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ABSTRACT 

Purpose: Metastatic relapse of triple-negative breast cancer (TNBC) within 2 years of diagnosis is 

associated with particularly aggressive disease and a distinct clinical course relative to TNBCs that 

relapse beyond 2 years. We hypothesized that rapid relapse TNBCs (rrTNBC; metastatic relapse or 

death <2 years) reflect unique genomic features relative to late relapse (lrTNBC; >2 years). 

Patients and Methods: We identified 453 primary TNBCs from three publicly-available datasets and 

characterized each as rrTNBc, lrTNBC, or ‘no relapse’ (nrTNBC: no relapse/death with at least 5 

years follow-up). We compiled primary tumor clinical and multi-omic data, including transcriptome 

(n=453), copy number alterations (CNAs; n=317), and mutations in 171 cancer-related genes 

(n=317), then calculated published gene expression and immune signatures. 

Results: Patients with rrTNBC were higher stage at diagnosis (Chi-square p<0.0001) while lrTNBC 

were more likely to be non-basal PAM50 subtype (Chi-square p=0.03). Among 125 expression 

signatures, five immune signatures were significantly higher in nrTNBCs while lrTNBC were enriched 

for eight estrogen/luminal signatures (all FDR p<0.05). There was no significant difference in tumor 

mutation burden or percent genome altered across the groups. Among mutations, only TP53 

mutations were significantly more frequent in rrTNBC compared to lrTNBC (Fisher exact FDR 

p=0.009). To develop an optimal classifier, we used 77 significant clinical and ‘omic features to 

evaluate six modeling approaches encompassing simple, machine learning, and artificial neural 

network (ANN). Support vector machine outperformed other models with average receiver-operator 

characteristic area under curve >0.75. 

Conclusions: We provide a new approach to define TNBCs based on timing of relapse. We identify 

distinct clinical and genomic features that can be incorporated into machine learning models to 

predict rapid relapse of TNBC. 
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INTRODUCTION 

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype defined by lack of 

targetable estrogen receptor (ER), progesterone receptor (PR) and HER2.1 TNBC accounts for 15% 

of breast cancer cases yet is responsible for 35% of breast cancer related deaths.1,2
 TNBCs tend to 

present with higher grade, large size, and often involve lymph nodes at diagnosis. 3 TNBCs are more 

likely to develop distant rather than local recurrence compared to hormone receptor-positive 

counterparts and spreads more frequently to lung and brain and less frequently to bone.2,4 

Understanding determinants of distant relapse is imperative as the median overall survival after 

diagnosis of metastatic disease was historically only 13-17 months2,5 and even among patients with 

PD-L1 positive TNBC receiving chemo-immunotherapy remains 25 months.6 

The existing TNBC subsets/groupings provide a critical framework for understanding intrinsic 

genomic characteristics but are only associated with modest differences in patient survival. Clinically, 

we know that the majority of patients diagnosed with TNBC are long-term survivors.1,2,7 Among the 

20-30% of TNBCs who develop metastatic disease, a subset have an aggressive phenotype 

associated with rapid relapse, therapeutic resistance, and poor prognosis while others have a 

relatively late relapse, associated with more indolent or treatment responsive disease.7 To more 

accurately understand the differences in patient outcome in TNBC, we sought to investigate TNBCs 

defined by timing of outcome: rapid versus late versus no relapse.  

Advances in sequencing technology have facilitated comprehensive molecular profiling of breast 

cancers, including subsets such as TNBC.8,9 A major challenge for TNBC is inter-tumor 

heterogeneity, thought to be an important contributor to therapeutic resistance. A landmark 

transcriptional analysis of over 500 primary TNBCs revealed six subtypes of TNBC with distinct 

expression profiles.10,11 An integrated genomic analysis of TNBCs presented a unifying theory with 

four main TNBC subsets: 1) basal-like, immune-activated; 2) basal-like, immune suppressed; 3) 

luminal androgen receptor subtype: non-basal subtype with few CNAs; 4) mesenchymal: genomically 
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unstable with fibroblast/EMT phenotype.12 In addition, genomic analyses demonstrate high frequency 

of TP53 mutation, present in more than 75% of TNBCs, as well as mutations in PIK3CA in 

approximately 25% of cases.12-14 TNBCs also reflect widespread copy number alterations, suggesting 

that lack of genomic integrity is a key mutational process in TNBC.12-14  

Clinical datasets may be limited in size, so accurate predictive modeling is crucial in a disease such 

as TNBC that has multiple distinct subsets.15 To be successful, predictive model needs to be able to 

learn from a small input and extract high-level, accurate information.15 There is growing 

implementation of various machine learning approaches to many areas of research including 

molecular subtypes of breast cancer16,17 and pathologic image analyses, such as detection of lymph 

node metastases in women with breast cancer.18 Determining the best approach for predictive 

modeling depends on size of data set, type of features, and outcome.19 

In this study, we identify distinct genomic features among primary TNBCs categorized based on 

outcome: rapid (rrTNBC), late (lrTNBC) and no relapse (nrTNBC). Using a comparative modeling 

approach, we show that machine learning approaches provides an optimal predictor of rapid relapse 

for primary TNBCs.   

 

METHODS 

Patient and Tumor Characteristics 

Patient-specific data were obtained from TCGA13, METABRIC20,21, and from our published meta-

analysis (as described previously).8 These variables included age at diagnosis, grade, stage at 

diagnosis, pathologic receptor status (estrogen receptor (ER), progesterone receptor (PR), and 

HER2), response to neoadjuvant chemotherapy (where available), and distant metastasis-free or 

overall survival. Triple-negative breast cancer was defined as being negative for ER, PR, and 

HER2.Pathologic receptor status was ‘positive’ or ‘negative’ based on the following definitions: for ER 

and PR immunohistochemistry (IHC), 0 was defined as ‘negative’, 2-3 was defined as ‘positive’, and 
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an IHC of 1 was considered indeterminate. For HER2, a FISH HER2/CEP17 ratio of greater than 2.0 

was defined as ‘positive’. Chemotherapy response was categorized as pathologic complete response 

(pCR) or residual disease (RD) based on study-reported outcomes. 

 

Genomic Data  

For data from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), 

normalized gene expression data, copy number data, and somatic mutation data for 171 cancer-

related genes were obtained from the publicly available European Genome-phenome Archive (IDs 

EGAD00010000210 and EGAD0001000021) and associated publications21,22. Copy number 

segmented data files were processed using GISTIC2.023. For data from TCGA, breast cancer gene 

expression data, GISTIC copy number data, and somatic mutation data were obtained from the 

UCSC cancer browser (now XENAbrowser; version 2015-02-24). Gene expression data from 

published studies of breast cancer patients prior to neoadjuvant chemotherapy were compiled as 

previously described.8  

 

Gene Expression Signatures, Expression-Based Subtypes, and Inferred Immune Subsets 

Given gene expression data from multiple studies and disparate platforms, gene expression data for 

all TNBCs for each dataset (METABRIC n=287, TCGA n=160, neoadjuvant dataset n=446) were 

extracted and quantile normalized within TNBCs from each study then median centered. Due to 

complexities of comparing single gene expression or differential expression across 

datasets/platforms/batches, we only evaluated summary expression metrics (e.g. signatures, intrinsic 

subtypes, CIBERSORT proportions). Gene expression signatures were compiled from published 

studies, as previously described.8 We determined PAM50 intrinsic breast cancer subtype using the 

‘Bioclassifier’ package from Parker et al after balancing TNBC data with an equal number of ER-

positive cases for each dataset.24 Triple-negative breast cancer (TNBC) subtype was determined 
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using the TNBCtype tool.10,25 Proportion of infiltrating immune cell subsets were calculated using the 

CIBERSORT algorithm.26 

 

Modeling  

We compared the performance of a multinomial logistic regression model to Artificial Neural Network 

(ANN), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Linear Determinant Analysis 

(LDA), and Random Forest (RF). Multinomial logistic regression model is an extension of logistic 

regression model that allows for a dependent variable with more than two levels. ANNs are based on 

a collection of ‘neurons’ or ‘nodes’ arranged in layers and features are fed from one layer to the next 

with each layer extracting different high-level features. The last hidden layer forms a high-level 

representation to make a classification decision. The KNN algorithm classifies data points based on 

other most similar data points (‘nearest neighbors’). SVM develops an optimal hyper-plane in the 

feature space to separate different outcomes. LDA compares the log of the estimated density 

function, called the discriminant function, and the class assigned is the one with the highest value of 

the discriminant function. RF develops many random decision trees and assigns each new data point 

based on majority votes among all decision trees.  

 

To adjust the magnitude of features for optimization algorithms (often used in SVM and ANN),27 all 

numerical attributes were normalized. We identified 148 features significantly different between 

rrTNBC, lrTNBC, and nrTNBC (nominal p < .05) then used the findCorrelation function in caret R 

package28 to remove highly correlated numerical features (correlation  > .85) or highly associated 

features (Cramer’s V > .5) to avoid high dimensionality, resulting in a final model input using 77 

features. To have adequate data to train our models and sufficient testing samples to evaluate model 

performance, we partitioned our sample into 70% training set and 30% test set. 10-fold validation was 

performed on the 70% training data using caret28 and h2o R packages,29 and models were tested on 

the 30% test data. 
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We tuned each model to optimize performance. We used lasso reduction for multinomial logistic 

regression model, and tuned the regularization parameter lambda. The chosen set of lambda is an 

equally spaced array of 20 values from 1e-5 to .1. The ANN model was tuned on number of hidden 

layers, neurons on each hidden layer, and activation function using h2o.deeplearning function. The 

structure we chose were 1 to 3 hidden layers consisting of 5, 10, or 20 neurons on each layer with 

either Rectifier or Tanh activation function leading to the final output. We tuned number of nearest 

neighbors of the KNN model from 1 to 15 while trying to avoid multiples of 3. Built-in tuning was used 

for the LDA, SVM, and RF models. The final optimal model was chosen based on the logloss metric (-

log(likelihood function)). 

 

Model Performance 

To evaluate model performance, we assessed each group as a positive outcome (rrTNBC versus all 

others; lrTNBC vs all others; nrTNBC vs all others) using receiver-operator characteristic (ROC) 

curves. We used multi_roc function in multiROC30 to compute micro-average area under the curve 

(AUC) of three ROC curves to evaluate the overall performance of the models. To avoid sampling 

bias, we calculated the average AUC on the 30% test data for 10 independent runs.  

 

Statistical Analysis 

All statistical analyses were performed in R version 3.4.1. Contrasts in patient and tumor 

characteristics were evaluated using Pearson chi-squared tests. The association of signatures to 

neoadjuvant chemotherapy response was evaluated using simple linear regression and t-tests. All 

calculations of association were multiple-testing corrected using the Benjamini–Hochberg procedure 

for false discovery rate. For continuous variables, we calculated p-values comparing rapid vs. late 

and relapse vs. no relapse using ANOVA and logistic regression. For count variables (e.g. mutated 

versus not) we used Fisher exact test to evaluate relapse vs. not and rapid vs. late relapse. P-values 
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for CIBERSORT and mutation signatures were evaluated using logistic regression, and for CNAs and 

mutations were evaluated using Fisher exact tests. Data visualization was made using ggplot2.31 

 

RESULTS 

Defining Rapid versus Late versus No Relapse Triple-Negative Breast Cancer 

From three large cohorts with primary breast cancer genomic data – TCGA,13 METABRIC,20,21 and 

our prior breast cancer gene expression meta-analysis8 - we identified 893 TNBCs from a total of 

4473 breast cancer cases. For our analyses, we included patients with at least 60 months of follow-up 

or those with a distant metastasis-free survival (DMFS) event prior to our 60-month cutoff, leaving a 

total of 453 TNBCs in our evaluable dataset. Of these, 453 had gene expression data, 317 had copy 

number data, and 317 had mutation data. (Figure 1A).  

 

We assessed the percentage of total DMFS events each year (Figure 1B). In this dataset, over 20% 

of DMFS events occurred within the first two years after diagnosis, categorized as ‘rapid relapse’ 

(rrTNBC). While most DMFS events occurred within the first five years after diagnosis, 1-3% of 

events occurred annually in years 6-10 with sporadic events beyond 10 years (lrTNBC). Our main 

goal was to identify differences among TNBCs with clinically distinct outcomes, so we visualized 

DMFS for our relapse categorization (Figure 1C) in comparison with DMFS for existing intrinsic 

expression-based subtype approaches PAM5024 (Figure 1D) or Lehmann/Pietenpol TNBCtype10 

(Figure 1D) within the same cohort. The Lehmann/Pietenpol TNBCtype (log-rank p=0.01) but not 

PAM50 was associated with significant differences in DMFS. The strikingly different visualized 

outcomes suggested that our relapse categorization does, in fact, identify truly distinct subsets based 

on outcome when compared to approaches that focus on intrinsic features. 

 

Patient and Tumor Characteristics 
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We evaluated the association of clinical, pathologic, and intrinsic expression subtype with rapid vs. 

late vs. no relapse status (Table 1). There was no significant difference in age at diagnosis or grade; 

however, rrTNBCs were significantly more likely to be higher stage (Chi-square p=1.9e-10). The 

majority of patients were basal-like PAM50 subtype (78%); however, lrTNBCs were significantly more 

likely to be non-basal (non-basal: rrTNBC 18%, lrTNBC 29%, nrTNBC 20%, Chi-square p=0.03). 

Lehmann/Pietenpol TNBC subtype also reflected significant differences across groups (Chi-square 

p=0.02), although each subtype was represented within each relapse category: the 

immunomodulatory phenotype was highest in nrTNBC (16% rrTNBC, 16% lrTNBC, 24% 

nrTNBC),luminal androgen receptor was highest in lrTNBC (9% rrTNBC, 16% lrTNBC, 9% nrTNBC), 

and basal-like 2 was highest in rrTNBC (15% rrTNBC, 9% lrTNBC, 6% nrTNBC). A subset of patients 

in this cohort (127/453; 28.0%) had data on response to neoadjuvant chemotherapy (NAC). As 

anticipated, those patients with rrTNBC or lrTNBC were significantly more likely to have residual 

disease (RD) after neoadjuvuant chemotherapy (93% and 94% RD, respectively), relative to those 

with nrTNBC (51% RD; Chi-square p=1.9e-7). 

 

Response to Neoadjuvant Chemotherapy and Survival in TNBC: Immune and Expression Signatures 

Response to NAC is known to be a robust prognostic biomarker in TNBC32 and, in this cohort, RD 

after NAC was among the clinicopathologic features most strongly associated with rapid and late 

versus no relapse (Table 1). The patients with data on response to NAC all had whole transcriptome 

data but no available mutation or copy number data, so we sought to understand expression features 

associated with NAC response and DMFS. We calculated a score for 125 published gene expression 

signatures and evaluated the association of each signature with NAC response (pathologic complete 

response versus RD) by simple linear regression and hazard ratio for each signature using DMFS. 

Signatures were grouped by phenotype as previously described8 (n=127 patients; Figure 2A). 

Immune signatures were associated with better prognosis and most were also associated with 

improved response to NAC. Proliferation signatures tended to be associated with improve*ed 
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response to NAC, as we have previously described8, yet there was variable association with DMFS. 

Estrogen receptor/HER2 signatures were associated with poor response to NAC but better DMFS. 

Mesenchymal signatures tended to be associated with worse DMFS without clear association with 

response to NAC. 

 

To understand what immune cell types in the tumor microenvironment may be reflected by the 

immune signatures, we evaluated the association of three representative signatures from each group 

(immune, proliferation, ER/HER2, mesenchymal) with the relative proportion of 22 inferred immune 

cell subsets via CIBERSORT (Figure 2B).26 Immune signatures were strongly positively correlated 

with anti-tumor immune cell types including M1 macrophages, CD8 T-cells, and memory B-cells (all 

Pearson’s r >= 0.3, all p<1.2e-8) and anti-correlated with immune suppressive cell types including M2 

macrophages, memory resting CD4 T-cells, resting NK cells, and resting mast cells. ER/HER2 

signatures reflected an almost opposite pattern to immune signatures, with positive correlation to 

immune suppressive cell types and anti-correlation with anti-tumor immune cell type. Proliferation 

signatures had a similar pattern to immune signatures, although less striking, while metabolic 

signatures appeared to have a strong correlation specifically with M0 macrophages (all Pearson’s 

r>0.27, all p<8.4e-9). As a sensitivity analysis, we evaluated the association of three representative 

signatures from each group with 7 immune cell-type specific signatures from MSigDB33,34 (instead of 

CIBERSORT) and found similar results (Supplementary Figure 1A). 

 

Expression Signatures in Rapid versus Late versus No Relapse TNBC 

To assess pathways and phenotypes associated with rapid vs. late vs. no relapse, a score was 

calculated for 125 published gene expression signatures across the entire dataset. Visual observation 

of all signatures or only the quarter with the greatest variance did not yield any clear patterns 

(Supplementary Figure 1B). Evaluating each signature individually across the three groups revealed 

16 signatures that were significantly different (ANOVA FDR p<0.05; Figure 3, Supplementary 
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Figure 2A-B). Among these, five signatures were immune-related: two from the GeparSixto trial35, an 

immune signature from TNBC subtypes,10 and two STAT1 signatures.36,37 All were significantly higher 

in nrTNBC than rrTNBC and lrTNBC. Eight of the sixteen significant signatures were related to 

estrogen receptor signaling and/or luminal phenotype – all were highest in lrTNBC, lowest in rrTNBC, 

and intermediate in nrTNBC. Finally, three signatures did not fall into a specific category and revealed 

mixed patterns of association. Most CIBERSORT immune subsets were not statistically significant 

(Supplementary Figure 2C), however, neutrophils were significantly higher in rrTNBC (ANOVA FDR 

p=0.001) while resting mast cells were significantly lower in lrTNBC (ANOVA FDR p=0.003). 

 

Mutations and Copy Number Alterations 

In this cohort, 70% (317/453) of patients had data on single nucleotide variant/mutation data on 171 

cancer-related genes and whole genome CNAs.21 Only a small subset of patients (11.7%; 53/453) 

had whole exome mutation data so we focused on the 171 cancer-related genes to ensure adequate 

statistical power. When evaluating general mutational features, there was no significant difference in 

mutations per megabase (ANOVA p=0.64; Figure 4A) nor percent genome altered by copy number 

(ANOVA p=0.96; Figure 4B).  

 

We first compared the frequency of alteration for each mutation and cytoband (for CNAs) for relapse 

(rrTNBC + lrTNBC) versus nrTNBC (Figure 4C) given low frequency of mutation for most genes. 

There were no genes that were significantly different after multiple testing when comparing relapse 

versus no relapse but PIK3CA mutations were more frequent in relapse relative to nrTNBC; and 

PTEN, ARID1A, and RYR2 mutations enriched in nrTNBC relative to rrTNBC (Fisher exact nominal 

p<0.05). We then compared rrTNBC versus lrTNBC (Figure 4D) and found that rrTNBC were 

significantly more likely to harbor a mutation in TP53 compared to lrTNBC patients (Fisher exact FDR 

p=0.009). There were no other genes that were significantly different when comparing rapid vs. late 

vs. no relapse after multiple test correction (Supplementary Figure 3A). Among CNAs, the copy 
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number landscape was similar across all three groups (Supplementary Figure 3B) and there were 

no significantly altered genes or regions among rapid vs. late vs. no relapse after multiple test 

correction. There were several regions that demonstrated enrichment within specific groups (nominal 

p<0.05), including: 3q28 gain, 8p11 gain, and 21q21-22 gain enriched in relapse relative to nrTNBC; 

5p12-13 loss and 6p25 loss enriched in nrTNBC relative to relapse; 6q23-24 loss enriched in lrTNBC 

relative to rrTNBC; and 15q23-26 loss enriched in rrTNBC relative to lrTNBC (Figure 4C-D). 

 

Optimal clinical and multi-‘omic model of rapid versus late versus no relapse in TNBC 

Having identified discrete clinical, expression, immune, mutation, and copy number features among 

primary TNBCs with distinct clinical outcomes, we sought to develop an optimal, multi-‘omic predictive 

model for rrTNBC versus lrTNBC versus nrTNBC. As has been applied previously in complex breast 

cancer data17, we compared performance of multinomial logistic regression model to Artificial Neural 

Network (ANN), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Linear Determinant 

Analysis (LDA), and Random Forest (RF) (Figure 5A). We included any feature present in all 

samples (n=312) with a nominal p<0.05, which resulted in a total of 77 clinical, expression, immune, 

mutation, and copy number features (Figure 5A). Our total multi-‘omic dataset was divided into 70% 

training and 30% validation cohorts, independently sampled for each cross validation (10-fold cross 

validation). We assessed each model’s performance using three separate receiver-operator 

characteristics (ROCs) (rrTNBC as positive, lrTNBC as positive, and nrTNBC as positive) due to 3-

level classification. We then integrated these into a single ROC curve via micro-averaging (Figure 

5B). All models performed relatively well, with highest average AUC 0.772 (SVM) and lowest average 

AUC 0.681 (ANN) (Figure 5C). When comparing models, SVM had the highest average AUC, 

significantly higher than all other models (all Wilcoxon rank sum p<0.05), followed by RF and 

multinomial. As a sensitivity analysis, we repeated our approach using only the 18 most significant 

features that were all FDR p<0.05 in descriptive statistics and found that using fewer features led to 
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similar average AUC (range 0.695 to 0.748), with random forest performing best (all Wilcoxon rank 

sum p<0.05) followed by SVM and multinomial (Supplementary Figure 3C). 

 

DISCUSSION 

TNBC is a vexingly heterogeneous disease, as evidenced by multiple efforts to categorize subsets of 

which have primarily focused on intrinsic features of TNBC10-12,24 to reveal underlying biology, with 

fewer efforts focused on long-term outcomes. When considering clinical impact, response to 

neoadjuvant chemotherapy remains the best prognostic biomarker for TNBC,32 but once TNBC 

patients develop metastatic relapse, there are clear differences in disease course among TNBCs who 

develop relapse early versus late. To delineate these groups by relapse timing for further analyses, 

we provide a novel definition for rapid versus late relapse in TNBC and demonstrate clear differences 

in genomic features that cut across existing TNBC intrinsic subtypes. 

 

When comparing TNBCs who relapse versus those who do not, both rrTNBC and lrTNBC had lower 

expression of immune signatures, reflecting reduced anti-tumor immune response compared with 

nrTNBCs. The correlation between immune cells and positive outcomes is well-established and tumor 

infiltrating lymphocytes (TILs) are associated with improved response to NAC as well as better 

prognosis in TNBC.38-44 Particularly given recent FDA approval of immunotherapy for metastatic 

TNBC6, there is great interest to augment the existing host anti-tumor immune response and also 

work to activate immune ‘cold’ tumors.45-49  The differences between late and rapid relapse primarily 

reflect differences in luminal features. lrTNBCs are more likely to be non-basal (primarily luminal A/B) 

and our data identify that eight estrogen/luminal signatures are associated with late relapse. Multiple 

groups have identified a ‘luminal androgen receptor’ subset of TNBC based on molecular 

classifications,10,12 and 40% (20/49) of the Lehmann LAR subtype tumors in our cohort ultimately had 

late relapse. The wide distribution of Lehmann TNBC subtypes among the lrTNBC group suggest that 

we may need additional approaches to identify tumors with this phenotype at risk for late relapse. 
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Collectively, our data support the categorization by Burstein, et al12 and suggest that ‘rapid relpase’ 

TNBCs are likely enriched for the ‘basal-like immune suppressed’ phenotype. 

 

Clinically, multi-‘omic models could serve as an adjunct to neoadjuvant chemotherapy response to 

predict patients at high risk of rapid relapse to guide more aggressive therapy while identifying those 

likely to be cured (even with residual disease) to avoid unnecessary toxicity of additional treatment. 

Given our interest to understand what genomic features contribute, we considered the best way to 

overcome the significant challenge extracting important features of machine learning algorithms. 

Because multi-‘omic data has clear features that can be extracted,50 we first identified the relatively 

few specific features that were significantly different across subsets (77 features from >35,000 initial 

data points) then built models based on a priori feature identification. This approach identified key 

genomic features up-front and led to overall good performance of multiple models but may miss 

unexpected interactions among raw features. 

 

Stage at diagnosis was strongly associated with rapid relapse in univariate analyses and in the 

multinomial model (where feature contribution could be extracted), stage was the feature contributing 

most to the model. This suggests that despite our efforts to use complex biological data, stage 

remains critical. One hypothesis is that stage at diagnosis captures non-biological features such as 

socioeconomic or demographics, including income, education, insurance, and access to care.51-55 

Race/ethnicity is complex,56-58 was largely unavailable in the included datasets, and warrants further 

study.59,60 We are currently evaluating the association of sociodemographic features and 

race/ethnicity with rrTNBC in other data sources. 

 

While this study presents promising methods to categorize TNBC relapse it does possess some 

limitations.  The retrospective nature of our data means that patients might not perfectly fit the 

definitions we assigned, for example, a small number of late relapse events may occur in the nrTNBC 
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group after 5 years. We incorporated genomic data from multiple studies, generated using multiple 

platforms, and over years. While we have attempted to account for this through standard 

normalization approaches and analysis only of summary statistics (e.g. expression signatures not 

individual genes), batch/platform effects and computational analyses could impact our results. 

Therapy for TNBC has changed over the past 2-3 years, including widespread incorporation of 

capecitabine after neoadjuvant chemotherapy for residual disease based on CREATE-X61 and recent 

FDA approval of immunotherapy for metastatic, PD-L1 positive TNBC.6 

 

In conclusion, we offer a new definition for ‘rapid relapse’ TNBC and provide evidence that rrTNBC 

reflects a distinct clinical entity characterized by unique genomic features. Predictive modeling may 

identify patients at high risk for ‘rapid relapse’ and offers potential to guide additional therapy or 

clinical trials for these high-risk patients.  
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FIGURE LEGENDS 

Figure 1. Study design and definition of triple-negative breast cancer (TNBC) rapid versus late 

relapse. (A) REMARK diagram. (B). Proportion of distant metastasis-free survival (DMFS) events per 

year after diagnosis among evaluable dataset. ‘Rapid relapse’ was defined as DMFS events within 

the 2 years of diagnosis and ‘late relapse’ DMFS events beyond 2 years. (C-E) Kaplan-Meier diagram 

of DMFS in study cohort reflecting TNBC group definitions (C), compared with DMFS by intrinsic 

subtype approaches PAM50 subtype (D), and Lehmann TNBC subtype (E). P-value indicates log-

rank test. 

 

Figure 2. Immune and Expression Signatures and Response to Neoadjuvant Chemotherapy 

and Survival in TNBC. (A) The calculated score for 125 published gene expression signatures for 

127 patients with data on response to neoadjuvant chemothrapy and distant metastasis-free survival 

(DMFS). Each signature is a point. The association of each signature with neoadjuvant chemotherapy 

response (pathologic complete response versus RD) by simple linear regression (y-axis) and hazard 

ratio for each signature using DMFS (x-axis) are displayed. Signatures were grouped by phenotype 

(as previously described8), identified by color: proliferation signatures (red), immune signatures 

(blue), ER/HER2 signatures (green), mesenchymal signatures (orange), others (grey). Size of each 

point relates to the hazard ratio p-value for each signature. (B) The association of three 

representative signatures from each group (immune, proliferation, ER/HER2, mesenchymal) with the 

relative proportion of 22 inferred immune cell subsets via CIBERSORT across all samples with gene 

expression data (n=453) are visualized using CorrPlot.26,62 

 

Figure 3. Expression Signatures in Rapid versus Late versus No Relapse TNBC. The calculated 

score for 16 published gene expression signatures that demonstrated statistical significance (ANOVA 
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FDR p<0.05) comparing rapid versus late versus no relapse. Signatures visualized as relative values 

(Z-score) with rapid relapse (red), late relapse (green), and no relapse (blue).  

 

Figure 4. Mutations and copy number alterations in rapid versus late versus no relapse 

TNBCs. (A) Mutations per megabase of 171 cancer-related genes. (B) Percent genes altered by 

copy number gain (GISTIC 1 or 2) or loss (GISTIC -1 or -2). (C) Frequency of alteration of 171 

cancer-related genes (green dots), copy number gains (red dots) or losses (red dots) by cytoband 

among rapid relapse (x-axis) versus no relapse (y-axis) TNBCs (C) or rapid relapse (x-axis) versus 

late relapse (y-axis) TNBCS (D). Size of dot indicates negative log of p-value for Fisher exact test 

with those genes and cytobands indicated demonstrate nominal p<0.05. Zoomed-in image of those 

alterations with <20% frequency indicated in right panel.  

 

Figure 5. Developing an optimal clinical and multi-‘omic model of rapid versus late versus no 

relapse in TNBC. (A) Schematic of experimental steps including definition of variables, descriptive 

statistics, comparative modeling including model tuning, and assessment of model performance. (B) 

Example receiver-operator characteristic (ROC) plots for each model performance assessment using 

three separate ROCs (left panel; rrTNBC as positive, lrTNBC as positive, and nrTNBC as positive). 

These three ROCs were integrated these into a single ROC curve via micro-averaging (right panel) 

(C) Performance of Artificial Neural Network (ANN), Linear Determinant Analysis (LDA), K-Nearest 

Neighbors (KNN), multinomial logistic regression model (Multinom), Random Forest (RF), and 

Support Vector Machine (SVM). Our total dataset (n=312) was divided into 70% training and 30% 

validation cohorts, independently sampled for each cross validation (10-fold cross validation). Each 

model was tuned to ensure optimal performance within the constraints of a comparative modeling 

approach. Asterisks indicates significance by Wilcoxon rank sum, * indicates p<0.05 and ** indicates 

p<0.01. 
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Figure S1. Additional Analyses of Gene Expression Signatures. (A) Sensitivity analyses of 

correlation between three representative signatures from each group (immune, proliferation, 

ER/HER2, mesenchymal) with the immune cell-specific signatures33,34 across all samples with gene 

expression data (n=453), visualized using CorrPlot.26,62 (B) Heatmap with hierarchical clustering of 

the gene expression signatures with the greatest variance (top 25%) across the dataset. 

 

Figure S2. Variation of Expression Signatures Across Rapid versus Late versus No Relapse 

Groups. The calculated score for 16 published gene expression signatures that demonstrated 

statistical significance (ANOVA FDR p<0.05) comparing rapid versus late versus no relapse. The 

score value is presented for immune signatures (A) and estrogen/luminal signatures (B). Each 

boxplot represents the 25th to 75th percentile with the median indicated as the central line and 

whiskers indicating 1.5 x interquartile range. (C) Immune cell subset proportion from CIBERSORT, 

visualized as relative values (Z-score) with rapid relapse (red), late relapse (green), and no relapse 

(blue). 

 

Figure S3. Mutation and Modeling Sensitivity Analyses. (A) CoMut plot of gene-level mutation for 

the entire cohort, with mutation indicated in blue, visualized with ‘GenVisR’ package.63 (B) Frequency 

of gene-level copy number gains (red) or losses (blue) across the genome. (C) Sensitivity analysis of 

model performance for Artificial Neural Network (ANN), Linear Determinant Analysis (LDA), K-

Nearest Neighbors (KNN), multinomial logistic regression model (Multinom), Random Forest (RF), 

and Support Vector Machine (SVM) using only 18 features (all FDR p<0.05). Asterisks indicates 

significance by Wilcoxon rank sum, ** indicates p<0.01. 
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Table 1. Cohort clinical and pathologic features 

Rapid Relapse 
All patients 

n = 453 
n (%) 

Rapid Relapse   
n = 110 
n (%) 

Late Relapse 
n = 125 
n (%) 

No Relapse   
n = 218 
n (%) 

P 

 Age at diagnosis, by decade         0.12 

     < 40 years  75 (17) 15 (14) 27 (22) 33 (15)   

     40 to 50 years 117 (26) 27 (24) 28 (22) 62 (29)   

     50 to 60 years 124 (27) 33 (30) 25 (20) 66 (30)   

     > 60 years 137 (30) 35 (32) 45 (36) 57 (26)   

Grade at diagnosis         0.86 

     I  6 (2) 2 (2) 2 (2)   2 (1)   

     II  54 (14) 14 (15) 17 (26)   23 (13)   

     III 321 (84) 75 (83) 89 (82) 157 (86)   

Stage at diagnosis         <0.001 

     I   73 (17) 3 (3) 18 (15)  52 (25)   

     II 231 (54) 43 (44) 69 (56) 119 (58)   

     III 123 (29) 52 (53) 35 (29)  36 (27)   

Pam50 Subtype         0.03 

     Basal 354 (78) 90 (82) 89 (71) 175 (80)   

     Non-Basal 99 (22)  20 (18) 36 (29) 43 (20)   

TNBC Subtype          0.02 

     Basal-like 1  103 (23)  23 (21)  26 (21)   54 (25)   

     Basal-like 2  40 (9)  16 (15) 11 (9) 13 (6)   

     Immunomodulatory    91 (20)  18 (16)  20 (16)   53 (24)   

     Luminal androgen receptor    49 (11) 10 (9)  20 (16) 19 (9)   

     Mesenchymal    66 (14)   19 (17)  20 (16)   27 (12)   

     Mesenchymal stem-like  24 (5) 10 (9)  3 (2) 11 (5)   

     Unselected    80 (18)   14 (13)  25 (20)   41 (19)   
Response to Neoadjuvant Chemo     <0.001 

     Pathologic complete response 29 (23)  4 (7)   1 (6) 24 (49)  
     Residual disease 98 (77) 57 (93) 16 (94) 25 (51)  
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Figure 2 
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Figure 4 
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Figure 5 
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