classification is based on their PPP inhibitive capabilities (expressed as IC50) for each of the three PPPs tested.

IC50 (nM) Class Description Number of data points (original) Number of data points after SMOTE
≤ 10 0 Toxic 31 31
> 10 ≤ 1000 1 Less-toxic 7 31
> 1000 2 Non-toxic 9 31

  Total 47 93
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at 4°C on an overhead-tumbler in 2 mL elution buffer (50 mM 
NaH2PO4, 300 mM NaCl, 100 mM imidazole). Samples were 
taken from each step for subsequent SDS-PAGE analysis. To 
avoid high imidazole concentrations in the final sample, buffer 
exchange via dialysis against storage buffer (20 mM TrisHCl pH 

8, 100 mM NaCl) was performed using 2 L volumes for about  

18 h with two buffer exchanges. 10% glycerol was added to the 
final samples before aliquoting and liquid nitrogen snap-freez-

ing. All steps were either performed on ice or in a cooling room 

(4°C). Samples were stored at -80°C until further use. In addi-

tion, one analogous purification was performed using the heat-
shock treated BL21-CodonPlus(DE3)-RP E. coli without plas-

mid (“empty expression”) for control purposes.

SDS-PAGE analysis

SDS-PAGE analysis was performed using 10% SDS-gels in a 
Bio-Rad Mini-PROTEAN vertical electrophoresis system. 6 µL  
6X SDS-sample buffer was added to 30 µL sample and the sam-

ples loaded into the gel pockets. Samples were not corrected for 

protein amount but for the volume of the original fraction in such 

a fashion that consistently 0.3% of the original fractions were 
used (filled up to 30 µL with MilliQ). Gels were run at 100 V 
for 60 min and stained using colloidal Coomassie solution at 
4°C while shaking overnight. Images were taken using a desk-

top scanner.

Mass spectrometry

Mass spectrometry was employed to confirm the identity of the 
expressed TrxA-6×His-hPPP5. Samples were run on SDS-gels as 
described above and bands considered to contain TrxA-6×xHis-
hPPP5 were cut out, divided into ~1 mm2 squares and submitted 

to the Proteomics Core Facility of the University of Konstanz. 
Proteomic analyses of trypsin digested fragments were carried 

out with an LTQ Orbitrap Discovery (Thermo Fisher Scientific, 
Bremen Germany) coupled to an Eksigent 2D-nano HPLC (Eksi-
gent, USA). Data were analyzed using Mascot software (Matrix 
Science).

Phosphatase activity assay

The phosphatase activity of the TrxA-6xHis-hPPP5 fraction 
(hPPP5) was assayed using a colorimetric phosphatase activity 
assay with para-nitrophenylphosphate (pNPP) as substrate and 

buffers according to Heresztyn and Nicholson (2001). Purified 
hPPP5 was tested undiluted and in 1:1 serial dilutions (total 11 
concentrations, highest dilution 1:1024) using the enzyme diluent 
buffer (52 mM Tris pH 7, 2 mM MnCl2, 0.5 mg/ml BSA, 1 mM  
DTT, 0.5 mM NaOAc, 123.5 µM EGTA) for dilutions. 20 µL of 
each dilution was pipetted into a well of a polystyrene flat bottom 
96-well plate to which 200 µl of the substrate solution (62.5 mM 
Tris pH 8.1, 26 mM MgCl2, 0.2 mM MnCl2, 0.5 mg/ml BSA,  
2 mM DTT, 1 mM NaOAc, 24 mM pNPP) was given. Testing was 

carried out in technical triplicates. Color development at 37°C 
and 405 nm was measured every 10 min over a period of 4 h.  
Linear regressions of each dilution over time were plotted and 

slopes obtained. Slopes obtained were compared to correspond-

ing slopes of rPPP1 (protein amount and specific activity). Ac-

cordingly, this allowed calculation of the volume of the hPPP5 

2  Materials and methods

Materials

Microcystins were obtained either from Enzo Life Sciences 
(MC-RR, -LR, -YR, -WR, -LA, -LY, -LF, -LW, -HilR, -HtyR, 

[β-D-Asp3]-MC-RR and [β-D-Asp3]-MC-LR) or were synthe-

sized (MC-LY(Prg), [enantio-Adda5]-MC-LF, [Anda5]-MC-
LY(Prg), [Amba5]-MC-LY(Prg), [MSecPh7]-MC-LY(Prg)) us-

ing previously published procedures (Zemskov et al., 2017; Fon-

tanillo et al., 2016). [β-D-Asp3, Dhb7]-MC-RR was a gift from 
Judith Blom (University of Zurich, Switzerland). 

Microcystins were dissolved in pure methanol to 100 µM. Ac-

tual concentrations were determined using UV spectroscopy at 

238 nm (using the extinction coefficient of MC-LR of 39800 mol 
L-1 cm-1), and stocks were stored at -20°C until used for seri-

al dilutions. Stocks of [Anda5]-MC-LY(Prg) and [Amba5]-MC-
LY(Prg) were quantified by dissolving weighed amounts in an 
appropriate volume of methanol, as photometric quantification 
was not possible due to lack of the characteristic absorption peak 

at 238 nm (missing ADDA chain). 
rPPP1 (rabbit skeletal muscle) was obtained from New En-

gland Biolabs (P0754L, product discontinued). hPPP2A (hu-

man red blood cells) was from Promega (V6311, product dis-

continued). pET32a(+)-TrxA-6His-hPPP5 was generated by 
GenScript using the human PPP5 sequence (NCBI Accession 
NP_006238.1) with GenScript’s codon optimization for E. coli.

Expression of 6xHis-hPPP5 in E. coli

pET32a(+)-TrxA-6His-hPPP5 was transformed into chemical 
competent BL21-CodonPlus(DE3)-RP E. coli cells (Agilent, 

230255) via heat-shock. After selection on ampicillin/chloram-

phenicol-agar, a single colony was picked and cultivated in 2 mL 

LB-ampicillin/chloramphenicol (amp/cam) medium for 6 h. Af-
terwards, the pre-culture was added to 500 mL of TB-amp/cam 
(Terrific Broth supplemented with ampicillin and chloramphen-

icol) medium and incubated over night at 37°C while shaking 
(220 rpm). The following day, OD600 was measured to ensure 

growth in the exponential phase (OD600 = ~4). Controls were 
performed using heat-shock treated BL21-CodonPlus(DE3)-RP 
E. coli cells without plasmid.

Purification of 6xHis-hPPP5
Cultures of transformed BL21-CodonPlus(DE3)-RP E. coli 

cells were centrifuged at 5000×g for 10 min at 4°C. Pellets were 
washed with 10 mL STE buffer (10 mM Tris-HCl pH 8.0, 100 mM  

NaCl, 1 mM EDTA) prior to resuspension in 10 mL cold PBS 

buffer + 1% protease inhibitor cocktail (Sigma, P8849). Cell ly-

sis was achieved using a Branson Sonifier 250 with five times  
20 pulses. Samples were cooled on ice between each set of 20 

pulses. Lysate was cleared from cell debris by centrifugation for 

45 min at 18000×g at 4°C. The cleared lysate was incubated with 
2.5 mL (50:50 slurry) equilibrated Ni-NTA-agarose beads (Bio-

zym, 2631105) on an overhead-tumbler at 4°C overnight. Af-
ter centrifugation at 4°C and 800×g for 5 min, the supernatant 
was discarded and beads were washed three times with 2.5 mL 
wash buffer (50 mM NaH2PO4, 300 mM NaCl, 60 mM imidaz-

ole). Elution was performed by incubating the beads for 10 min 
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PPP inhibition data of the different MC congeners (Tab. 1) 

were classified into three classes of toxicity (Tab. 2, Fig. 3, 4). 
The original dataset consisted of 47 data points of which 31 data 
points were classified as toxic, 7 were classified as less-toxic and 
9 were classified as non-toxic. This classification was arbitrary, 
albeit the most toxic classification includes MC congeners with 
relevance to human intoxications and the WHO guideline (Ber-

ry et al., 2017; Dietrich and Hoeger, 2005; Azevedo et al., 2002; 
Bartram and Chorus, 1999). As this is a rather small dataset for 

ML and sufficient samples are crucial for ML performance, Syn-

thetic Minority Oversampling Technique (SMOTE) was applied 

to mimic a balanced dataset and thereby increase prediction per-

formance of minority classes (Chawla et al., 2002). SMOTE gen-

erates new, artificial data points for minority classes by variation 
of the feature vector representing original data points. SMOTE 

implementation in imbalanced learn (version 0.3.3) (Lemaître et 
al., 2017) was used with standard settings and a ratio of 1.0. This 

procedure resulted in 31 data points per class, i.e., 93 data points 
in total (Tab. 2).

Three different ML models were trained with different features 

and classifiers to classify MC congeners into the toxicity class-

es. Two models were trained with a random forest (RF) classifi-

er implemented in scikit-learn (version 0.8.0) (Pedregosa et al., 

2011) and the XGBoost implementation (version 0.19.1) of Gra-

dient Boosting Machines (GBM) classifier (Friedman, 2001), re-

spectively. As feature, vectorized structural data of the conge-

ners (Mol2vec) was used. Additionally, one model was trained 

with a random forest classifier with molecular and protein da-

ta as feature (Tab. S31, Fig. 3, 4). To merge molecule and pro-

tein information into one vector, structural data of molecules was 

vectorized with Mol2vec and protein data was vectorized with 
ProtVec and then concatenated. Subsequently, hyper-parameters 

were tuned (Tab. S31) to derive the best model. The final model 
used majority voting of these three models (Mol2vec with RF, 

Mol2vec with GBM and Mol2vec + ProtVec with RF) to classify 
a compound (Fig. 4).

For training and evaluation of an ML algorithm, the dataset had 

to be split into a training and a test set. These two sets had to be 

strictly separated, because if data points from the training set were 

used in the test set, the evaluation would always result in high 

performance as the model would already know the data point. 

Two procedures were applied to split the dataset: 1) using 80% of 
the data points (75) for training and 20% of the data points (18) 
for testing the performance and 2) by five-fold cross-validation 
(Fig. 4): Applying five-fold cross validation results in four-folds 
of the dataset being used for training and one-fold of the dataset 

being used for testing. This procedure is repeated until every fold 

was the test set once, resulting in five ML models. This proce-

dure has the advantage that a standard deviation of performance 

between the models can be calculated to get a better estimation 

of model performance and robustness (Tab. S41). For both pro-

cedures, data points are randomly assigned to the respective set 

or fold. For this reason, each procedure and ML was repeated 50 

fraction corresponding to three U of rPPP1 (hPPP5: 0.83 U/µL, 
rPPP1: 2.5 U/µL). U is defined here as the amount of enzyme 
needed to dephosphorylate 1 nmol of pNPP in 1 min at 30°C.

Colorimetric protein phosphatase inhibition assay (cPPIA)

The employed assay is based on previously published procedures 

(Heresztyn and Nicholson, 2001; Fischer et al., 2010). Serial di-
lutions of each MC congener were produced in MilliQ in LC-vi-
als, whereby the most concentrated MC sample contained a max-

imum of 5% methanol. 20 µL of each dilution was pipetted into 
a polystyrene flat-bottom 96-well plate in triplicates. Three U of 
each phosphatase were diluted in 2120 µl enzyme dilution buffer 
and 20 µL of the solution was added to each well (correspond-

ing to about 0.07 U per well). Enzyme solution (20 µL) in addi-
tion to 20 µL of MilliQ (three replicates) served as 100% activity 
control (no inhibition), while 20 µL enzyme dilution buffer lack-

ing enzyme (three replicates) as well as 20 µL MilliQ served as 
background control (no enzyme activity). The plate was incubat-
ed at 37°C for 5 min to ensure interaction of microcystins with 
the PPP. 200 µL of substrate solution was pipetted into each well, 

and the plate was immediately read at 405 nm using an Infinite 
200 Pro microplate reader (Tecan, Männedorf, Switzerland). The 
plate was then incubated at 37°C for 3 h before being measured 
again at 405 nm. PPP activity was calculated by subtracting the 
start value (0 h) from the end value (3 h) and compared to 100% 
activity. IC50 were calculated using GraphPad Prism 5.0 software 
via a 5-PL non-linear regression with anchorage points and con-

straints between 100% and 0%. Replication: n ≥ 3 for PPP2A and 
≥ 5 for PPP1 and PPP5, each in technical duplicates or triplicates. 
The analyses of [Amba5]-MC-LF and [Anda5]-MC-LF had 5 bi-
ological replicates but no technical triplicates due to shortage of 

pure testing material.

Data analyses, pre-processing, statistics and machine learning

Data analyses were carried out using Microsoft Excel Profes-

sional Plus 2013, while GraphPad Prism 5 was used for statistics 
and data representation. Data pre-processing and machine learn-

ing were carried out using Python version 3.6.62.

Machine learning (ML)

The PPP inhibition capabilities of the different MC congeners, 

expressed as IC50 values (Tab. 1), were used to train an ML mod-

el (Fig. 2-4). In order to allow for the adaption into the ML mod-

el, the two primary factors, i.e., MC congeners (molecules) and 

PPP (proteins), had to be transformed to numerical vectors (Fig. 

2). To transform molecules to a vector, the Mol2vec approach 

described in Jaeger et al. (2018) was used with a pre-trained 

model3. To transform proteins to a vector, the ProtVec approach 

(Asgari and Mofrad, 2015) (Fig. 2) and a model trained on  
UniProt sequences were used as described in Jaeger et al. (2018). 

Subsequently, the models were applied to encode MC congeners 

and the PPPs (UniProt ID: PPP1 (P62136), PPP2A (P67775) and 
PPP5 (P53041)) as vectors. 

2 https://www.python.org/

3 Mol2vec – an unsupervised machine learning approach to learn vector representations of molecular substructures. https://github.com/samoturk/ 
mol2vec (accessed 08.08.2018)

https://www.python.org/
https://github.com/samoturk/mol2vec
https://github.com/samoturk/mol2vec
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The comparison of IC50 values obtained with MC congeners in 

the three PPPs demonstrated that of the ten MC congeners avail-

able for testing in both PPP1 and 2A, five MC congeners had 
comparable IC50 values, while five MC congeners were more 
selective towards PPP2A, possibly suggesting a slightly higher 

sensitivity of PPP2A toward MC congeners (Tab. 1, Fig. S51). 

In contrast, several-fold higher concentrations of MC congeners 

were necessary to achieve 50% inhibition of PPP5 phosphatase 
activity. Notable exceptions to the latter were MC-LY(Prg) and 

[Amba5]-MC-LY(Prg), to which the PPP5 susceptibility to inhi-
bition was comparable but lower than observed for PPP1.

The importance of structural differences with regard to bind-

ing to the catalytic subunit of PPPs was dramatically demon-

strated with the comparison of MC-LF and the de novo syn-

thetized [enantio-Adda5]-MC-LF. While MC-LF inhibited all 
three PPPs tested, the corresponding [enantio-Adda5]-MC-LF 
had no PPP inhibitory activity at all (Tab. 1). In contrast, oth-

er structurally similar derivatives, i.e., MC-LY(Prg) and 

[MSecPh7]-MC-LY(Prg), both having a propargyloxy residue 

at position 4 (Fig. 1) of the phenylalanine moiety, show only 

slightly reduced PPP inhibiting activity, if any, when compared 

to the parent MC-LF. However, if the Adda-residue is shortened 

to [Amba5]-MC-LY(Prg) or [Anda5]-MC-LY(Prg) (Fig. 1, Tab. 
S11), a marked reduction in PPP inhibiting capacity is found 

(Tab. 1). The latter observations suggest that structural chang-

es of the amino acid Adda (enantiomeric configuration or short-
ened Adda-side chain) prohibited or reduced functional interac-

tion with the catalytic subunits and thus inhibition of the PPPs. 

On the other hand, structural changes to the phenylalanine moi-

ety at position 4 or the Mdha at position 7 had limited impact on 

PPP activity. Similarly, exchanging leucine in MC-LR and tyro-

sine in MC-YR for a homoisoleucine (MC-HilR) and a homoty-

times to test whether performance was robust and independent of 

the random assignment of data points for training.

To finally estimate performance of the ML model, different 
performance metrics were employed (precision, recall, F-score, 

see Tab. S4 and Fig. S11). In addition, the confusion matrix (Fig. 

5) was checked to estimate how many and which molecules were 
classified correctly or falsely. Performance metrics and confu-

sion matrix were used as implemented in scikit-learn (Pedregosa 

et al., 2011).    

              

3  Results

Full-length human PPP5 was bacterially expressed in BL21 Co-

don Plus E. coli with several attached tags: Thioredoxin A (TrxA) 

for solubility, 6-Histag for purification, S-Tag for a possible sec-

ond purification, and a thrombin-site (TrxA-6His-S-PPP5). PPP5 
identity was confirmed using mass spectrometry after purifica-

tion using Ni-NTA beads (Tab. S21). To ensure that the observed 

activity was due to PPP5, bacteria without a plasmid were grown, 
purified and tested. These purified proteins did not show PPP ac-

tivity (Fig. S21). 

To develop a dataset of MC congener dependent toxicity (PPP 

inhibition activity) for the ML model, 18 different MC congeners 

were tested in three PPP (rPPP1, hPPP2A, hPPP5 expression). 
The 18 MC congeners spanned the known spectrum of hydro-

phobicity, had different molecular weights, and contained com-

mon as well as unusual modifications of the consensus structure 
(Fig. 1, Tab. S11). The in vitro PPP inhibition assays delivered 

well-fitted (R2) concentration-inhibition response curves (Tab. 1, 

Fig. S3-51); the derived IC50 values were subsequently used for 

the ML approach (Fig. 2-4).

Fig. 5: Confusion matrix of microcystin toxicity prediction using 5-fold cross validation
Either the whole dataset was used for training (A), or the stereoisomer [enantio-Adda5]-MC-LF) was dropped for the training of the 
algorithm (B). The identity of all wrong classifications is given in the individual squares.
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4  Discussion

From an evolutionary perspective, ser/thr-PPP are a very old 

family of enzymes, with PPP1 and PPP2A being two of the most 
slowly evolving enzymes (Cohen, 2004). PPP1 usually works to-

gether with a regulatory subunit, while the PPP2A-holoenzyme 
additionally comprises a scaffold subunit (Shi, 2009). In this re-

gard, PPP2A is similar to PPP4 and PPP6, whose holoenzymes 
are also comprised of three subunits, i.e., scaffold, regulatory and 

catalytic (Brewis et al., 1993; Stefansson et al., 2008). Moreover, 
PPP4 and PPP6 are more closely related to PPP2A than to any 
other member of the PPP family (Shi, 2009). Thus, it can be as-

sumed that PPP4 and PPP6 behave similarly to MC inhibition as 
PPP2A. PPP5 is most distant from the other members of the PPP 
family (Andreeva and Kutuzov, 2001). PPP5 is expressed as a 
single peptide combining the catalytic domain with a TPR-do-

main, which interacts with the peptide’s c-terminus to act as an 
auto-inhibitory domain (Yang et al., 2005).

The catalytic subunits of PPP1, PPP2A and PPP5, represent-
ing three members of distinct subfamilies of the PPP family, were 

used for inhibition assays with various MC congeners. In view of 

the lack of pure human PPP1 available for in vitro testing, PPP1 

from rabbit skeletal muscle was used as it displays 100% pro-

tein sequence identity to human PPP1 (hPPP1; analyzed with 
Clustal Omega and Geneious (Biomatters)) and is therefore con-

sidered to be equal in structure and enzymatic performance to 
hPPP1. In contrast, hPPP2A and hPPP5 have only 43% and 37% 
sequence homology with hPPP1, while hPPP5 and hPPP2A are 
40% homologous (analyzed with Clustal Omega). Despite se-

quence differences, the 3D-structures of the respective catalytic 
subunits align quite well (see Fig. S61), suggestive of similar size 
and structure restrictions for MC interaction with the hydropho-

bic groove close to the catalytically active center of the respec-

tive PPPs. 

Although PPPs have been reported to be inhibited by MC ear-

lier (Fischer et al., 2010; Hastie et al., 2005; Mackintosh et al., 
1990; Garibo et al., 2014), the data presented here are unique as 
they compare the MC-mediated inhibition of the catalytic sub-

units of three different PPPs in parallel with a hitherto unprece-

dented number of MC congeners, including synthetically derived 

structural variants. MC-RR, -LR, -YR, and [β-D-Asp3, Dhb7]-
MC-RR presented with similar IC50 for PPP1 and PPP2A (Tab. 

1), while PPP2A was ≥ 2-fold more sensitive to the more hydro-

phobic MC-LW, -LA, -LF and the synthetic MC-LF derivatives 

(MC-LY(Prg), [MSecPh7]-MC-LY(Prg) and [Amba5]-MC-
LY(Prg), see Fig. 1. Although ([Amba5]-MC-LY(Prg) displayed 
an approx. 243-fold higher toxicity towards PPP2A than to PPP1, 
this was not the case for the other two OPrg-containing conge-

ners ([MSecPh7]-MC-LY(Prg) and [Anda5]-MC-LY(Prg)). In-

deed, it has previously been described that MC variants with re-

duced Adda5-sidechains show a tendency to bind more effective-

ly to PPP2A than to PPP1(Fontanillo et al., 2016). 
In principle, the MC congeners’ inhibition capacity of PPP5 

followed the same trend as observed for PPP1 and PPP2A, albeit 

being 4 to 200-fold lower. With the exception of [enantio-Add-

a5]-MC-LF, showing absence of binding to all three PPPs test-

rosine (MC-HtyR) at position 2 had no significant effect on PPP 
inhibition capacity (Tab. 1). However, changing the methyla-

tion of β-D-MeAsp at position 3 of MC-RR to demethylated 
[β-D-Asp3]-MC-RR and [β-D-Asp3,Dhb7]-MC-RR resulted 
in lesser PPP inhibition capacity, thus suggesting that structur-

al changes involving L-amino acid residues at position 3 could 
have an impact on the inhibition of PPPs. When comparing the 

impact of structural changes of the Adda side-chain at position 

5 with changes of β-D-MeAsp at position 3, it appears that the 
former had a much more pronounced impact on the binding of 

MC congeners into the catalytic subunit and thus inhibition of 

PPPs.

The above IC50 values were classified into toxicity classes 
(Tab. 2) and used for an ML approach. As the distribution of da-

ta points was not similar among classes, oversampling was ap-

plied, resulting in 31 data points per class, adding up to a total 
of 93 (Tab. 2, Fig. 3, 4). The resulting data was used for ML via 
two different approaches: using 80% of the data for training and 
20% for testing of prediction (80/20) and by 5-fold cross vali-
dation (CV) with 50 repetitions (see Fig. 4, Tab. S41 and 3.9 for 
details). 

Subsequently, all data points were used and majority voting of 

three ML models was employed to predict the toxicity class of 

every data point (Tab. S31). Both approaches of splitting data in-

to training and test set performed well for toxicity class predic-

tion with a precision above 0.8 and a recall and F-score mostly 

above 0.8 (Tab. S41). Since cross-validation is more suitable for 

small datasets (Beleites et al., 2013), we primarily focused on 
CV results, although 80/20 results are provided in Table S41 as 

well. CV predictions were compared with the true classification 
according to classified IC50 values (Fig. 5A). 25 of the 31 tox-

ic data points were predicted correctly, while two were wrongly 

predicted as less toxic and four as non-toxic. 

Interestingly, the misclassified MC congeners primarily in-

volved MC-LF variants. For example, the stereoisomer of MC-

LF ([enantio-Adda5]-MC-LF) was classified as toxic in PPP2A 
although it is not toxic. The latter resulted most likely from the 

fact that the training vector generation was not trained for chiral-

ity of the molecules in question. Indeed, the vector generated for 

[enantio-Adda5]-MC-LF and MC-LF would be identical, albeit 
the values entered into the ML algorithm would read “non-toxic” 

and “toxic” and thus result in wrong classifications by ML. 
To test this, the same approach was chosen but the [enan-

tio-Adda5]-MC-LF-variant was omitted from the training and 
test sets of the ML algorithm (Fig. 5B). In consequence, both 
natural MC-LF and propargylated MC-LF variants were clas-

sified correctly. Moreover, [β-D-Asp3]-MC-LR (in PPP1) was 
now moved from originally being wrongly predicted as non-tox-

ic to being predicted as less toxic, despite its true affiliation to 
the “toxic” class. Similarly, the prediction of [β-D-Asp3]-MC-
LR (in PPP5) moved from non-toxic to toxic, despite its true af-
filiation to the less-toxic class. Finally, MC-RR (in PPP5) moved 
from the correct prediction of “less toxic” to the wrong predic-

tion of “toxic”. Overall, the ML model trained without the MC-

LF stereoisomer performed better, producing fewer false-nega-

tive predictions.
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LA,-LW, or -LF, compounds the problems mentioned with using 

the TEF as originally proposed by Dietrich and Hoeger (2005). 
Indeed, in a realistic setting employing a guidance value of 1 

µg MC-LRequivalent/L for drinking water (Falconer and Hump-

age, 2005) and using summary detection methods, e.g., ELISA 
(Fischer et al., 2001), without concurrent LC-MS/MS confirma-

tion of MC congeners (Puddick et al., 2014) could severely un-

der- or overestimate the toxicity of a MC congener mixture in 

a given water sample contaminated by a toxic cyanobacterial 

bloom. Indeed, there are several reports of multiple co-occur-

ring MC congeners in a given cyanobacterial bloom (Falconer 

et al., 1994; Kleinteich et al., 2018; Puddick et al., 2014), thus 
demonstrating the reality of having to deal with mixture expo-

sures of different toxicities in a human hazard and risk assess-

ment scenario. 

The question then needs to be raised as to how one could deal 

with the uncertainties of having more than 248 putative MC con-

geners (Spoof and Catherine, 2017) on one hand, yet absence of 

relevant toxicity data for the majority of these MC congeners that 

would allow for appropriate hazard and risk assessment on the 
other hand. The latter discrepancy is exacerbated by the fact that 

for most of the 248 putative MC congeners no purified material is 
available to actually test the MC using in vitro toxicokinetic and 

toxicodynamic assays and thus to provide a minimal dataset that 

could be of toxicological relevance for humans.

ed (Tab. 1), earlier assumptions regarding size and structure re-

strictions for MC interaction with the respective PPPs could not 

be corroborated. Indeed, MC congeners apparently do not bind 

as tightly to the catalytic subunit of PPP5 as to the catalytic sub-

units of PPP1 and 2A. Exceptions, surprisingly, were the synthet-

ic MC-LY(Prg) and [Anda5]-MC-LY(Prg), which shared simi-
lar inhibitory capabilities in PPP1 and PPP5 (Tab. 1). Asp3 vari-
ants of MC-LR appeared to be of comparable toxicity as MC-LR, 

while in contrast β-D-Asp3 variants of MC-RR were all dramati-
cally less toxic than MC-RR across all PPPs tested. 

Although MC-LR is considered to be the most toxic of all con-

geners (WHO, 2017), this appears to apply only to PPP1 when 

considering toxicodynamic data. Indeed, MC-LW, MC-LF, MC-

LY(Prg) and [MSecPh7]-MC-LY(Prg) presented with compara-

ble inhibitory capabilities as MC-LR in PPP2A. Moreover, in 

PPP5, MC-WR, -YR, -LY, -LA, -HilR, -HtyR were of compa-

rable toxicity while MC-LF and MC-LY(Prg) were more toxic 

than MC-LR. The latter suggests that using the toxicity equiv-

alent factors concept (TEF), i.e., all MC congeners equaling in 

toxicity to MC-LR, would under- and overestimate the potential 

toxicodynamic capacity present in a given cyanobacterial bloom. 

Moreover, the fact that MC congeners have been demonstrat-

ed to present with significant differences with regard to OATP 
transport (Fischer et al., 2005; Feurstein et al., 2011), whereby 
MC-LR and-RR are transported less efficiently than, e.g., MC-

Tab. 3: MC congener toxicity equivalency factors (TEF)

Congener PPP1  PPP2A  PPP5

 IC50 (nM) TEF IC50 (nM) TEF IC50 (nM) TEF

MC-RR 1.5 0.20 1.6 0.31 11.7 0.44

MC-LR 0.3 1.00 0.5 1.00 5.1 1.00

MC-YR 1.3 0.22 n.d. n.d. 5.1 1.00

MC-WR 1.2 0.24 1.0 0.50 5.6 0.91

MC-LA 1.9 0.15 0.7 0.71 6.1 0.84

MC-LY 0.8 0.36 n.d. n.d. 4.1 1.24

MC-LF 2.0 0.15 1.4 0.36 4.7 1.09

MC-LW 1.2 0.24 0.7 0.66 2.5 2.02

MC-HilR 0.6 0.49 n.d. n.d. 4.2 1.20

MC-HtyR 0.7 0.45 n.d. n.d. 4.7 1.09

[β-D-Asp3]-MC-RR 45.0 0.01 n.d. n.d. 167.1 0.03
[β-D-Asp3]-MC-LR 0.9 0.34 n.d. n.d. 10.2 0.50
[β-D-Asp3, Dhb7]-MC-RR 62.0 0.01 84.3 0.01 877.1 0.01
MC-LY(Prg) 1.7 0.17 0.4 1.76 1.7 2.95

[MSecPh7]-MC-LY(Prg) 1.9 0.15 0.9 0.54 18.2 0.28
[enantio-Adda5]-MC-LF – – – – – –
[Amba5]-MC-LY(Prg) 520,817 0.000 2,135 0.000 54,063 0.00
[Anda5]-MC-LY(Prg) 1,724 0.000 n.d. n.d. 2,420 0.00
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reconsidered. Prudence would require that the current guidance 

value of 1.0 MC-LRequivalent µg/L be lowered by at least a fac-

tor 10, thus accommodating recent in vitro findings with human 
cell systems. 

In the future, integrated systems toxicology approaches includ-

ing computational toxicology (Cronin and Dietrich, 2017) and the 

ML approach presented here in combination with adverse out-

come pathways4 could provide a much better basis for the hazard 
and risk assessment of MC in toxic cyanobacterial blooms and 

thus establish better guidelines regarding the safety of surface wa-

ters used for drinking water and recreational purposes.
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