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Machine Learning Regression Approach to the
Nanophotonic Waveguide Analyses

Sunny Chugh*, Souvik Ghosh, Aamir Gulistan and B. M. A. Rahman, Life Fellow, IEEE

Abstract—Machine learning is an application of artificial intel-
ligence that focuses on the development of computer algorithms
which learn automatically by extracting patterns from the data
provided. Machine learning techniques can be efficiently used for
a problem with a large number of parameters to be optimized
and also where it is infeasible to develop an algorithm of specific
instructions for performing the task. Here, we combine the finite
element simulations and machine learning techniques for the
prediction of mode effective indices, power confinement and
coupling length of different integrated photonics devices. Initially,
we prepare a dataset using COMSOL Multiphysics and then this
data is used for training while optimizing various parameters of
the machine learning model. Waveguide width, height, operating
wavelength, and other device dimensions are varied to record
different modal solution parameters. A detailed study has been
carried out for a slot waveguide structure to evaluate different
machine learning model parameters including number of layers,
number of nodes, choice of activation functions, and others.
After training, this model is used to predict the outputs for
new input device specifications. This method predicts the output
for different device parameters faster than direct numerical
simulation techniques. Absolute percentage error of less than
5% in predicting an output has been obtained for slot, strip and
directional waveguide coupler designs. This study pave the step
towards using machine learning based optimization techniques
for integrated silicon photonics devices.

Index Terms—Machine learning, neural networks, regression,
multilayer perceptron, silicon photonics.

I. INTRODUCTION

ACHINE learning (ML) technology is being exten-
sively used in many aspects of modern society:
web searches, social networking, smartphones, bioinformatics,
robotics, chatbots, and self-driving cars [1]. ML techniques
are used to classify or detect objects in images, speech to text
conversion, pattern recognition, natural language processing,
sentiment analysis and recommendations of products/movies
for users based on their search preferences. ML algorithms can
be trained to perform exceptionally well when it is difficult
to analyze the underlying physics and mathematics of the
problem [2]. ML algorithms extract patterns from the raw
data provided during the training without being explicitly
programmed. The learned patterns can be used to make
predictions on some other data of interest. ML systems can
be trained more efficiently when massive amount of data is
present [3], [4].
Recently, research on the application of ML techniques for
optical communication systems and nanophotonic devices is
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gaining popularity. Several developments in ML over the past
few years has motivated the researchers to explore its potential
in the field of photonics, including multimode fibers [5],
power splitter [6], plasmonics [7], grating coupler [8], photonic
crystals [9], [10], metamaterials [11], photonic modes fields
distribution [12], label-free cell classification [13], molecular
biosensing [14], optical communications [15], [16] and net-
working [17], [18].

Complex nanophotonic structures are being designed and
fabricated to enable novel applications in optics and integrated
photonics. Such nanostructures comprise of a large number of
parameters which needs to be optimized for efficient perfor-
mance of the device and can be computationally expensive.
For example, finite-difference time-domain (FDTD) method
may require several minutes to hours to analyze the optical
transmission response of a single photonic device depending
on its design. ML approach offers a path for quick estimation
of the optimized parameters for the design of complex nanos-
tructures, which are critical for many sensing and integrated
optics applications.

ML algorithm considers general function approximations to
learn a complex mapping from the input to the output space.

The most popular ML frameworks for building and training
neural networks includes SciPy [19], Scikit-learn [20], Caffe
[21], Keras [22], TensorFlow [23] and PyTorch [24]. PyTorch
makes use of tensors for training neural networks along with
strong GPU acceleration. It provides separate modules to build
a neural network and automatically calculates gradients for
backpropagation [25] that are required during the training of
a neural network. PyTorch appears to be more flexible with
Python and NumPy/SciPy stack compared to TensorFlow and
other frameworks, which allows easy usage of popular libraries
and packages to write neural network layers in Python. Scikit-
learn is another simple and efficient ML library used for
data mining and data analysis. In our implementation, we use
PyTorch and Scikit-learn numerical computing environment to
handle the front-end modeling and COMSOL Multiphysics for
the back-end data acquisition.

Modeled waveguide designs considered in this paper are
shown in Section II. Main concepts of ML related to integrated

photonics applications are discussed in Section III. In Section

IV, results from ML algorithms using PyTorch and Scikit-
learn with FEM results for commonly used silicon photonic
waveguides and devices are compared, and finally the paper
is concluded in Section V.

II. MODELED WAVEGUIDES

In this work, we have considered three waveguide de-
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Fig. 1: An example of a (a) Slot waveguide showing F, field profile, (b)
Strip waveguide showing H,, field profile, and Directional coupler showing
H,, field profile for (c) even supermode, and (d) odd supermode.

signs: slot waveguide, strip waveguide, and directional coupler.
Cross-sectional view of these waveguides, along with their
respective field profiles are shown in Fig. 1. A range of
slot waveguides (Fig. 1a) and directional couplers (Figs. lc
and 1d) are simulated by changing the width, height, and
gap between the silicon waveguides as the input parameters.
Effective index and power confinement values are recorded
for slot waveguides, while coupling length was obtained for
directional coupler, corresponding to above mentioned input
parameters. For strip waveguide (Fig. 1b), width, height of
waveguides and wavelength are taken as input variables, while
effective index is considered as the output variable. The com-
mercial 2D FEM software such as COMSOL Multiphysics and
Lumerical can provide the modal solution of any waveguide
within a few minutes. However, a rigorous optimization of the
waveguide design parameters through parameter sweep often
becomes intensive for a modern workstation depending on
the complexity of a design. In this case, we are proposing
an in-house developed ML-algorithm as a stepping stone
for the multi-parameter optimization process where only the
algorithm training (one time process) requires a few minutes
of computational time to learn the features of similar types of
waveguides.

III. NEURAL NETWORK TRAINING

The most common form of machine learning is supervised
learning in which the training dataset consists of pairs of inputs
and desired outputs, which are analyzed by ML algorithm to
produce an inferred function. It is then used to obtain output
values corresponding to any unknown input data samples.
Supervised learning can be further categorised into a classifi-
cation or regression problem, depending on whether the output
variables have discrete or continuous values, respectively. In
this paper, we considered the output predictions of different
integrated photonics structures as a regression problem.

A. Artificial Neural Network (ANN)

Fig. 2: General artificial neural network (ANN) representation, i.e. one input
layer, two hidden layers, and one output layer.

ANN consists of a network of nodes, also called as neurons.
ANN is a framework which is used to process complex data
inputs and it learns from the specific input data without
being programmed using any task-specific rules. One of the
commonly used ANN is the multilayer perceptron (MLP).
MLP consists of three or more number of layers. Here, in
Fig. 2, we have shown a MLP with four layers of nodes: an
input layer, two hidden layers and an output layer. These layers
operate as fully connected layers, which means each node in
one layer is connected to each node in the next layer. All the
nodes have a variable weight assigned as an input which are
linearly combined (or summed together) and passed through
an activation function to obtain the output of that particular
node.

B. Algorithm of ANN

The training procedure is illustrated in Fig. 3. Firstly, suffi-
cient number of randomly generated data samples are collected
from the simulations using COMSOL Multiphysics for slot,
strip and directional coupler structures. Each case has an array
of inputs, called features, and an array of numerically solved
outputs, called labels. Waveguide width, height, material, gap
between the waveguides, and operating wavelength values
can be taken as the input variables which are assigned to

Accumulation of Simulation/Experimental data

Pre-processing of collected data including
Normalization and Shuffling

Training the ANN model using MLPRegressor or
PyTorch framework, and checking model
performance on Validation dataset to

ptimise the hyperparameters

Evaluating the performance of optimised model on
Test dataset

Fig. 3: The flow chart of ANN implementation.



the nodes of the input layer. Effective index (n.ss), power
confinement (P, ), or coupling length (L.) are taken as
the output variables, which are assigned to nodes of the
output layer depending on the specific design requirement.
Next, preprocessing of the collected data is carried out by
normalizing the input variables values between the range 0-
1 to use a common scale. This is followed by shuffling of
the normalized input data, otherwise the model can be biased
towards particular input data values. Next step is to split the
normalised input dataset into training and validation dataset.
Validation dataset is used to provide an unbiased evaluation of
a model fit on the training dataset while tuning various model
parameters, also called as hyperparameters. 5-25% of data has
been allocated for the validation dataset in this paper, while
the rest was used for training the ANN model. -

Neural networks have a tendency to closely or exactly fit a
particular set of data during training, but may fail to predict
the future observations reliably, which is known as overfitting.
During overfitting, the model learns both the real and noisy
data, which negatively impacts on new data. We can avoid
overfitting through regularization such as dropout [26], while
regularly monitoring the performance of the model during
training on the generated validation dataset. Underfitting can
be another cause for the poor performance of ANN model in
which the trained model neither closely fits the initial data
nor generalize to the new data. Hyperparameters needs to
be tuned to reduce the mean squared error (mse) between
the actual and predicted output values of the ANN model
for a regression problem. During this optimization process,
weights and biases of the model are repeatedly updated with
each iteration or epoch using the backpropagation algorithm
[25]. Various hyperparameters of choice includes activation
functions, type of optimizer, number of hidden layers, number
of nodes in each hidden layer, learning rate, number of epochs,
and others.

1) Activation Functions: ANN connects inputs and outputs
through a set of non-linear functions, which is approximated
by using non-linear activation function. Sigmoid, Tanh (hy-
perbolic tangent), and ReLU (rectified linear unit) are few
commonly used activation functions [2].

1
Si id : = 1
igmoid : o(2) = (1)
Hyperbolic Tangent (Tanh) : o(z) = % 2)

Rectified Linear Unit (ReLU) : o(z) = maxz(0,z)  (3)

Among these, ReLU is used mostly as it trains the model
several times faster in comparison to when using Tanh func-
tion, as discussed in [27].

2) Optimization Solvers: LBFGS, stochastic gradient de-
scent (SGD), and Adam [28] solvers can be used to optimize
the weights values during ML training process. Adam opti-
mizer is a preferable choice as it works well on relatively
large datasets.

3) Hidden Layers and Nodes: Number of layers or number
of nodes in each layer of an ANN are decided by experimenta-

tion and from the prior experience of similar problems. There
is no fixed rule to pre-decide their optimal values.

4) Learning Rate: Learning rate decides how much we
are adjusting the weights of our network with each epoch or
iteration. Choosing the lower value of learning rate means the
model needs more epochs and longer time to converge. If the
input dataset is big, it may take very long time to optimize the
ANN model. On the other hand, if the learning rate has a large
value, then the model might fail to converge at all with gradient
descent [29], [30] overshooting the global minima. Learning
rate can be chosen to have constant or adaptive value when
using Scikit-learn MLPRegressor.

5) Epochs: Number of epochs to train a model should be
decided by the user when mse value converges to acceptable
lower limit. Depending on the dataset size, model training can
be carried out using batches of inputs. In our case, when using
MLPRegressor, we have used automatic batch size, while all
the inputs are trained in one batch with PyTorch.

Once the optimal hyperparameters are obtained, the final
step is to evaluate the performance of optimized trained model
on the previously unseen test dataset (generated separately
from the initially generated dataset) to observe the accuracy
of the ANN model.

IV. NUMERICAL RESULTS AND DISCUSSION
A. Slot Waveguide

Slot waveguide design structures are extensively being used
for optical sensing applications [31], as the light is confined
in low refractive index region, which allows strong interaction
with the analyte leading to a large waveguide sensitivity.
Here, we demonstrate the use of ML algorithms to predict
the effective index (n.sy) and power confinement (P, ) in
a slot waveguide design [32], but first we optimize the various
hyperparameters of the ANN model.

1) Histogram of Datasets: The training process requires a
dataset of examples, which plays a crucial role in any ML
algorithm. The accuracy of the trained model depends on the
quality of the input data. A good training dataset which is well
aligned with the problem to be solved is needed for ML to
work properly. We have collected 3 different datasets to predict
effective index (n.ss) and power confinement (P, ) for a
slot waveguide structure, shown in Fig. 4. Width, height, and
gap between the waveguides in a slot waveguide design have
been varied initially to record the n.¢s and P, values for
each dataset. n.yr and Peopns values recorded for a particular
combination of width, height, and gap between the slot waveg-
uides becomes one datapoint. Dataset-1 has 108 datapoints
with nearly equal intervals between width, height, and gap.
Dataset-2 also has points with nearly equal intervals but more
values, 196 points. However, dataset-3 has higher frequency
of data points for waveguide width in the range 200-250 nm,
with 236 values in total. Figure 4a shows the histogram of
different datasets plotted with respect to different widths of the
waveguides. It should be noted here that these datasets are not
explicit, which implies that dataset-1 is a subset of dataset-2
and similarly, dataset-2 is a subset of dataset-3. Figures 4b and
4c show the frequency of n.sy and P,y for each of these
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Fig. 4: Histogram of different datasets for slot waveguide with varying (a)
width of waveguides, (b) nyr, and (¢) Peon f-

3 datasets. For our simulation setup, it took 2-3 minutes to
record one datapoint, which means it took approximately 200,
400, 500 minutes to obtain dataset-1, dataset-2, and dataset-3,
respectively. The time needed to collect one datapoint value
may vary depending on the simulation/experimental setup.

2) Mean Squared Error: Mean squared error (mse) is
considered as the loss function in a regression problem, which
is defined as the average squared difference between the
estimated and true values, given as:

1L -
mse = ;(uz —y)? )

where gfz and y; are the estimated and true data point values,
respectively.

Smaller value of mse means the predicted regression values
are closer to the original values and hence the model is
well trained. Next, we compare the mse values to predict
the n.sy for a slot waveguide design with different number
of nodes or layers in an ANN model for dataset-3 using
MLPRegressor from Scikit-learn. We have chosen dataset-3

nodes - 05

as it has the maximum number of data points among the 3
datasets generated. Figure 5a shows that mse decreases faster
to a stable value when number of nodes is larger. mse for
nodes = 50 quickly reaches a stable low value of 0.0025 at
epochs = 1500, shown by a orange line in comparison to
0.0192, 0.0820, and 0.3954 when nodes are taken as 25, 10
and 5, respectively. Random weights are assigned at the start
of the algorithm, hence mse for more number of nodes at
first epoch can be larger than that for less number of nodes,
as can be seen from blue and red lines having values of 0.2112
and 0.1423 at first epoch, respectively. It can also be observed
from red and blue lines that model with more number of nodes
attains optimal updated weights quickly than those with lower
number of nodes, as mse for nodes = 25 (blue line) decreases
quickly. We run the simulations till 4000 epochs so as to be
sure that mse decreases to a lower value. At epochs = 4000,
mse values are 0.21279, 0.04685, 0.00109, and 0.00018 when
number of nodes are 5, 10, 25, and 50, respectively. This shows
that more neurons/nodes helps is achieving better accuracy for
the ANN model by quickly decreasing the mse value to the
minimum, but the computational loading also increases.

Next, we consider the mse variations when number of
layers are varied in an ANN model having 50 nodes in each
layer, as shown in Fig. 5b. The mse values of 0.0025 and
0.0006 are obtained for models with 2 and 3 number of layers,
respectively at epochs = 1500 in comparison to 0.0243 when
number of layers is equal to 1. Lower stable mse values
at epochs = 4000 are 0.00412, 0.00018, and 0.00009 when
number of layers are 1, 2 and 3, respectively, with each layer
having 50 nodes. Following this study, we have considered the
number of layers as 2 with 50 nodes in each layer for future
optimization, to avoid more computational loading compared
to if number of layers were chosen as 3.

3) Activation Functions: Sigmoid, Tanh and ReL.U activa-
tion functions are tested to predict the n.yy and P, using
MLPRegressor trained model with 2 layers having 50 nodes
in each layer. Dataset-3 is used during the training process.
It can be seen from Fig. 6a that Tanh and ReLU are closely
predicting the n.yy values to the true values at waveguide
height = 225 nm of the slot design. Data corresponding to
waveguide height = 225 nm was never recorded or provided
during the training of the model. However, data for other
waveguide heights were used for the training. On the other
hand, Sigmoid function is predicting almost a horizontal line
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Fig. 5: Mean squared error (mse) using training dataset-3 for (a) different
number of nodes with 2 hidden layers, (b) different number of hidden layers
with 50 nodes in each hidden layer.
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as shown by red circle symbols. Sigmoid function failed to
predict the n. sy values accurately, as it might converges well
for a classification problem. When we tested to predict the
Peony of slot design, only ReLLU activation function is able to
predict the pattern much better, shown by orange star symbols
and black rectangle symbols solid line in Fig. 6b, hence seems
to be a better choice.

4) Comparing PyTorch Framework and MLPRegressor
models: We have developed in-house codes using PyTorch
framework and MLPRegressor from Scikit-learn. We have
used 2 fully connected hidden layers each with 50 nodes.
ReLU activation function and Adam optimizer are employed
for both of the generated codes. Learning rate is chosen as
0.0001 or less. Dropout fraction of 0.5 is used for regulariza-
tion to prevent over-fitting when using PyTorch framework,
while dropout regularization is not available in the MLPRe-
gressor. Number of epochs are decided based on when mse is
reduced to a stable value for the considered photonics design
structure.
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Fig. 7: Mean squared error (mse) using (a) training dataset-3 for MLPRe-
gressor and PyTorch (b) training, validation, and test dataset-3 for PyTorch,
having 2 hidden layers with 50 nodes in each layer.

In Fig. 7, we have compared mse using MLPRegressor and
PyTorch for training, validation and test datasets. It should be
noted here that mse or loss function for validation and test
datasets are not readily available in MLPRegressor. The loss
curve in MLPRegressor also depends on the initially defined
tolerance for the optimization (le~®, used in our case). ML-
PRegressor training automatically stops when the loss or score
is not improving by at least tolerance in the consecutive itera-
tions, which is shown by a orange solid line in Fig. 7a, where
the mse curve stops by itself at around 4000 epochs. PyTorch
can be used to visualise mse at very large epochs (>>4000)
for training, validation, and test datasets, as shown in Fig. 7b.
The fluctuations in the mse curves with PyTorch are due to
the use of dropout fraction. mse for training, validation, and
test datasets with PyTorch follow similar trend, and achieves a
stable value at around 4000 epochs. mse for training dataset
at epochs = 4000, 10000, and 30000 are 0.00808, 0.00451,
and 0.00300, respectively. It can be observed here, that mse
is almost similar and decreases slowly when epochs is greater
than 4000. Hence, it is good to fix the epochs when mse
achieves a stable low value, rather than allowing the algorithm
to run for very large epochs. MLPRegressor is showing lower
mse for training dataset in comparison to PyTorch, as shown
in Fig. 7a. Using above mentioned parameters, we now predict
Nefr and P, ¢ for a slot waveguide structure using PyTorch
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Fig. 9: Slot waveguide design showing contour of absolute percentage error
for predicting neyy at waveguide height = 225 nm with (a) PyTorch using
dataset-1, (b) MLPRegressor using dataset-1, (c) PyTorch using dataset-2, and
(d) MLPRegressor using dataset-2.

framework and MLPRegressor library for different datasets.

a) Effective Index (n.yy): Figure 8 shows the prediction
of nesy at waveguide height = 225 nm for a slot waveguide
design. It should be noted that the datasets did not have any
value corresponding to waveguide height = 225 nm. True n.ss
values of test dataset are compared with predicted values for
PyTorch and MLPRegressor models at 500, 2000 and 5000
epochs using dataset-1 and dataset-2 during training. It can
be seen from subfigures (Figs. 8a—8d) that epochs = 5000 are
sufficient to efficiently predict the n.s¢ values of test dataset



for both PyTorch and MLPRegressor models using either
dataset-1 or dataset-2. Predicted and true values are almost
overlapping in all of the four cases, shown by orange star
symbols and black rectangle symbols solid line, respectively.

Next, in Fig. 9, we have shown the percentage error in pre-
dicting the n.y; values for both PyTorch and MLPRegressor
using dataset-1 and dataset-2. Here, percentage of error has
been calculated by comparing the predicted solution with the
simulated results using COMSOL Multiphysics. The absolute
percentage error at epochs = 500 for both datasets varies
between 6-10% (Figs. 9a and 9c) and 15-32% (Figs. 9b and
9d) for PyTorch and MLPregressor models, respectively. As
the epochs are increased to 5000, absolute percentage error
reduces to only 1-2% for all the cases which may be acceptable
in predicting n.ss values for a slot design. It can be seen that
both the models perform almost similar in predicting the true
neypyp values.

b) Power Confinement (P, r): Here, we train the model
using PyTorch and MLPRegressor for different datasets to
predict the P.,,s. Figures 10a and 10b show the training
prediction at waveguide height = 225 nm for PyTorch and
MLPRegressor, respectively using dataset-1. It can be seen
that even at epochs = 10000 (shown by orange star symbols),
predicted value of P, is very much different from the
true values especially when width is between 200-250 nm
for both the algorithms. This error comes from the neural
network modeling itself due to insufficient data points in the
parameter space of width between 200-250 nm in dataset-
1, which lead to underfitting of the trained model. Next, we
train the neural network using dataset-2, which contain more
data points compared to dataset-1, which was shown in Fig.
4a. Figures 10c and 10d show the predictions of trained model
using dataset-2 for PyTorch and MLPRegressor, respectively. It
is observed that trained model is performing better than when
dataset-1 was considered, but still not good enough for widths
in the range 200-250 nm. This error can be further reduced by
collecting more data points in the widths ranging from 200-
250 nm during training. Figures 10e and 10f show the trained
model performance using dataset-3, which has more data
values in the range 200-250 nm, as shown in Fig. 4a. It can
be observed that PyTorch trained model (Fig. 10e) is still not
performing efficiently at epochs = 10000 and predicting almost
constant values in the waveguides width ranging between 200—
250 nm. This error can be minimised if the dropout factor is
reduced or taken as zero, but this may lead to over-fitting
of the model. On the other hand, MLPRegressor (Fig. 10f)
predicts the P,y s curve better at epochs = 10000, shown by
orange star symbols, which is similar to the true shape (black
square symbols solid line). Although, predicted P,y values
at waveguide width = 150 nm deviates significantly, but this
can be further improved by collecting more data points in
this range of waveguides width. For respective PyTorch and
MLPRegressor models, it can be observed that prediction of
P.on s using dataset-3 is better than dataset-2, which in turn is
better than dataset-1 at epochs = 10000, shown by orange star
symbols in Figs. 10a—10f. This shows that quality of dataset
plays an important role along with the choice of algorithm and
optimized values of hyperparameters.
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Fig. 10: Slot waveguide design predicting Peop, s at waveguide height = 225
nm with (a) PyTorch using dataset-1, (b) MLPRegressor using dataset-1, (c)
PyTorch using dataset-2, (d) MLPRegressor using dataset-2, (¢) PyTorch using
dataset-3, and (f) MLPRegressor using dataset-3.

Next, we compare the absolute percentage error for pre-
dicting P, s using dataset-1, dataset-2, and dataset-3. When
using dataset-1, both PyTorch and MLPRegressor have error
ranging between 10-40% when epochs varies from 1000 to
10000, as shown in Figs. 11a and 11b, respectively. Figures
11c and 11d show that by taking more data values as in
dataset-2 this error reduced between 7-30% with epochs.
Dataset-3 shows better performance with trained model us-
ing both PyTorch and MLPRegressor, as shown in Figs.
11e and 11f, respectively. Absolute percentage error ranges
between approximately 7-10% and 1-4% for PyTorch and
MLPRegressor at epochs = 10000, respectively. This shows
that MLPRegressor is performing better than PyTorch for this
particular design specifications of slot waveguide with dataset-
3. This performance difference between MLPRegressor and
PyTorch is due to the different functionalities available in the

algorithms, for example, dropout can only be implemented

with PyTorch, while MLPRegressor uses exponential decay

rates and numerical stability functions with Adam optimizer.

Furthermore, the advantage of ANN can be more pronounced
if the sample space is also large.

5) Training Dataset Sizes: In the proposed model algo-
rithms, we split the initial collected data into training and
validation dataset depending on the percentage parameter.
Figure 12 compares the true P.,,; values with predicted
values at waveguide height = 225 nm using MLPRegressor



error

Fig. 11: Slot waveguide design showing contour of absolute percentage error
for predicting Peop ¢ at waveguide height = 225 nm with (a) PyTorch using
dataset-1, (b) MLPRegressor using dataset-1, (c) PyTorch using dataset-
2, (d) MLPRegressor using dataset-2, (e) PyTorch using dataset-3, and (f)
MLPRegressor using dataset-3.

trained model with 25%, 50%, 75%, or 95% of initial collected
data as training dataset. The data points are randomly selected
for each case so that the final trained model is not biased
towards any particular data points.

It can be seen that when 95% of data is used for training,
the trained model is predicting the true values more accurately,
as shown by orange star symbols. When 75% of data is
taken as input (shown by green diamond symbols), we can
observe that data points in the width ranging from 150-175
nm are not well predicted. Similarly, when only 50% or 25%

of data is considered, algorithm is showing more errors in
predicting the values especially in the waveguide width range
of 150-225 nm, shown by blue triangle and red circle symbols,
respectively. This is understandable as ANN prediction error
after training can be large if the sample space has limited
dataset points. So, if the dataset is overly reduced, error values
of prediction increases significantly, as in the case of 25% in
Fig. 12. Tt should be noted here that predicting an output only
takes few milliseconds, once the model is trained by either

MLPRegressor or PyTorch. On the other hand, it takes few

minutes to get an output for particular waveguide dimensions

with direct numerical simulation, which also depends on the

density of the considered mesh.
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Fig. 12: Variation of P,y with width at waveguide height = 225 nm for
different data sizes of training dataset-3 using MLPRegressor.

B. Strip Waveguide

We now train an ANN model to obtain optimized hyperpa-
rameters for predicting n.ss values of a strip waveguide. ML-
PRegressor model is considered to train the initially recorded
225 data points with varying operating wavelength, height and
width of the strip waveguide. Hyperparameters are optimized
while training the model to obtain low and stable mse. The
optimal weights of the model are then used or saved (to be
used later) to predict the n.¢y values on unseen test dataset.

Figures 13a, 13c, and 13e show the true and predicted
neyy values for different epochs with waveguide width, height
and wavelength, respectively. Figures 13b, 13d, and 13f show
the contour of absolute percentage error between true and
predicted n.y; values with epochs (on logarithmic scale). It
can be seen that percentage error is approximately 16-20%
when epochs = 250, and decreases to approximately 2% when
epochs = 2000 for all the above mentioned cases. When epochs
= 4000, percentage error is further reduced to less than 1%.
Hence, the trained model is performing good at epochs = 4000
and we can now save the trained model weights at epochs =
4000 for future testing.

Next, we check the performance of our saved model for
some random strip waveguide design parameters which were
not available in the training dataset. True and predicted n.ss
are compared in Table I when all the input parameters (oper-
ating wavelength, waveguides height and width) are unknown
to the trained model, which implies that outputs corresponding
to these parameters were never recorded during the initial
data collection. It can be observed that when epochs = 4000,
absolute value of percentage error to predict n.yy is less than

TABLE I: Comparing predicted with true n.ys values and corresponding
absolute percentage error for random wavelength, height, and width of strip
waveguide design.

) . Predicted - neyy Absolute % error - gy
Wavelength | Height | Width epochs - | epochs - True - epochs - epochs -
{pem) (om) | m) 00 4000 netf 1000 4000
1.52 210 490 2323764 | 2418138 | 2.424294 4.14 0.25
1.52 230 510 2.333022 | 2.541238 | 2.528034 7.71 0.52
1.54 210 490 2.32193 2.396881 2.402842 3.36 0.24
1.54 230 510 2.342372 | 2.520985 | 2.50819 6.61 0.51
1.56 210 490 2.328336 | 2.370507 | 2.38129 222 0.45
1.56 230 510 2.354483 | 2489118 | 2.488223 5.37 0.03
1.58 210 490 2330601 | 2.34713 | 2.359644 1.23 0.53
1.58 230 510 2.35926 245187 2.468138 4.41 0.65
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Fig. 13: Strip waveguide design (a) predicting s at waveguide height =
230 nm, (b) showing contour of absolute percentage error for predicting n¢ s
at waveguide height = 230 nm, (c) predicting n. sy at waveguide width = 510
nm, (d) showing contour of absolute percentage error for predicting n.sy at
waveguide width = 510 nm, (e) predicting n. sy with change in wavelength at
waveguide width = 510 nm, and (f) showing contour of absolute percentage
error for predicting n.yy at waveguide width = 510 nm.

1% for randomly chosen different input design parameters.
This demonstrate that the model is performing well to predict
nesy for a strip waveguide design.

C. Directional Coupler

Directional coupler has been the main component in many
photonic devices including spot-size converter [33], mode de-
multiplexer [34], polarization rotator [35], polarization splitter
[36], etc.

Here, we present the application of ML algorithm using
MLPRegressor to predict the coupling length (L) of a direc-
tional coupler. Again, we first optimize the model parameters
to obtain minimum stable mse value using training dataset
for a directional coupler design. Different height, width and
gap between the waveguides are considered as the input
parameters, and L. is taken as output parameter during the
ANN training. Figure 14a shows the predicted L, when epochs
are taken as 500, 1000, 5000, and 10000. It can be observed
that predicted L. values are closer to the true values when
epochs are 5000 or 10000 at waveguide height = 230 nm.
It should be noted that the training dataset did not have L.

Fig. 14: Directional coupler design (a) predicting L. at waveguide height =
230 nm and (b) showing contour of absolute percentage error for predicting
L. at waveguide height = 230 nm.

values when waveguide height = 230 nm. Figure 14b shows
that there is approximately 6-10% of absolute percentage error
in L. value at different widths when epochs = 5000. This
error is reduced to 1-4% for different widths when model
is trained to 10000 epochs. Increasing the initially recorded
data points to train the model can help in further reducing
this absolute percentage error between predicted and true L.
values of a directional coupler. This model can be trained
to calculate L. for any given height, width, separation and
operating wavelength of a directional coupler.

V. CONCLUSION

In summary, a machine learning model for predicting the
effective index, power confinement and coupling length in
a slot waveguide, strip waveguide and directional coupler
design structure has been developed. Dataset-3 was the better
choice in comparison to other datasets for the considered
slot waveguide design, as it contain more number of input
data points which helps the machine learning model to be
trained better. Absolute percentage error in predicting effective
index for a slot waveguide design was lower than 2% for
both PyTorch or MLPRegressor. PyTorch and MLPRegressor
models gives absolute percentage error of approximately 7—
10% and 1-4%, respectively for predicting the power con-
finement, which shows that MLPRegressor model performs
better. ReLLU activation function is preferred as it predicts the
nefy and P,y curve better in comparison to when using
Tanh or Sigmoid function. MLPRegressor model has also been
used to predict the effective index in a strip waveguide design
with 99% accuracy. Similarly, hyperparameters have been
optimized for a separate MLPRegressor model to predict the
coupling length for a directional coupler design, giving only 1—
4% of absolute percentage error. To the best of our knowledge,
this is the first time machine learning is used in conjugation
with rigorous finite element method for various nanophotonic
waveguide analyses. Our approach can accurately predict the
waveguide parameters without extensive use of the compu-
tationally expensive time- and frequency-domain numerical
methods. Therefore, we believe machine learning combined
with numerical approaches has an immense potential to enrich
the design and fabrication of exotic nanophotonic waveguides
and resonators.
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