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Machine-learning-revealed statistics of the
particle-carbon/binder detachment in lithium-ion
battery cathodes
Zhisen Jiang1,8, Jizhou Li 2,8, Yang Yang3,4,8, Linqin Mu5, Chenxi Wei1, Xiqian Yu 6, Piero Pianetta1,

Kejie Zhao 7✉, Peter Cloetens 3✉, Feng Lin 5✉ & Yijin Liu 1✉

The microstructure of a composite electrode determines how individual battery particles are

charged and discharged in a lithium-ion battery. It is a frontier challenge to experimentally

visualize and, subsequently, to understand the electrochemical consequences of battery

particles’ evolving (de)attachment with the conductive matrix. Herein, we tackle this issue

with a unique combination of multiscale experimental approaches, machine-learning-assisted

statistical analysis, and experiment-informed mathematical modeling. Our results suggest

that the degree of particle detachment is positively correlated with the charging rate and that

smaller particles exhibit a higher degree of uncertainty in their detachment from the carbon/

binder matrix. We further explore the feasibility and limitation of utilizing the reconstructed

electron density as a proxy for the state-of-charge. Our findings highlight the importance of

precisely quantifying the evolving nature of the battery electrode’s microstructure with sta-

tistical confidence, which is a key to maximize the utility of active particles towards higher

battery capacity.
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L
ithium-ion batteries are regarded as a major breakthrough in
the novel energy storage technology and have led to pro-
found impacts on modern society. The energy storage and

release in a lithium-ion battery involves lithium and electron
transport between two electrodes, through the networks of
electron-conducting carbon and ion-conducting electrolyte1.
Such electron and lithium-ion (Li-ion) transport are driven by the
externally applied electrical potential during charging and by the
thermodynamically downhill reactions in the battery during
discharging. An ideal composite electrode would offer a
mechanically stable framework that allows for optimal electron
and lithium-ion-conducting pathways, which entails the delicate
control of the electrode microstructure through systematic
electrode-scale studies. However, in contrast to the tremendous
efforts in researching the active materials, fundamental experi-
mental studies at the electrode level are relatively scarce, largely
due to the lack of reliable experimental measurements of the
particle behavior with spatial resolution and statistical relevance
in complex, many-particle electrodes.

An in-depth understanding of the role that the electrode
microstructure plays in modulating the battery performance
requires thorough experimental input from advanced character-
ization methods2. Many of the electrode degradation mechanisms
are directly associated with the spatial arrangement of different
components in the electrode, including carbon matrix, void, bin-
der, and active particles. Thus, the multiscale visualization of the
composite electrode becomes crucial and is preferably done
with sufficient spatial resolution and compositional sensitivity to
resolve different components. Microstructural characterization
of the composite electrode with desired representativeness, preci-
sion, reliability, and efficiency, however, is nontrivial. X-ray
tomography3,4 has been widely adopted to conduct three-
dimension (3D) tomographic imaging of the composite electrode
in a number of different experimental modalities. For example, X-
ray micro- and nano-tomography has been utilized to follow the
dynamic evolution of the electrode materials under operating
conditions at the electrode level5–9 and at the particle scale10–13.
Coupled with the energy tunability of synchrotron X-rays, 2D/3D
compositional14,15 and state-of-charge (SoC)16–24 heterogeneity
can also be mapped out, providing valuable information about the
local chemistry in lithium-ion batteries25. The conventional con-
trast mechanism based on the sample induced attenuation of the
X-ray, however, clearly suffers from the limited capability of
resolving the carbon/binder domain (CBD) in the electrode due to
the weak-absorbing nature of the low Z elements (e.g., C and F).
Therefore, the evaluation of the CBD’s role in the composite
electrode has been performed either using modeling approaches26

or with other imaging techniques, e.g., focused ion beam and
scanning electron microscopy27,28. However, the understanding of
the particles’ electrochemical response to their respective local
microstructural arrangement largely remains at a descriptive and
speculative level. Experimental reconstruction of the micro-
structure of composite electrodes with nanoscale compositional
and chemical sensitivity poses a frontier challenge in this field. We
point out here that X-ray diffraction tomography29 and pair dis-
tribution function tomography, in which the spatially resolved X-
ray diffraction signal is recorded as the sample is raster scanned
and rotated, have also been utilized to look into the structural
heterogeneity in battery materials under operating conditions30–32.
While these techniques are sensitive to the atomic arrangements of
the material’s lattice structure, the effective spatial resolution is
often determined by the X-ray focal spot used to raster scan the
sample and is typically only at the micron-level due to practical
experimental constraints, such as inferior data collection speed.

Herein, we tackle this challenge by conducting high-resolution
hard X-ray nano-tomography based on the phase contrast

modality. We demonstrate the visualization of active particles,
CBD, and pore structures in a Ni-rich LiNi0.8Mn0.1Co0.1O2

(NMC) composite cathode at the charged state. Through 3D
reconstructing and visualizing the physical contact between the
active NMC particles and the conductive CBD matrix, we model
the spatial heterogeneity of the local electrical resistance over the
surface of individual particles. Our modeling result suggests that
the detachment of the active NMC particles from the CBD
influences the homogeneity of the electrical resistance over the
particle surface, which could substantially impact the particle’s
participation in the cell level chemistry. To ensure the statistical
representativeness, we develop a machine learning model that
conducts the identification and quantification of over 650 NMC
particles automatically. The machine-learning-assisted statistical
analysis reveals that the degree of particle detachment from the
CBD is dependent on the charging protocol and the particle size.
Our large-scale, many-particle approach has eliminated the
potentially biased characterization results reported using con-
ventional image techniques, which usually accounts for a limited
number of particles. We also demonstrate that the quantitative
phase retrieval is capable of reconstructing the spatial distribution
of the electron density over the imaged sample volume. Under
reasonable approximations, we could link the electron density to
the SoC, which is confirmed by the Ni valence state mapping
using the X-ray spectro-microscopy technique in a correlative
imaging manner. Although the trend of the particles’ averaged
electron density as a function of their respective detachment is
not obvious in our statistical analysis, possibly due to the
relaxation of the electrode after it was disassembled from the cell,
we highlight here that the sub-particle level charge heterogeneity
could persist. Such a phenomenon is attributed to the sub-particle
level structural and chemical defects, which could lead to ther-
modynamically stable charge heterogeneity and play a significant
role in the active particle degradation.

Results
Visualizing the NMC cathode using phase contrast tomo-
graphy. The composite cathode is made of active Ni-rich NMC
particles that are embedded in the porous CBD matrix. More
details about the electrode synthesis can be found in the Methods
section. In addition to the mechanical support, the CBD matrix
also provides interconnected conductive networks for electrons
and the Li-ions, respectively, through the carbon phase and the
void space that is filled with the liquid electrolyte. In order to
reveal the 3D microstructure and composition with high spatial
resolution down to the nanoscale, we employed the hard X-ray
phase contrast nano-tomography technique at the beamline
ID16A-NI at the European Synchrotron Radiation Facility
(ESRF). Using an X-ray focal spot of around 20 nm as the sec-
ondary source33, this method allows for 3D non-invasive virtual
imaging with quantitative phase contrast instead of attenuation
contrast. The recovered phase contrast maps34 are proportional
to the real part of the complex refractive index, which is deter-
mined by the local electron density of the materials. Due to this,
the phase contrast modality, when compared to attenuation-
based contrast, can offer substantially improved sensitivity when
using high energy X-rays for measurement, in particular for the
light (low Z) materials. Hence both the light (low Z) materials
and the heavy metal oxides (NMC particles) can be visualized
with hard X-ray phase contrast imaging with adequate quanti-
tative sensitivity.

As highlighted in Fig. 1a, b (the 3D volume rendering and a
representative virtual slice), our data clearly resolves the sub-
particle level microstructure of many particles at once, offering a
significant amount of microstructural information for a
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systematic statistical analysis. With the quantitative phase
contrast modality34, we are able to distinguish and to segment
the active particles, the CBD, and the pore network with excellent
accuracy (see Supplementary Fig. 1 for the segmentation process).
We show in Fig. 1c–e a magnified view of an arbitrarily selected
sub-region, which further demonstrates the complexity in the
spatial arrangement of the different components in the studied
composite electrode. It is worth noting that the spatial resolution
of our data is not sufficient to resolve the fine pore structure
within the CBD (see Supplementary Fig. 1). The present work
focuses on the relatively large features caused by the NMC
particle detachment from the CBD network, which can be
visualized and quantified with good fidelity. We also point out
that a depth-dependent damage profile has been observed and
reported (see Supplementary Fig. 2 for the comparison between
the top and the bottom of the electrode35,36). To rule out this
effect and to simplify the interpretation, we will utilize a thin
electrode with a monolayer of active NMC particles in the
following studies.

Modeling local electrical resistance over the particle surface. As
discussed above, the phase contrast methodology allows for
visualizing the degree of active NMC particle’s detachment from
the conductive CBD. The virtual slices through different depths of
a selected NMC particle is shown in Fig. 2a with the gap between
the particle and the CBD highlighted in gray–blue color and
labeled as “void”. These gaps are infiltrated by the liquid elec-
trolyte, which conducts the Li-ions but not the electrons, causing
the heterogeneity in the local electrical and ionic resistance over
the particle surface. As a consequence, during the charging pro-
cess, the electrons need to detour around the (electrolyte filled)
voids and reach to the nearest electrical contact point before they
could enter the conductive CBD network. The electrical resistance
of the active material is often considerably higher than that of the
CBD, and is actually a function of the SoC37,38, further compli-
cating the scenario.

For better understanding such effect, we developed a numerical
model to calculate the spatial distribution of the relative electrical
resistance over the surface of the NMC particles based on the
phase contrast tomography data. We use the detachment-induced
detouring distance for the electron diffusion as a proxy for the local
electrical resistance (see schematic illustration in Supplementary
Fig. 3). Two particles with different degrees of detachment are
shown in Fig. 2b (same as the one in Fig. 2a, showing considerable
particle detachment from the CBD) and Fig. 2e (well intact with
the CBD) as the examples. The calculated distribution of the relative
local electrical resistance over these two selected particles are
presented in Fig. 2c, f, respectively. Our modeling results suggest
that the particle (Fig. 2b–d) that is partially detached from the CBD
has developed significant local electrical resistance (red regions),
while the particle (Fig. 2e–g) that is mostly intact seems to be
affected only slightly. We anticipate that the ionic conductivity over
the particle surface is inversely correlated with the electrical
conductivity calculated here. This is because the gap between the
particle and the CBD is infiltrated with ion-conducting electrolyte.
The partial detachment of NMC particles from the CBD network
leads to rearrangement of the local current density distribution,
which could significantly impact the health of the corresponding
particle and, subsequently, that of the cell. The results of our study
are highly relevant to the commonly used calendering process for
electrode production39.

Machine-learning-assisted statistical analysis. While the above
discussed particle-level modeling results are very valuable, the
statistical representativeness is another vital factor for a thorough
investigation considering the complexity of the composite elec-
trode. Our phase contrast tomographic result covers more than
650 active particles (over multiple fields of view). The identifi-
cation and segmentation of every individual particle in the
reconstructed 3D volume is, however, tedious and labor-intensive
in the conventional manual approach. The automation of this
process is nontrivial, in particular for the severely damaged par-
ticles. The identification of multiple fragments that broke away
from the same particle requires some level of “intelligence” and,
therefore, often requires human involvement in the process. To
tackle this problem, we developed a machine learning approach
that automatically accomplishes the task with superior accuracy
and efficiency. The high-level workflow is outlined in Fig. 3a and
the underlying machine learning model is illustrated in Supple-
mentary Fig. 4. More descriptions of our machine learning
approach can be found in the Methods section. To highlight the
robustness of the developed method, we show in Fig. 3b the
comparison of the segmentation results on a few representative
particles using conventional approach (watershed and separation
algorithms) and our new machine learning method. Although the
exceptional image contrast facilitates the identification of the
NMC phase with good accuracy, the conventional segmentation
method clearly failed to separate different particles and, in con-
trast, our machine learning approach demonstrates significantly
improved performance.

Build upon the machine-learning-assisted segmentation result,
we quantified the characteristics of every single NMC particles
including their degree of detachment (defined by the ratio of the
detached particle surface, 0% means fully intact and 100% would
be completely detached), volume, and relative intensity. We
compared the data from electrodes that were subjected to
different cycling protocols (1 and 0.1 C, see Supplementary
Fig. 5). Over 650 NMC particles in total were analyzed and the
probability distribution of the degree of detachment is compared
between the fast (1 C, blue) and slow (0.1 C, red) cycled particles
(see Fig. 4a). We clearly observed a shift of the peak in the

NMC particles Carbon/binder Porous electrode

Lateral slice

a b

c d e

Fig. 1 3D microstructure of the composite battery cathode. a, b An

overview of a relatively large area on the electrode, which covers hundreds

of NMC particles, with the central lateral virtual slice displayed in (a). c–e A

smaller region of interest (the region highlighted by the blue box in (b))

with the active NMC particles (c) and the inactive carbon/binder domains

(d) rendered separately and jointly (e). The scale bars in (a) and (c) are 60

and 20 μm, respectively.
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probability distribution, suggesting that the particles undergoing
a faster charging rate experienced more severe detachment. Such
an effect could be part of the reason for the rapid capacity decay
under fast charging conditions. To elucidate the particle size
dependence of the detachment effect, we divided the particles into
two groups (big and small) based on their respective volumes.
The big particles are ≥11 μm in diameter, and the small particles
are <11 μm in diameter (the threshold is based on the statistical
analysis of the particle size distribution). The relative probability
distribution of the particle detachment in the big and the small
groups are compared for the fast (1 C, Fig. 4c) and slow (0.1 C,
Fig. 4b) cycled electrodes, respectively. Interestingly, in both
cases, the small particles demonstrate a more broadly scattered
probability distribution with the peak position slightly shifted to
the right (as shown by the black arrow). We further plotted the
degree of detachment for all the particles versus their respective
volume in Fig. 4d. This scattered plot further demonstrates
the uncertainty in the particle detachment as a function of the
particle volume. This result suggests that the small particles have
a larger degree of uncertainty in terms of the physical detachment
from CBD, which is a piece of very valuable information that
could inform the engineering effort to optimize the electrode
formation for fast charging applications.

NMC particle’s response to the detachment from the CBD. We
show in Fig. 4e a conceptual illustration of the change of the
electrical and ionic conductivity as a function of the degree of the
particle detachment from the CBD. As discussed through our
modeling results, such detachment clearly rearranges the local
electrical conductivity. On the other hand, it favors the local ionic
conductivity as it facilitates better contact between the liquid
electrolyte and the NMC particle. These two competing factors
collectively govern the particle’s behavior. A particle’s actual
contribution to the cell level chemistry is dominated by whichever
is worse. As a consequence, the performance of the particle could
slightly improve in the early stage of the particle detachment due
to the improved ionic conductivity. In more severely detached
circumstances, the decreased electrical conductivity takes over
and results in an overall negative impact. We note that the
electrical conductivity of the NMC material actually changes
significantly as a function of SoC40. Therefore, the red curve in
Fig. 4e moves up and down upon cycling and the green shaded
area, which illustrates the particle’s actual contribution, would
vary accordingly. Nevertheless, the mild particle detachment
could favor the balanced electrical and ionic conductivity of
the particle. We point out that, beyond the diffusion kinetics, the
particle detachment could have a negative impact from the
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Fig. 2 Visualization and modeling of the particle detachment. a Selected y–z slices through an NMC particle. b, e The 3D rendering of the segmentation

results over two regions of interest, with the CBD set to be transparent for a better visualization of the NMC particle (orange) and the voids (gray–blue).

c, f The renderings of the calculated distributions of relative local electrical resistance over the surface of the particles in (b) and (e), respectively.

Our modeling result suggests a strong correlation between the degree of CBD attachment and the level of calculated electrical resistance heterogeneity.

d, g The same particles of the (c) and (f) presented without the void phase. The scale bar in (a), (c), and (f) are 10, 10, and 5 μm, respectively.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16233-5

4 NATURE COMMUNICATIONS |         (2020) 11:2310 | https://doi.org/10.1038/s41467-020-16233-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


mechanical perspective. Although it is beyond the scope of the
present work, we believe that it is an area worth further in-depth
investigation.

Correlation of the local electron density and the local SoC.
Another advantage of the employed X-ray phase contrast meth-
odology is the capability of quantitatively retrieving the electron
density distribution34,41 over the studied volume. The NMC’s
electron density is a fundamental physical property that changes
upon charging and discharging. The total number of electrons
within a unit cell of the NMC lattice decreases upon charging
because electrons and lithium ions are both extracted from the
cathode. The average number of electrons per lattice unit cell can
be quantified by integrating all the electrons in the NMC unit
lattice cell at different SoCs (note that the formula for an NMC
811 unit cell is Li3−3×Ni2.4Mn0.3Co0.3O6), which is plotted in
Fig. 5e as a function of x, i.e., the SoC. On the other hand, as the
lithium ions diffuse from the NMC lattice into the electrolyte, the
NMC lattice shrinks in an anisotropic manner. The change of
the NMC’s lattice parameters (a, b, and c) as a function of the SoC
has been reported through operando monitoring of the Bragg
diffraction peaks42. The volume of the NMC unit cell can,
therefore, be calculated and plotted against the SoC (Fig. 5e).
Subsequently, we show in Fig. 5e the calculated change of electron
density in the NMC lattice as a function of the SoC. At low SoC
(smaller x value), the electron density decreases upon charging
(increasing x). At x= ~0.7, there is a turning point, beyond which
the electron density increases rapidly upon charging. This is

because the NMC lattice parameter changes rapidly at high SoC,
which is part of the reason for the instability of the NMC cathode
at a deeply delithiated state. It is worth noting that the relative
changes in both the lattice unit cell volume (up to ~5.9%) and the
total number of electrons in a unit cell (up to ~5.7%) are at a
similar level and, thus, jointly affect the effective electron density.
We also acknowledge that the electron density is not mono-
tonically correlated with the SoC and, therefore, it cannot be used
to quantify the SoC universally. However, at the deeply charged
state (gray area in Fig. 5e; our electrodes were harvested after the
cell was charged to 4.5 V (at x equals 0.75–0.8)), we can assume
the one-to-one correlation because the coexistence of the deeply
charged and discharged states (very high and very low x values) is
highly unlikely unless there is a very severe deactivation effect
that completely isolates the local domain from the rest of the
electrode.

For better verification of the correlation between the electron
density and the SoC, we carried out correlative phase contrast
(ID16A, ESRF, Grenoble, France) and spectroscopic (6-2C, SSRL,
Menlo Park, CA, USA) X-ray imaging (see schematic illustration
in Supplementary Fig. 6) on the same NMC particle (Fig. 5b) that
is arbitrarily selected from the electrode (Fig. 5a). The X-ray
spectro-microscopy is a well-established tool for probing the local
oxidation state of the element of interest18,22. In our case, we
focused on the Ni K-edge because the redox reaction of the Ni
cation is the major contributor to the charge compensation in the
Ni-rich NMC cathode43 and, therefore, the Ni valence state can
be used as a proxy for the local SoC of the NMC cathode44–47. As
shown in Fig. 5c, d, the depth-averaged projection view of the

Tomography data

Slice
extraction

Slice Labeled slice

Machine
learning Assembling

Labeled 3D data

Original
data

Traditional
segmentation

Machine learning
segmentation

a

b

Fig. 3 Machine learning-based segmentation and labeling. Over 650 unique particles of different size, shape, position, and degree of cracking were

successfully identified and isolated from the imaging data in an automatic manner. aWorkflow of the machine learning-based segmentation. b Comparison

of conventional segmentation results and the machine-learning-assisted segmentation results for a few representative particles. Different colors denote

different particle labels. The scale bar in (a) is 50 μm.
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particle after charging to 4.5 V shows reasonable similarity (the
Pearson correlation coefficient is quantified to be ~0.54) between
the electron density map (Fig. 5c) and the Ni oxidation state map
(Fig. 5d). The detailed data reduction and normalization
procedures for both techniques are illustrated in Supplementary
Fig. 7. Our result suggests that the quantitatively retrieved
electron density map from the X-ray phase contrast methodology
can potentially be utilized to evaluate local SoC distribution under
reasonable assumptions.

Finally, we quantify the electron density for all the machine-
learning-identified NMC particles in our tomographic data. As
shown in Supplementary Fig. 8, the particles’ electron densities
are plotted against their respective degree of detachment from
the CBD. The data points appear to be quite scattered and we do
not observe a clear trend in this plot. This is possibly caused by
the relaxation of the electrode after it is disassembled from the
cell, which urges for a follow-up phase contrast imaging study of
the battery electrode under operando conditions. Another
possible explanation for the unclear trend is due to the non-
monotonicity of the electron density versus the SoC, which adds
some degree of ambiguity in particular near the turning point in
Fig. 5e (x near 0.7). We anticipate that such quantification will
be more reliable at the intermediately charged state due to the
relatively large SoC window with monotonic electron density
evolution (0 < x < 0.7).

Discussion
The microstructure of composite electrodes plays a significant
role in affecting the overall performance of the lithium-ion bat-
teries. Direct measurement of the structural and chemical het-
erogeneity in the NMC cathode could offer valuable insights into
the interplay among the local electrical resistance, the particle
morphology (size, shape, and cracks), the arrangement of the
ionic conductive network, and the local potential gradient, which

collectively affects the particle’s response to the operation con-
ditions and, subsequently, influences the cell chemistry. With the
quantitative X-ray phase contrast nano-tomography technique,
we first visualize the NMC active particle’s detachment from the
CBD. A numerical model is developed to calculate the spatial
heterogeneity of the electrical conductivity over the surface of the
partially detached particles. To carry out this quantification with
better statistics, we developed a machine learning model, which
identified and segmented over 650 NMC particles automatically.
Our statistical analysis shows that the fast-cycled particles exhibit
more severe detachment from the CBD and the smaller particles
exhibit a higher degree of uncertainty in their CBD detachment.
We further explored the possibility of utilizing the reconstructed
local electron density as a proxy for the local SoC. Our results
confirmed the feasibility and also pointed out some limitations of
this approach. Combining the cutting edge experimental, mod-
eling, and machine learning capabilities, our work sheds new light
on the fundamental mechanism behind the complicated rela-
tionship between the microstructure of the composite electrode
and the performance. Our work highlights the importance of
balanced diffusion kinetics for both charge carriers (Li-ions and
electrons) for optimal battery performance. Such a criterion is
particularly important for guiding the design of next-generation
Li-ion batteries with fast charging capability.

There are few limitations with the current procedure. First of
all, the disassembling process could cause damage to the electrode
and, subsequently, affect the result of the statistical analysis.
Second, the relaxation of the electrode may lead to charge
redistribution in the electrode, making it difficult to evaluate the
electrode scale chemical heterogeneity, which could be thermo-
dynamically metastable. Finally, the cell-to-cell discrepancy is a
common effect, which could add more complexity to the analysis
and interpretation. All these limitations can be tackled by
implementing an operando experimental strategy.
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Looking forward, the presented development of automatic
segmentation and local resistance modeling capability set the
basis for a number of follow-up studies. For example, our seg-
mentation approach could take the human out of the loop in
analyzing a massive amount of data, and subsequently, could
facilitate more sophisticated statistical analysis including the
correlations of many different morphological characteristics and
the chemomechanical breakdown of the particles. We could
systematically evaluate the particle-size-dependence, the spheri-
city-dependence, the porosity-dependence, the particle-to-particle
interaction, to name a few. The importance of this research
direction is caused by the intrinsic complexity in the
morphology–performance relationship. Such a complicated effect
relies on a thorough analysis with statistical significance.

Methods
NMC composite electrode synthesis. The composite cathodes were prepared by
spreading the slurry (N-methyl-2-pyrrolidone as the solvent) with active materials
(90 wt%), acetylene carbon (5 wt%), and polyvinylidene difluoride (5 wt%) as the
binder and casting them on carbon-coated aluminum foils. The electrodes were
then dried overnight at 120 °C in a vacuum oven and transferred into an Ar-filled
glove box for future use. Two cells were both cycled under C/10 for the first cycle
and 1 C for the second cycle as an activation process. After that they were,
respectively, subjected to 10 cycles under C/10 and 1 C, respectively. For the ex-situ
measurements, the electrodes were then disassembled in an Ar-filled glove box. We
show, in Supplementary Fig. 5, the voltage–capacity curves of the two cells used in
this study, which suggests that the cell underwent gradual capacity fading.
Nevertheless, at the end of the designed cycling sequence, we reach a state of
voltage at 4.5 V and x at 0.75–0.8. For correlative X-ray phase contrast nano-
tomography and X-ray spectro-microscopy, the sample was a small piece cut
carefully from a complete cathode plate, then fixed on top of a Huber pin in order
to mount in the rotation stage. The tomography scan was conducted near the

center of the piece, away from the cut edges to avoid any sample prep induced
artifacts. All the samples were protected in the inert gas environment during
storage, transportation, handling, and measurements.

Nano-resolution X-ray spectro-microscopy. We conducted X-ray spectro-
microscopic scan of the deeply charged Li0.5Ni0.8Mn0.1Co0.1O2 particles using the
transmission X-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron
Radiation Lightsource of the SLAC National Accelerator Laboratory. The typical
exposure time for single images is 0.5 s. The nominal spatial resolution of this
instrument is ~30 nm. More details of the synchrotron beamline configuration and
the concept of X-ray spectro-microscopy and spectro-tomography can be found
elsewhere17. In the 2D spectro-microscopic scan, the energy of the incident X-rays
is scanned from 8200 to 8630 eV to cover the absorption K-edges of Ni with over
150 energy points. In the near edge region (8330–8355 eV), we chose the energy
step at 1 eV to ensure sufficient energy resolution. The pre-edge and post-edge
regions were scanned with larger energy steps of 10 eV to cover a relatively wide
energy window for normalization of the spectra. The TXM data processing was
performed using an in-house developed software package known as TXM-
Wizard18. The segmentation and visualization of the 3D data were carried out
using a commercial software package known as Avizo. We highlight here that a
small piece of the NMC cathode electrode is mounted on a Huber pin that is
compatible with and is transferred between the ID-16 of ESRF and 6-2C of SSRL
for correlative imaging of the same particle.

X-ray phase contrast nano-tomography. The X-ray phase contrast nano-
tomography measurements were conducted at the ID16A-NI nano-imaging beam-
line at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.
This beamline features a high energy hard X-ray nano-probe, delivering a focus
down to ~20 nm with a brilliant photon flux (up to 1012 photons/s at ΔE/E ~ 1%).
The nano-focus is achieved by two pairs of multilayer-coated Kirkpatrick–Baez (KB)
optics, working at 17 and 33.6 keV respectively. In our measurements at 17 keV, the
sample was placed downstream of the KB focus and magnified radiographs were
recorded onto an X-ray detector using a FReLoN charged-coupled device with a
2048 × 2048 binned pixels array. After the magnification, the effective pixel size is
equivalent to 50 nm. For every tomography scan, 1500 projections were acquired
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with 0.2 s exposure time. One complete phase contrast nano-tomography scan
constitutes tomograms at four different focus-to-sample distances. These tomograms
were subsequently used for phase retrieval to generate 2D phase maps34. The 2D
phase maps retrieved from all angular projections were then used as input for a
tomographic reconstruction based on the filtered back projection algorithm method
(ESRF PyHST software package)48. The reconstructed 3D phase contrast volumes
are proportional to the electron density of the sample.

Machine-learning-based identification and segmentation. Manual annotations
on a set of nano-tomographic slices of thick NMC composite electrodes (see
Fig. 1a) were used to train a machine-learning model, which was then applied to
the current dataset of monolayer NMC electrode. Each slice of the reconstructed
volume is processed separately, and the obtained 2D masks are combined to
reconstruct the 3D particles afterward. The instance-aware identification and
segmentation of NMC particles in each slice are accomplished using a state-of-the-
art mask regional convolutional neural network (Mask R-CNN)49. Intuitively, this
model takes advantage of the inherent hierarchical and multi-scale characteristic of
a convolutional neural network to derive useful features for object detection. Rather
than training the network end-to-end from the start, the ResNet-101 feature
pyramid network was used and the model was initialized by the weights obtained
from the large-scale ImageNet dataset (a widely used on-line database for bench-
marking of the object detection algorithms). Starting from the pre-training weights,
we optimize the network by incorporating the information of the NMC particle
shape as defined in the manually annotated data. Such an approach effectively adds
additional constraint in the segmentation and reinforces the overall quasi-spherical
shape of the particles. A schematic illustration of the machine learning model
architecture is presented in Supplementary Fig. 4. Methodologically, the Mask R-
CNN first generates regions of proposals (i.e., candidate bounding boxed for
particles) after scanning the image from the convolutional feature maps; and it then
predicts the bounding box and binary mask for each particle by searching on
feature maps. After segmentation, each mask contains a particle’s outline bearing a
unique identifier. Those identifiers are then used for linking slices at different
depths of the volume to construct 3D particles for further analysis by the Hun-
garian maximum matching algorithm50.

The traditional watershed algorithm relies on the inner distance map as
marking function and easily causes over-segmentation and/or under-segmentation
when the boundaries of NMC particles are not clear or the signal-to-noise ratio of
the image is low. More importantly, the particle’s external boundary (versus the
surface of the pores and cracks) cannot be easily defined in the conventional
approach that is simply based on the local pixel intensity. Therefore, the formation
of cracks in the particles (low-intensity features) could significantly and falsely alter
the inner distance map and such an effect cannot be addressed by improving the
image quality. As a result, due to the mechanical disintegration of the NMC
particles, the traditional algorithm often mistakenly splits one particle into several
parts (see Fig. 3b) with different labels assigned.

Our results suggest that this approach shows significantly improved robustness
against the formation of the inner-particle cracks, which would otherwise result in
the identification of smaller irregularly shaped parts. For better illustration of this
statement, we show in Supplementary Fig. 9a the comparison of the input image
and the activation map, which is extracted from an intermediate layer of our
network. We point out here that only the particles’ external boundaries are
highlighted. The emphasis of the particles’ external boundaries with simultaneous
suppression of the crack surface is exactly the desired functionality of the auto
segmentation algorithm and it is not possible to achieve such a purpose purely
based on the intensity values of the input image. For a more quantitative
comparison of the results from the conventional watershed segmentation and the
herein developed Mask R-CNN algorithm, we show in Supplementary Fig. 9b six
different evaluation metrics. It is evident that our approach significantly
outperforms the conventional method in all of these aspects. The detailed
description of the training procedure and these evaluation metrics are included in
Supplementary Note 1.

We would also point out that, with our development, the current network can
be further optimized when a new dataset comes in. The re-optimization process of
the algorithm requires only a very small amount of training data.

Data availability
All data that support the findings of this study are available from the corresponding

authors upon reasonable request. The nano-tomography data sets used for the machine

learning development are made publicly available at GitHub repository: https://github.

com/hijizhou/LIBNet.

Code availability
The source code and detailed instructions are made publicly available at the GitHub

repository: https://github.com/hijizhou/LIBNet.
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