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Abstract

Magnetic materials have been applied in a large variety of technologies, from data storage
to quantum devices. The development of 2D materials has opened new arenas for magnetic
compounds, even when classical theories discourage their examination. Here we propose a
machine-learning-based strategy to predict and understand magnetic ordering in 2D materials.
This strategy couples the prediction of the existence of magnetism in 2D materials using ran-
dom forest and the SHAP method with material maps defined by atomic features predicting
the magnetic ordering (ferromagnetic or antiferromagnetic). While the random forest model
predicts magnetism with an accuracy of 86%, the material maps obtained by the SISSO method
have an accuracy of about 90% in predicting the magnetic ordering. Our model indicates that
3d transition metals, halides, and structural clusters with regular transition metals sublattices
have a positive contribution in the total weight deciding the existence of magnetism in 2D com-
pounds. This behavior is associated with the competition between crystal field and exchange
splitting. The machine learning model also indicates that the atomic SOC is a determinant fea-
ture for the identification of the patterns separating ferro- from antiferromagnetic order. The
proposed strategy is used to identify novel 2D magnetic compounds which, together with the
fundamental trends in the chemical and structural space, paves novel routes for experimental
exploration.
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1 Introduction
The first synthesis of graphene opened a new
era for two-dimensional (2D) materials.1 These
materials, with strong in-plane and weak in-
terlayer interactions, enclose nearly all elec-
tronic and optical phenomena found in solids.
The subsequent experimental realization and
theoretical insights of other 2D materials2
have influenced and transformed our fundamen-

tal understanding of materials properties. It
also envisaged and put forward several tech-
nological applications in many areas of con-
densed matter physics, chemistry, and mate-
rials science. In this 2D materials revolution,
some breakthroughs were achieved including
the discovery of superconductivity in rotated
bilayer graphene,3 the theoretical description of
symmetry protected topological phases in bis-
mutene4 and the extremely high electron mo-
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bilities in phosphorene.5 Although 2D materi-
als physics overlaps many other well-established
areas, historically, it has been anticipated the
existence of mutual exclusion with magnetism,
i.e., long-range ordering of spin and orbital
magnetic moments.6 This brings limitations for
the integration of 2D materials in magnetic de-
vices.
The study of magnetism and magnetic mate-

rials goes back to the beginning of the theoreti-
cal foundations of physics and chemistry. How-
ever, even though there have been theoretical
predictions of magnetic stable monolayers,7 a
definitive experimental observation of magnetic
order at finite temperature in 2D layered ma-
terials was only reported recently.8–11 Specifi-
cally, scanning magneto-optic Kerr microscopy
measurements revealed intrinsic long-range fer-
romagnetic order in CrGeTe3 Van der Waals
(VdW) atomic layers.12 Similarly, Bevin Huang
et al., demonstrated for the first time the exis-
tence of ferromagnetism in CrI3 VdW crystals
down to the monolayer limit.13 The discovery of
2D magnetism has not only opened a new path
for potential revolutionary spintronic14 and val-
leytronic15 applications but also raised funda-
mental questions about the understanding and
prediction of ferromagnetic (FM) and antiferro-
magnetic (AFM) ordering in 2D compounds.
In three-dimensional bulk materials, the na-

ture of magnetic ordering ground state is de-
termined by collective mechanisms involving
magneto-crystalline anisotropy arising from the
spin-orbit coupling and how magnetic moments
(S and L) are effectively coupled by exchange
interactions. Furthermore, the interplay and
coexistence of exchange interactions can give
rise to not only FM and AFM orderings, but
also to a very rich variety of different magnetic
states even in compounds with similar crystal
structures.16 In the simplest scenario, two iden-
tical transition metal ions with unpaired elec-
trons interact through the isotropic Heisenberg
Hamiltonian Ĥ = −JS1S2, where the electron
spins S1 and S2 are coupled by the exchange
interaction parameter J . In this isotropic mag-
net, depending on the extent of delocalization of
the magnetic moments, the magnetic order can
be described by four exchange interactions – in-

direct, itinerant, direct, and super exchanges.7
These exchange interactions can coexist in a
given compound, suggesting that even without
magneto-crystalline anisotropy, the magnetic
ordering is determined by competing effects.
Indeed, the complexity in predicting magnetic
ordering has been recently recalled: "the pre-
diction of the magnetic state based solely on
chemical and structural information is a deli-
cate exercise".17 The description of magnetic
ordering in 2D materials is even more complex.
Specifically, in 1966, based on the isotropic
Heisenberg model, Mermin and Wagner demon-
strated that, unlike bulk compounds, in 2D ma-
terials long-range magnetic order is suppressed
by thermal fluctuations. This suggests that
2D materials can only exhibit magnetic or-
der in the presence of large magneto-crystalline
anisotropy and hence, the magnetism in 2D and
bulk materials are supposed to have different
physical mechanisms.6 Indeed, in general, there
is no rule, as a knowledge base, that a priori
determines the magnetic behavior in 2D mate-
rials or a trend of AFM or FM magnetic or-
derings in the feature space of atomic proper-
ties. For instance, 2D magnetic semiconductors
can violate the Goodenough-Kanamori rules for
superexchange interactions18 that discriminate
FM from AFM orders according to the angles
between d-orbitals from TM and p-orbitals from
oxygen anions.19,20 Clear and well-defined pat-
terns would facilitate the search for stable AFM
and FM 2D materials. In the ideal scenario, one
wishes to determine a set of stable AFM and
FM configurations for a given combination of
atoms with a specific stoichiometry and crys-
tal symmetry without additional calculations.
Our work thus aims to solve this problem using
machine learning algorithms.
In recent years, much effort has been in-

vested in the systematic prediction of magnetic
two-dimensional systems,21–29 coming mainly
from density functional theory (DFT) calcu-
lations. These predictions are based on a di-
rect approach that involves the calculation of
all possible candidates. This trial-and-error
process can be time-consuming, and expen-
sive. Daniele Torelli et al., used the compu-
tational 2D materials database (C2DB) 30,31
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to search for new ferromagnetic 2D materials
based on the spinwave gap as a descriptor that
accounts for the role of magnetic anisotropy,
finding 17 novel insulating materials that ex-
hibit magnetic order at finite temperatures.32
Similarly, a computational screening for 2D
magnetic materials based on experimental bulk
compounds that are exfoliable into 2D deriva-
tives33 found 85 ferromagnetic and 61 anti-
ferromagnetic materials for which DFT calcu-
lated magnetic exchange and anisotropy param-
eters are reported.34 Finally, Arnab Kabiraj et
al., developed a fully automated code to per-
form DFT calculations followed by Heisenberg
model-based Monte Carlo simulations to esti-
mate the Curie temperature from the crystal
structure, predicting 26 materials with a Curie
point beyond 400 K.18
Here we propose a data-driven strategy to ex-

plore the magnetism in 2D materials: contrary
to the commonly employed direct approach, we
aim to explore the material-to-attribute connec-
tion to provide the simplest correlation between
magnetic ordering and features, e.g., compo-
sition, crystal symmetry, and atomic proper-
ties.35–37 Specifically, we train machine learning
algorithms using a recently created database18
of 2D magnetic materials to obtain descriptors
that are capable of classifying materials as non-
magnetic, ferromagnetic, or antiferromagnetic.
Our strategy is divided into two main steps,
namely: i) we first develop a random forest
model to separate magnetic compounds from
non-magnetic ones based on trends in the crys-
tal structure and atomic composition; and ii)
based on the sure independence screening and
sparsifying operator (SISSO) method,38 we find
a mathematical model (i.e., a function of the
atomic features) that uses the composition to
provide a materials map with defined regions for
AFM and FM 2D materials. The accuracy in
the classification of 2D AFM and FM is about
90% in the training set. We find that the mag-
netic ordering is decided by features involving
the lowest- occupied Kohn-Sham eigenvalues for
the cations and anions that constitute the tar-
get material, their electron affinity, and atomic
radii of p-orbitals. However, different rules in-
volving these features are observed for materi-

als that belong to different space groups, clearly
indicating the complexity of this problem.

2 Machine learning models,
results and discussion

In the ideal scenario, one would like to have
a model determining the existence and type
of magnetic ordering in an arbitrary combina-
tion of Atoms, in a specific Composition, and
Symmetry (ACS). In this section, we present
the proposed strategy to solve the two above-
noted problems. First, as presented in Figure1,
the proposed scheme divides the problem into
two steps, namely: (I) classification for mag-
netic vs non-magnetic materials and (II) clas-
sification for AFM vs FM ordering in 2D com-
pounds. In order to input the ACS attributes
into the ML model, we start by encoding the
materials’ compositions and crystal structure
information into proper machine-readable fea-
tures. In this first step, these features are
used to study the distribution of magnetism on
the space of different two-dimensional materi-
als. Compounds are then classified as magnetic
(M) or non-magnetic (NM) according to the
DFT-calculated magnetic ground state. The
second step is the machine learning classifica-
tion that separates AFM from FM 2D materi-
als to construct a materials map of compounds
with magnetic ordering. The axis of this mate-
rials map (see Figure 1) are given by descrip-
tors that are functions of the atomic properties
Dn = f(ξ1, ξ2, ..., ξn), where n is the descriptor
dimension and {ξm} are the m atomic proper-
ties identifying the compound. As illustrated in
Figure 1, the prediction of novel magnetic 2D
compounds starts by selecting both the atomic
elements and structural clusters with a larger
tendency to be magnetic. Then, based on the
selected atoms and crystal point group, the
mathematical descriptors Dn are calculated for
all possible compositions formed by the selected
atoms in the selected structure; the position in
the materials map will indicate if the 2D ma-
terials candidates are either AFM or FM. In
ML models for materials, three components are
needed: available data, a numerical representa-
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Figure 1: Illustration of the proposed machine learning strategy to determine and predict the
existence of magnetism (step I) in a given 2D compound and its specific magnetic ordering (step
II). The starting point for this strategy is the clustering of atomic species and structures. Atomic
species are intrinsically clustered according to the organization of the periodic table, while an ML
model is performed to group structures according to the possible composition, crystal point group,
and local distortions. This cluster is then used to identify the tendency of a specific element and
structure to form a magnetic (blue) or non-magnetic (red) 2D structure. If the specific combination
of atoms and structures for the 2D compound tends to be magnetic, we identify its position in
a materials map separating antiferromagnetic from ferromagnetic ordering. These positions are
computed by means of atomic features of the constituent atoms. Finally, this ML strategy allows
us to predict and select compounds for specific applications in electronics and spintronics.

tion of materials, and learning algorithms and
their optimization.35
The starting point for both ML models de-

scribed in Figure 1 is the C2DB30 database of
bidimensional materials, which contains a to-
tal of 3814 entries in its 2020 version. The
C2DB database was built with DFT calcula-
tions of experimentally known 2D structural
prototypes combinatorially decorated with dif-
ferent ions from the periodic table. Each en-
try in the C2DB database is a combination of
a crystal structure, a composition, and a mag-
netic order. We filtered out materials with heat
of formation > -25 meV/atom, so the dataset
contains only materials that are thermodynam-
ically stable. Additionally, we decided to ex-
clude the materials which composition did not
include a transition metal. This series of fil-
ters resulted in a dataset with 2205 entries. By
grouping the entries by crystal structure and
composition, we ended with a total of 1845 ma-
terials, each with (possibly) different magnetic

orderings.

Random forest classification of
magnetic and non-magnetic 2D
compounds

The random forest classification scheme of mag-
netic (M) and non-magnetic(NM) compounds is
discussed below:
Available magnetic and non-magnetic 2D

compounds entries: To extract trends differ-
entiating M and NM, we propose the train-
ing of an interpretable ML algorithm using
the 850 M and 2569 NM compounds from the
C2DB.30 The DFT calculated total energy pro-
vided by the C2DB for NM (EFM) and M
(ENM) phases allows to identify the ground
state for the initial set of 1845 2D compounds.
ML models and general trends for the NM
and M behavior in the chemical and structural
space requires to eliminate ambiguous entries,
i.e., those with a relatively small energy dif-
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ference between different magnetic configura-
tions, ∆EM−NM = EM−ENM. We thus exclude
compounds with |∆EM−NM| < 0.01 eV/atom,
resulting in a dataset with 1713 compounds,
with 474 M and 1239 NM.
Numerical representation of magnetic and

non-magnetic compounds: The descriptors used
to characterize the chemical space were simple
boolean features that are set to True (False)
when the element is (not) present in the com-
position. To get to a structural descriptor, we
used a non-supervised approach to cluster the
crystal structures, and then we used these clus-
ter labels as a categorical feature. The C2DB
actually provides a label for grouping different
structures and it has a format that uses the ma-
terial’s stoichiometry, crystal space group, and
the set of occupied Wyckoff positions. The H-
phase of MoS2 is labeled as AB2-187-ai, for ex-
ample. Even though this label is very specific,
unfortunately we observed that it was not qual-
itatively univocal, i.e. in some cases it grouped
different structures into the same label. In or-
der to bypass that, we used CrystalNN crystal
fingerprint39 to find an embedding that deeply
characterizes the structural differences of all
materials. The CrystalNN is based on the eval-
uation of every site of the crystal regarding dif-
ferent local geometrical environments (e.g oc-
tahedral, tetrahedral). The outcome is then a
244-dimensional vector for each material. Using
these vectors in an embedding method such as
the T-SNE,40 and then automatically cluster-
ing this embedding using DBSCAN,41 we were
able to get to a set of 51 structural groups. The
Supporting Information provides some further
details on this process. For this specific analy-
sis, this kind of feature has shown to be more
efficient than the labeling from C2DB or simply
grouping by space group or point group.
Learning algorithm and its optimization:

Random forest classifier. With the huge va-
riety of models one can use to make classifica-
tions,42 we chose the non-linear Random Forest
(RF) model due to its simplicity and ease of
interpretation. Another great advantage of RFs
is that, by using the out-of-bag methodology
(OOB),43 it is possible to use 100% of the data
for both training and for validating the model.

Details regarding its implementation and hy-
perparameters are presented in the Supporting
Information. Table 1 shows the RF accuracy
results for the 1684 materials. As can be ob-
served, the out-of-bag F1 score is 86%, which
indicates that by using very simple composi-
tional and structural features one is able to
delineate bidimensional materials which have
magnetic order with good accuracy.

Table 1: Random Forest Out-of-bag (OOB) val-
idation results. The F1 score is the best perfor-
mance metric as the dataset has two unbalanced
classes, with M as the minority class. M/NM
Accuracy stands for the RF individual class ac-
curacy, i.e. how many materials of these classes
are correctly classified by the model.

Number of materials 1713
M Proportion 25.8%
Accuracy 92.5%
F1 score 86.0%
M Accuracy 84.5%
NM Accuracy 95.9%

Trends for M vs. NM behavior in the space
of chemical species: The next step was to ra-
tionalize what the RF models have learned in
order to extract trends. For this task, we used
the popular SHAP44 methodology used to ex-
plain tree-based ML models. This method is
based on using game theory’s Shapley values45
(or SHAP values, in this context) for assigning
the impact of features on the model’s predic-
tions at the instance level. These values are
calculated for each feature value and for each
specific instance in the dataset: by using all
possible combinations of the set of features, i.e.
the feature power set containing 2n different
feature combinations (n: number of features),
the method consists in fitting separated one-
instance models to the RF model output, mak-
ing a total 2n fittings for each instance. From
this set of fittings, it is possible to calculate the
feature Shapley values, which evaluate numer-
ically how the feature contributes to the RF
output.
In the context of an NM vs M binary classifi-

cation, SHAP values can be negative or positive
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Figure 2: Strip plots of SHAP values of compositional features for all TMs. Each individual
plot represents a group, with color encoding the period in the periodic table. Each dot represents a
calculated SHAP value for an instance/material which contains the TM in its composition. Positive
(Negative) SHAP values, indicated by red (blue) background, mean that the presence of the specific
TM contributes to the model to classify the material as M (NM). SHAP values concentrated around
zero indicates that having the TM in the composition does not affect the model classification.

if the feature locally contributes to a classifica-
tion of NM or M, respectively. Their absolute
values are directly correlated with how impor-
tant the feature value was to the model output.
Thus one is able to investigate the general in-
fluence of a feature on the model by analyzing
the distribution of all its SHAP values.
We chose the SHAP methodology over tra-

ditional model-level importance features, such
as Permutation Feature Importance (PFI), be-
cause the latter does not provide class-specific
values. While PFI directly provides a single-
valued weight for each feature (on which the
greater the value, the more important the fea-
ture is), it fails on discriminating how a feature
helps to classify the material as NM or M. In
general, model-level importance features lacks
the description of how the individual feature
values affect the classification, while SHAP, as

an instance-level method, covers this shortcom-
ing by showing how each feature value con-
tributes locally for the model output.
Figures 2 and 3 show the distribution of com-

positional features’ SHAP values. As the C and
N groups are not statically representative, and
for the sake of simplicity, we present only the
plots for transition metals (TMs) and for anion
groups (chalcogens and halogens). The Sup-
porting Information provides the full plots for
the cited remaining periodic table groups (Fig-
ure S2).
From Figure 2 we can see a clear trend regard-

ing the effect of the period of the TM. While
4d (orange) and 5d (green) TMs show neutral
contributions to the model, visually denoted by
their SHAP values distributions concentrated
around 0.0, the 3d (blue) TMs show very posi-
tive SHAP values, with the highest values hap-
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pening for Mn, Fe, Cr, V, Ni and Co. This
means that the presence of these elements had
a huge impact on the model classification of the
compounds into magnetic (M).
The difference between 3d TM and 4d, 5d

TMs also happens in tridimensional materials
and can be explained by the crystal/ligand field
splitting of d-levels. 3d TMs usually have a
smaller crystal splitting of d-levels, which are
associated with FM or AFM magnetic order,
as we discuss in the next section.

O S Se Te F Cl Br I

Chalcogens Halides

éM 

êNM 

Figure 3: Strip plots of SHAP values of com-
positional features for anions (chalcogens and
halogens).

The influence of different anions (Figure 3) in
classifying a material into M or NM was also
evaluated. We see that compared to the TMs,
the anions SHAP values distributions are con-
centrated around much lower absolute values,
indicating that they are less determinant in the
classification process. However, we can quali-
tatively see that the model associates the pres-
ence of chalcogens with NM order, while the
presence of halides is associated with M. This
means that the reduced coordination of halides
presents a higher correlation with magnetic or-
dering in two-dimensional materials.
Trends for M vs. NM behavior in the space of

structural clusters: The categorical structural
feature has a total of 51 labels corresponding
to 51 qualitatively different structural groups.
From the SHAP distributions plots for struc-
tural clusters, presented in the Supporting In-
formation (Figure S3), we see that some of them
present large absolute SHAP values and thus
high influence on the RF model prediction. Fig-

ure 4 shows the general crystal structure of se-
lected clusters that contributed to an M classi-
fication.
The selected structural clusters can be sepa-

rated into four main groups regarding their re-
spective TM sublattices: Honeycomb, Square,
Triangular, and Distorted triangular. By ver-
ifying the recent literature on magnetism in
two-dimensional materials,46 one can see that
most of the compounds where magnetism has
been verified (experimentally or computation-
ally) present a crystal structure that fits into
the general structures of the clusters shown in
Figure 4.
The first experimental observations of mag-

netic ordering in the monolayer limit support
the structural trend for Honeycomb TM sub-
lattices, for example, with FePS3 in 201647 and
CrI3 (cluster 26) in 201713 presenting AFM and
FM order, respectively. Other monolayers with
the cluster 26 structure and with composition
MX3 (M = Cr, Mn; X = F, Cl, Br, I) also
have been studied and theoretically predicted
to present intrinsic ferromagnetism.48,49 Calcu-
lations of CoBr3 in the cluster 27 crystal struc-
ture also showed that it presents intrinsic FM
order.50
The Triangular TM sublattice result is also

supported by experimental and computational
reports, such as the experimental verification of
ferromagnetism at room temperature in VSe2 51
and MnSe2,52 both in the T-phase of TMDCs
(cluster 4); the FM phase prediction by cal-
culations of ScCl, YCl, LaCl in the cluster 12
structure ;24,53 and the theoretical ground state
of AFM for Ta3C2

54 and FM for Cr3C2
55 and

Ti3C2
56 in the pristine MXene crystal structure

(cluster 23).
Magnetic two-dimensional materials with

Square or Distorted Triangular sublattices, as
far as we know at the moment, remain to be
further investigated. Even though the study
of specific compounds with these structures
was not found, the training data from C2DB
suggests that these geometries are viable for
magnetic order and for future experimental
verification.
With the exception of the Distorted Triangu-

lar TM sublattice, all groups present a regular
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Cluster 26
Octahedral Metal Trihalides

Cluster 27
Trigonal Prismatic Metal Trihalides

Clusters 18, 19, 20
Tetracoodinated Metals

Cluster 4
TMDC-T

Cluster 51
TMDC-H anion alloy

Triangular

Honeycomb

Square Distorted 

Triangular

Cluster 23
MXenes

Cluster 17
ABBA InSe

Cluster 12
ABCA Inse

Cluster 53
 TMDC-T’

Figure 4: All structural clusters with SHAP values distributions correlated with a magnetic clas-
sification. They can be divided into four main groups regarding the transition metal sublattice:
Triangular, Square, Honeycomb, and Distorted Triangular.

transition metal 2D sublattice; they represent
the only three ways one can regularly tile a 2D
plane, with honeycomb, triangular or square ge-
ometries.
In contrast to this regularity, the only struc-

tural cluster which contributed effectively to an
NM classification was the one with the general
crystal structure of H-TMDC transition metal
alloys (cluster 33). These specific alloys have
a stoichiometry of ABX4 or of AB3X8, where
A and B are transition metals from periods 4
and 6, and X is a chalcogen. Something partic-
ular of this structure is that the alloying with
A TM breaks the chemical regularity of the B
TM and, in some cases, it even breaks the struc-
tural regularity by breaking the system mirror
symmetry, and thus distorting the TM plane.
From these results, the main structural trend

suggested is the need for geometric regularity of
the TM sublattice for the emergence of intrin-
sic magnetic ordering. This regularity is possi-
bly correlated with long-range exchange inter-

actions between TM nearest neighbors.

Machine learning classification of
AFM and FM 2D compounds

The tendency in the feature space defined by
the atomic properties and crystal symmetries of
the magnetic behavior allows us to understand
which atomic combinations and structures are
prone to present a magnetic ordering, however,
it does not indicate what type of order is ex-
pected. In this section, we thus focus on the
machine learning distinction of magnetic phases
such as FM and AFM. We first describe the
three components that are needed for machine
learning models: available data, a numerical
representation of materials, and learning algo-
rithms.
Available 2D compounds with magnetic order-

ing: The computational 2D materials database
(C2DB)30 is also the source of the data set used
to train the machine learning model discrimi-
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nating AFM from FM ordering. In the C2DB,
the three considered magnetic phases (i.e., non-
magnetic, ferromagnetic or anti-ferromagnetic)
are not always calculated for a given compound.
Indeed, there are 3052 compounds for which
only one of these magnetic phases is reported:
2533 NM, 446 FM, and 73 AFM. Similarly,
NM and FM phases are evaluated for 195 com-
pounds, FM and AFM are calculated for 147
2D materials, and only 14 compounds with
reported total energy for the NM and AFM
phases. However, for the 875 compounds with
non-zero local magnetic moments, the DFT cal-
culations are based on a one supercell model,
i.e., the considered AFM and FM phases are
restricted to the smaller unit cell with at least
two transition metals. Calculating all possible
symmetry allowed magnetic orderings, Arnab
Kabiraj et al18 found that from the 788 DFT
calculated FM phases, 368 are actually AFM.
Naturally, it is also possible that some com-
pounds are misclassified as NM, which can ex-
plain the obtained accuracy in the magnetic vs
non-magnetic classification in the previous sec-
tion. Previous machine learning classification
for magnetic ordering based on the C2DB in-
trinsically has the bias of this DFT calcula-
tions.57 Here, we restrict the training set to
the database of 525 magnetic order compounds
from Ref. 18. Even though at a first glance this
seems to be a relatively small dataset for train-
ing, this has shown to be sufficient for other ML
analysis in Materials Science.58 Also, for the
test set, the accuracy of our ML is larger than
90% as discussed below, indicating a very good
model. In order to demonstrate the transfer-
ability of the machine learning descriptor, the
test set used to verify the accuracy of the pre-
dictor is constructed from a different database
that has recently obtained 54 2D magnetic or-
dered materials from bulk compounds that are
potentially exfoliable.33 Finally, in the training
process we consider only compounds with ex-
treme behavior, that is, those that are clearly
defined within the limits of the AFM and FM
ordering.
Numerical representation of magnetic 2D

compounds: The second component of ma-
chine learning models involves the mapping

of the material-to-attribute connection, i.e., a
computer-friendly representation of the materi-
als. These numerical representations of mate-
rials include a generalized representation that
comprises atomic properties along with struc-
tural features59 and also complex representa-
tions compressing electronic properties,60 e.g.,
electronic density. In order to find trends in
the chemical space that do not depend on com-
plex features that require a priori knowledge
of the electronic properties, we use features as-
sociated with the properties of the constituent
atoms of the compound. In Table 2, the pri-
mary atomic features are declared. We discrim-
inated atomic features related to the cations
and anions by the sub-indexes c and a, re-
spectively. The 2D compounds in the origi-
nal database are usually formed by a unique
transition metal element (i.e., cation) and dif-
ferent anions (or only one element as an anion).
When there is more than one element as anion
we consider statistical functions of the atomic
features59 as the primary features in the ML
classification. For a material formed by ns an-
ions and N atoms in the unit cell, we intro-
duce for each atomic property γ the statistical
function γ̄ = (

∑ns

i=1 γi/)ns, which stand for the
average value of the property. This redefini-
tion of the input features allows unifying the
size of the feature space for compounds with a
different number of atoms, which can represent
a barrier to simultaneously classify binary and
ternary 2D compounds.
Learning algorithm: For the third compo-

nent of machine learning, i.e., the learning al-
gorithms and their optimization, we adopt the
sure independence screening and sparsifying op-
erator (SISSO) approach.38 This method first
automatically constructs a feature space and
subsequently selects the feature that better sep-
arates the classes in the training set, e.g., AFM
and FM. Based on the initial set of primary fea-
tures Φ0, including the statistical combination
of atomic properties (Table 2) for anions, an-
alytical operations are used to combinatorially
associate primary features with the same unit.
The use of the primary features listed in Ta-
ble 2 (i.e., atomic properties) has proved to be
a powerful way to do machine learning in ma-
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Figure 5: Machine learning classification separating AFM (blue) from FM (red) for compounds
with crystal point groups containing horizontal planes, Dnh with n = 2, 3, and 4. The descriptors
Dσhx (x axis) and Dσhx (y axis) simultaneously discriminate magnetic ordering in compound with
different crystal space groups. Green and purple regions stand for the classification for compounds
formed by TM with low-SOC and high-SOC, respectively. The x axis stand for average atomic
SOC of TM and anions.

terials. This kind of analysis has been used to
predict the stability of 2D materials,61 topolog-
ical phases,62 and structural configurations.63,64
Additionally, this set of features, in general,
represented the main trends in the chemical
space for atomic properties.65–67 The regions for
FM and AFM classes are defined as convex hull.
The descriptor, i.e., the combination of atomic
features that minimizes the overlap region be-
tween convex hulls, is selected by systematically
computing all overlap regions defined in a two-
dimensional map, where each axis is given by a
specific function of atomic properties.
In the training set, there are compounds with

the same composition and even stoichiometry
that have different magnetic ordering. These
compounds are undistinguished in the feature
space defined only by atomic properties. How-
ever, even including structural features for the

representation of the materials, the random for-
est algorithm used in the previous section pro-
vides great inaccuracy in classifying the ma-
terials with AFM configuration. This unsuc-
cessful capture of trends in the magnetic or-
dering is similar to the reported in previous
works. To overcome the intrinsic dependence
of the magnetism with respect to the symme-
try, we use a multi-task version of the SISSO
method.68 Specifically, in this novel approach, a
machine learning descriptor classifying the FM
and AFM classes is simultaneously optimized
for different groups of compounds (i.e., tasks)
that contain both classes. Here, these groups
are all symmetry prototypes in the C2DB. This
process arrives at the best nonlinear features
employed in linear models that can differentiate
between classes simultaneously for every sym-
metry.
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Table 2: Atomic and structural properties in-
cluded for the construction of primary features
by the γ statistical operations.

Property Description
Z Atomic number
χ Pauling electronegativity
G Periodic group
v Valence
ø Unfilled valence orbitals
E , I Electron affinity and ionization

potential
εho, εlu Highest-occupied and lowest-

unoccupied Kohn-Sham eigen-
value

α Polarizability
r Atomic non-bonded radius
rv Radius of the last occupied va-

lence orbital
rs, rp Extensions of the s and p orbitals∗

∗ i.e., the radii where the radial probability
density of the valence s and p orbitals are
maximal.

Trends for AFM vs FM 2D compounds: For
AFM vs FM classifications based on the multi-
task SISSO method, we evaluate different ways
to group materials that have simultaneously the
same descriptor. Each class (or group) of 2D
materials is divided into AFM and FM order-
ing. Since these magnetic configurations can
strongly depend on the symmetry, one can ex-
pect that the patterns in the chemical space
for AFM and FM are different for compounds
with different point groups symmetry classes
(e.g., polar, non-polar, chiral, non-chiral, cen-
trosymmetric). Thus, materials are grouped
according to the group symmetry classes and
the symmetry operation contained in the crys-
tal point group symmetry (CPGS). In principle,
the multi-task process can potentially capture
the relation between the crystal symmetry and
the magnetic ordering, or at least, identify pat-
terns that are different across the PGS. For in-
stance, we consider three different strategies to
construct classes of 2D compounds containing
AFM and FM ordering, namely, according to:
i) the polarity and chirality of the CPGS, ii) the
larger order of rotation symmetries in the crys-

tal point groups (e.g., compounds with symme-
try axis R3, R4, and R6 form different classes
of 2D compounds), and iii) the type of mirror
symmetry planes in the CPGS (e.g., compounds
with CPGS containing horizontal (σh), diagonal
(σd) or vertical (σv) mirror planes form differ-
ent groups). We note that the grouping of com-
pounds based on symmetry operations (groups
i− ii) leads to a limited SISSO model accuracy
of about 80%, which is larger than the accuracy
of 70% of previous random forest models.
In order to increase the classification effi-

ciency, separations based on materials proper-
ties are also considered. Specifically, 2D com-
pounds are also grouped according to materi-
als properties such as the band gap, bulk spin-
orbit coupling (i.e., calculated as the average
of the atomic spin-orbit coupling), and the ex-
istence of either 3d, 4d, or 5d transition met-
als. These materials’ properties are selected
based on the magnetic physical mechanism in
three-dimensional compounds, as discussed in
the next section.
We find that the SOC is a determinant fac-

tor for high accuracy in the classifier separat-
ing AFM from FM in a materials map. In Fig-
ure 5, the classification model for groups formed
by the interpolation of crystalline SOC and dif-
ferent types of mirror symmetry planes is pre-
sented. For each group of materials, AFM and
FM compounds are illustrated in red and blue,
respectively. For instance, in Figure 5 com-
pounds with point groups symmetry containing
at least one horizontal mirror plane (i.e., D2h,
D3h, D4h, and D6h) are used to train the multi-
task ML classifier. The SOC effect is introduced
by dividing compounds into those containing
TM with high SOC (i.e., 4d and 5d atoms) and
those with low-SOC (i.e., 3d atoms), which are
illustrated in purple and green regions, respec-
tively. Compounds formed by low-SOC TM are
also divided in terms of the atomic SOC of an-
ions as 2D compounds with low-SOC and high-
SOC anions (Figure 5). The axes determining
the predicted material map are given by the
two-dimensional descriptor ~D(σh) with the com-
ponents Dσhx and Dσhy given by the functional
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mathematical form:

Dσhx =
(
εluc + εlua

)
Gc/rp,c (1)

Dσhy = rv,a/rc (Ec + Ea) ,

where the superindex σh stand for horizon-
tal mirror planes, εluc and εlua are the lowest-
occupied Kohn-Sham eigenvalues for the
cations (i.e., TMs) and anions, Gc is the pe-
riodic group of the cation, rp,c is the radii for
the p-orbitals of the cations, rv,a is the radius
of the last occupied valence orbital for anions,
rc is the atomic non-bonded radius for cations,
and Ec,a are the electron affinity for anions and
cations. In the training set, the accuracy of
the SISSO descriptor is larger than 98%, while
the accuracy in the test set is larger than 90%.
Importantly, even with the same descriptor
~D, the tendency for every symmetry is almost
unique, i.e., the boundary line defining AFM
and FM regions in the materials maps (dashed
lines in Figure 5) is different for each map. For
instance, for the crystal point group D2h, the
slope of the boundary line is positive regardless
of the atomic SOC of the constituent atoms
(Figure 5), but its position in the materials
map changes as the atomic SOC changes. In
contrast, for the CPGS D3h, the slope of the
boundary lines drastically increases when the
average atomic SOC increases. Also, for com-
pounds with CPGS D4h, a low average atomic
SOC directly indicates an AFM phase, with a
clear demarcated tendency to forbid the FM
order.
Besides the ML classifier for compounds with

CPGS containing horizontal mirror planes, we
also find a functional rule ~Dσv leading to a sep-
aration between AFM and FM in compounds
with CPGS containing mirror vertical planes.
The component of the two-dimensional descrip-
tor ~Dσv are given by:

Dσvx = χ2
cGc/Ea (2)

Dσvy = Gcvc (Ga + vc) ,

where χc is the Pauli electronegativity of TMs,
Gc,a are the periodic group for cations and an-
ions, Ea is the electron affinity of anions, and vc
is the valence of the cation. The descriptor ~Dσv

provides a reasonable good classification with
an accuracy of 92% in the training set and 87%
in the test set. This accuracy is significantly
higher than that of 70% in previous machine
learning models18 for magnetic ordering. Al-
though we are mainly motivated by obtaining a
rule that allows us to classify 2D materials into
AFM and FM, rather than interpreting a physi-
cal mechanism, one can find some relationships
between atomic properties that could reveal in
the future the physical mechanism determining
the magnetic ground state.

Theoretical trends and captured
mechanism

In bulk magnetic materials, the effective spin
magnetic moment is usually different from zero
due to the presence of ions with partially filled
electronic d- (transition metals) or f -shells (rare
earths). In this case, Hund’s rules lead to a
finite spin (S) and orbital (L) magnetic mo-
ments - the total magnetic moment is J = S
+ L. Usually, the orbital magnetic moments
(L) are quenched for transition metal elements
and only spin magnetic moments (S) are con-
sidered. When the magnetic ions have com-
pletely filled (or empty) electronic d or f -shell,
the effective spin magnetic moment is zero lead-
ing to diamagnetic property — the so-called
non-magnetic materials. Molecular field theory
can explain the observation of a net magneti-
zation due to the competition between the ex-
change interactions among magnetic ions lead-
ing to a macroscopic ordering of the system
and the crystal field splitting of d-orbitals of
TMs. The analogy with three-dimensional com-
pounds paves the route for the interpretation
of the obtained ML models for the existence
of magnetism and classification of the magnetic
ordering. To do so, the materials maps for mag-
netic bulk materials is briefly discussed (see Fig-
ure 6).
Notwithstanding its inherent complexity,

there are clear trends for the magnetic order
in bulk materials, as illustrated in Figure 6.
These trends are represented as a material map
in the feature space defined by the metallic be-
havior of the compounds and the localization
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of the atomic magnetic moments.7 Four quad-
rants can thus be identified in Figure 6: (I.)
metallic compounds formed by 5d TM, where
the itinerant exchange tends to be predomi-
nant; (II.) In metallic compounds formed by 3d
TM, the magnetism is mainly mediated by the
indirect exchange; (III.) For non-metallic ma-
terials formed by 3d TM, the direct exchange is
typically dominant; and (IV.) For non-metallic
with 5d TM, the super exchange usually ex-
plains the magnetic ground state. This ma-
terials map also reveals a trend in magnetic
ordering that separates FM materials in quad-
rants I and II, while locating AFM materials in
quadrants III and IV. Naturally, this is not a
general rule, since in practice the symmetry of
the crystal plays a role in the description of the
magnetic state and there is no atomic compo-
sition that a priori dictates a specific exchange
interaction. The description of magnetic order
in 2D materials is even more complex.

Figure 6: Materials map for exchange interac-
tion in bulk materials.7 The four quadrants I-
IV correspond to the indirect exchange region
(green), itinerant exchange region (purple), su-
per exchange region (blue), and direct exchange
region (red), respectively.

One of the bottlenecks for understanding
the trends of magnetism in 2D materials,
and then proposing functional applications
with them, is due to only a few experimen-

tal realizations and their contradiction with
the materials map for Bulk compounds (Fig-
ure 6). This includes the more recent dis-
covery of room-temperature ferromagnetism
in monolayer VSe2 51 and MnSe2 52 stabilized
by the strong magnetocrystalline anisotropy,
which suppresses the Mermin–Wanger restric-
tion. Both compounds, as well as the re-
ported strong out-of-plane magnetic anisotropy
in Fe3GeTe,69 have itinerant ferromagnetism.
These compounds belong to the purple region
of the materials map in Figure 6, but it contra-
dicts the illustrated trend since they are formed
by 3d TM. In contrast, the strong direct ferro-
magnetic exchange (red region in Figure 6) is
modeled as an Ising-type magnetism, which de-
scribes the AFM with an ordering temperature
of 118 K in FePS3.47 Additionally, the interlayer
magnetic coupling in bilayers of 2D materials
can give rise to novel physical properties,70–77
which can not be directly accommodated in
the materials map of Figure 6. However, the
ML analysis of theoretical predicted and hypo-
thetical compounds in previous sections provide
clear trends that are actually related to a the-
oretical explanation for magnetism in 2D com-
pounds, as discussed below.
Captured mechanism for the existence of mag-

netism: To better understand the physical
mechanism captured by our ML model, we
first illustrate how the prediction is constructed
based on the SHAP scheme. For two different
2D materials, figure 7 shows the resulting to-
tal weight defining a non-magnetic and mag-
netic tendency, which are represented by nega-
tive values (left side in blue) and positive val-
ues (right side in red), respectively. Note that
both the existence (represented by 1) and the
absence (represented by 0) of a given structure
or chemical species contribute to defining the
existence of magnetism. For instance, in the
first two lines of Figure 7a, one can see that the
existence of Fe atoms in the composition of the
compound positively contributes to the classi-
fication of the compound as magnetic, but the
absence of Mn atoms negatively contributes to
the classification as magnetic (i.e., the contri-
bution to the total weight is negative, and the
absence of Mn tends to make the compounds
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a) Illustration of magnetic tendency

b) Illustration of non-magnetic tendency

M àNM ß

Figure 7: SHAP decision plots of two dis-
tinct materials showing how specific compo-
sitional/structural features values (0: False;
1: True) contribute to the model classification
(NM: left; M: right). Here it is shown only the
material-specific top-20 features with respect to
the absolute SHAP values; a) FeCl2 in the clus-
ter 25 crystal structure (TMDC-H): The pres-
ence of Fe alone shows to be sufficient for the M
classification in this case; b) IrClS in the clus-
ter 34 crystal structure (TMHC): The absence
of many 3d TM in the composition, denoted by
0, contributes to an NM classification.

non-magnetic). Another important considera-
tion in these trends is that, if the existence of
a specific atomic specie contributes with a pos-

itive weight ξX to the magnetism, it does not
imply that the contribution of the absence of
X is −ξX . For instance, in Figure 7a, the exis-
tence of Fe atoms leads to high positive weight,
however, in Figure 7b (fourth line), the absence
of the same atom has a small negative weight.
This means that the total weight determining if
a given compound is magnetic or non-magnetic
is not defined by a few atoms in the composi-
tion or a specific structure, but by the collective
weights of the absence and existence of atoms
and structural prototypes (i.e., symmetries and
Wyckoff positions).
The random forest and SHAP models indi-

cated that the existence of 3d TMs strongly
contributes with a positive weight to the ex-
istence of magnetism (Figure 2), where the V,
Cr, Mn, and Fe have the largest positive contri-
butions. In contrast, besides the existence of Y
atoms that positively contribute magnetism, 4d
and 5d TMs do not have a predominant effect in
the existence or absence of magnetism, having
then a minor, but non-zero contribution. For
instance, while Rh and Hg atoms have a small
positive contribution to the existence of mag-
netism, Ir atoms have a relatively small contri-
bution to the absence of magnetism.

Figure 8: Schematic representation of the d-
orbitals splitting including the exchange split-
ting ∆x (yellow region) and the crystal field
splitting ∆c (blue region). a) the case where ∆x

< ∆c. b) the case where ∆x > ∆c. Situations
a) and b) illustrate respectively a low-spin con-
figuration and a high spin configuration (yellow
dots indicate electrons)

These trends can be interpreted in terms of
the competition between the exchange splitting
(ES) ∆x and the crystal field splitting (CFS)
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∆c. In figure 8, the successive effect of ∆x and
∆c are represented for the case of d-orbitals.
The introduction of the exchange splitting sepa-
rates spin up from spin-down; subsequently, the
symmetry-induced crystal field splitting further
separates these levels. As an example, the Td

crystal field effect is shown in Figure 8, which
splits the five-degenerated d levels into t2 and
e levels. We can draw two different scenarios,
namely: ∆x < ∆c (Figure 8a) and ∆x > ∆c

(Figure 8b). These two situations can be di-
rectly associated with the type of d-orbitals.
Specifically, 3d-orbitals are usually related to
relatively small crystal fields, while 4d-orbitals
and 5d-orbitals typically lead to large crystal
field splitting. Thus, the connection between
the d-orbital type and the existence of magne-
tization has an intrinsic correlation to the com-
petition among CFS and ES. Specifically, the
local magnetic moment depends on the number
of electrons; however, a simple empirical model
based on ∆x and ∆c usually gives a reasonable
intuition of the magnetization. For instance,
for ∆x < ∆c (Figure 8a), both spin up (red)
and down (blue) can be simultaneously popu-
lated, favoring a spin configuration with zero
or relatively small local magnetic moment (i.e.,
compound tending to have zero magnetization)
or having a relatively small magnetic moment.
In contrast, when ∆x > ∆c (Figure 8b), only
states of one spin type are populated. Conse-
quently, the spin configuration tends to have
non-zero (and relatively large) local magnetic
moment (i.e., FM or AFM compounds). In this
last scenario, the final magnetic configuration
depends on other factors (e.g., the SOC), as
we analyze in the next section. Although the
schematic model illustrated in Figure 8 focused
on the Td symmetry, the conclusions are valid
for any other general crystal field splitting since
the physical mechanism depends on the order of
the levels and not on the specific final symme-
try. These empirical observations are in agree-
ment with the trends captured by our model: i)
4d- and 5d orbitals tend to be delocalized, which
results in a relatively large CFS (∆x < ∆c)
and hence, a local magnetic configuration with
small or zero local magnetic moments, and ii)
3d-orbital have a strong localization (compared

to 4d- and 5d-orbitals) and consequently, rela-
tively smaller CFS (∆x > ∆c), leading then to
a magnetic configuration with large local mag-
netic moments. Summarizing, our ML model
captures the relation between 3d-orbitals (large
values in the SHAP plot of Figure 2) and the
fact that 4d- and 5d-orbitals) cannot directly
be related to the absence or existence of mag-
netism (near zero values in Figure 2).
The distinction of magnetic and non-

magnetic 2D compounds is based on the ex-
istence and absence of specific atoms, as well as
specific symmetries, which, naturally, is intrin-
sically related to the atomic properties (e.g.,
unpaired electrons, exchange strength, bond
length, coordination number) and symmetry
point groups. We have two types of features:
structural and atomic. Structural features can
directly correlate to symmetry, coordination
number and exchange strength. On the other
hand, atomic features correlate to the number
of unpaired electrons, exchange strength and
bond length. At the end, we are able to probe
all important features for magnetism. Specifi-
cally, we find that 2D compounds with non-zero
local magnetic moments are typically formed by
3d transition metals, which are mainly differ-
entiated with respect to 4d and 5d by the high
orbital-localization degree and relatively small
atomic radii. These atomic features result in a
high exchange splitting,78 which as described
in Fig. 8, leads to a high spin configuration or
in other words, a tendency to be magnetic.
The previously noted relation between atomic

orbital localization and local magnetic moments
in 2D materials can also be used to extract in-
formation from the SHAP plots for anions (Fig-
ure 3). Our model shows that the existence of
halides in a compound implies a positive weight
for the existence of magnetization. Indeed, we
verify that the p-orbitals in halides tend to be
more localized than chalcogen p-orbitals. It is
then expected that Halides also lead to rela-
tively small CFS (∆x > ∆c), and hence, a non-
zero local magnetic moment.
We also find that the structure plays an im-

portant role in the existence of magnetism in
two-dimensional materials. By analyzing the
structural cluster which contributes to an M
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classification, it is possible to delineate that
the regularity of transition metals in the crys-
tal structure directly reflects on the exchange
interactions and, thus, favors the emergence of
magnetic order. While crystal structures with
regular TM sublattices highly favor magnetism,
structures with chemical or structural irregular-
ities seem to disturb the long-range interactions
between ions. However, the ground state mag-
netic configuration depends on other features,
as captured by the ML model and explained in
the next section.
Captured mechanism for magnetic ordering:

As previously discussed, we find that in 2D-
materials, the SOC is a determinant factor for
the classification accuracy of AFM and FM
compounds. This is a strong result relating the
patterns of the magnetic ordering classification
with the SOC strength, i.e., when the atomic
average of the SOC for the constituent elements
increases in the 2D compounds, the distribution
of AFM and FM compounds change in material
maps. Previous calculations indicate that as
the atomic combination forming the compounds
has larger SOC, the magnetic anisotropy in-
creases, which is fundamental to allow 2D mag-
netism.79,80 The ML SISSO classification (see
Figure 5 for the specific case of CPGS Dnh
with n = 2, 3, 4 and 6) indicates that material
maps and boundaries defining AFM and FM
regions can strongly depend on the magnetic
anisotropy. On the other hand, our ML model
also indicates that the magnetic order config-
uration depends on the symmetry, i.e., higher
symmetries favor the AFM order. For instance,
compounds with more symmetric PGS tend to
be AFM (see PGS D4h in Figure 5). As the
PGS have lower symmetry, the proportion of
FM compounds with respect to AFM increases.
Even though SISSO is a very powerful ML

model, it is certainly not the best-suited model
to interpret the results. The descriptors that
are built can be complex and do not have a di-
rect interpretation. However, some hints can
appear in the features defining the descriptors.
Indeed, equations 1 and 2 give us some hints
of what is important to classify a compound as
FM or AFM. Compounds formed by atoms with
large (small) valence tend to have AFM (FM)

ordering, and compounds with a large (small)
rpM tend to be FM (AFM). In the opposite way,
for the space group P-3m1, compounds formed
by atoms with large (small) lowest-occupied
Kohn-Sham level tend to have AFM (FM) or-
dering. Although the interpretation of this de-
scriptor is not obvious, one can infer that the
value of the radii of the p-orbitals for cations is
related to the size of the atoms that separate
the transition metals. When the size of TM
increases (with the symmetry as a constant),
the compound tends to be FM. Similarly, the
descriptor also reveals that the classification of
AFM and FM ordering depends on the electron
affinity, which is related to how the electrons
are transferred in atoms to form atomic bonds
in the 2D compound.
Additionally, for ~Dσv , the valence orbitals v,

the Pauling electronegativity, and the periodic
groups appear to play the main role in defin-
ing the magnetic ordering. Indeed, the simplest
interpretation of the exchange interaction is
based on the unfilled valence orbitals and Pauli
electronegativity. There is no direct relation
between these atomic features and the physi-
cal mechanism defining the magnetic ordering.
However, with the predicted material maps, one
can infer the magnetic ordering by means of
the atomic composition in a defined symme-
try. When the considered symmetry changes,
the classification can also be different, which il-
lustrates the robustness of the method and de-
termined descriptors.

Machine learning model validation
and potential applications

In this section, we use the proposed scheme to
predict the existence of magnetism and mag-
netic structure of novel 2D materials candi-
dates, i.e., compounds that are not included
in the initial database used to train and test
the ML model. The ML prediction is fol-
lowed by a theoretical total energy calculation
of the magnetic ground states based on ab ini-
tion theory. DFT+SOC calculations are per-
formed using the Vienna Ab initio Simulation
Package (VASP) with the projector-augmented
wave (PAW) method81,82 and GGA-PBE83
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parametrization for the exchange-correlation
functional. As an illustrative example, we de-
scribe here the ML prediction and DFT ver-
ification for compounds with D3h PGS. The
complete list of novel predicted compounds for
all symmetries can be found in the Support-
ing Information. The ML prediction process
starts with the generation of novel compounds
based on trends for 2D magnetism defined in
the features space formed by chemical com-
position and structural clusters. Afterward,
we make the proposed materials go through
steps of the prediction scheme I (classification
for magnetic vs non-magnetic materials) and II
(classification for AFM vs FM ordering in 2D
compounds).
Generation of novel magnetic candidates : In

previous sections, we learned that compounds
containing 3d-orbitals TM and halides tend to
host 2D magnetism. the construction of atomic
combinations is based on the selection of 3d
TMs V, Mn, Cr, Fe, Ni, Co, and Ti (the high-
est positive weight) and as anions, the halides
Cl, Br, and I. These atomic species lead to 21
atomic combinations, which can be accommo-
dated in the 51 structural prototypes (i.e., 1071
compounds). Since the weight of the atomic
composition is usually larger in determining the
existence of magnetism, all structural proto-
types are considered for generating 2D mag-
netic candidates. These compounds intrinsi-
cally account for different stoichiometries and
compositions (e.g., AB, AB2, and A2B3). The
hypothetical generated materials are always in
the green region of the materials maps classify-
ing AFM and FM materials since they are only
formed by low SOC TMs.
ML model applied to novel candidates : The

list of generated compounds is compared with
the initial list of compounds contained in the
C2DB database and only a novel combination
of ACS attributes is considered. Using the ran-
dom forest model, compounds are classified as
magnetic and non-magnetic. After considering
compounds with a 100% of probability to be
magnetic (i.e. classified as M by 100% of the
RF’s decision trees), the filtering process leads
169 novel 2D magnetic candidates. For these
169 prototypes, we use the SISSO models to

Figure 9: Prediction of novel candidates with
D3h crystal point group symmetry with low-
SOC (top) and medium-SOC (bottom). The
red and blue squares stand for the ferromag-
netic and antiferromagnetic compounds, re-
spectively. Novel 2D magnetic candidates in
the d3h point group are represented in cyan.

identify the magnetic ordering, which results
in 137 AFM and 32 FM 2D compounds. This
prediction is performed by identifying the posi-
tion of the compounds in the materials maps by
means of the calculation of the functional form
of the descriptor in terms of the atomic prop-
erties. For instance, Figure 9 show the AFM
(blue), FM (red), and novel 2D magnets (cyan)
the CPGS D3h. The boundaries (dashed lines
in Figure 9) are defined by the SISSO model in
Figure 5. Here, The position of the novel candi-
dates indicates that they are classified as AFM
materials (Figure 9).
DFT verification: Our DFT calculation for

the selected compounds in the D3h PGS reveals
that all compounds in composition A2B3 (crys-
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tal structure of MXenes, cluster 23) are not
mechanically stable in this structure, i.e., the
compound tends to dissociate. On the other
hand, materials with the composition AB (crys-
tal structure of ABBA InSe, cluster 17) are en-
ergetically stable with respect to the free atoms
and solids formed by the constituent atoms.
The magnetic ground states for the six remain-
ing atomic combinations are studied by means
of DFT calculations. Remarkably, we find that
the compounds AB predicted as AFM by the
ML scheme in Figure 1 are confirmed to be
AFM by PBE DFT+SOC total energy calcu-
lations, as shown in Table 3. These AB com-
pounds can be understood as a unit cell con-
taining two quasi layers, where each quasi lay-
ers has one TM. The DFT calculation indicates
that the most stable AFM magnetic configura-
tion for CrCl, CrBr, CrI, and MnCl contains
only two TM atoms in the unit cell, i.e., TMs
at different planes have opposite local magnetic
moments along the z axis. On the other hand,
the AFM unit cell for MnBr and MnI contain
four TMs, where subsequent TMs in the same
plane have opposite local magnetic moment ori-
entation, which is inverted from one plane to
another.

Table 3: Magnetic ground state (GS) for com-
pounds with the composition AB in Figure 9.
For each combination, the energy difference
for the non-magnetic (∆AFM-NM) and ferromag-
netic (∆AFM-FM) phases with respect to the
AFM ground state are provided in meV/atom.

Compound GS ∆AFM-NM ∆AFM-FM

CrCl AFM -75 -2
CrBr AFM -75 -15
CrI AFM -73 -62
MnCl AFM -9 -25
MnBr AFM -8 -36
MnI AFM -7 -49

3 Conclusions
The design and the discovery of novel functional
materials have been historically sustained by
an Edisonian trial-and-error approach. This

expensive and time-consuming approach has
been recently substituted by an intelligent data-
based approach. The basic idea is to rely on
computational databases of compounds, where
the physical properties of thousands of mate-
rials have been calculated using quantum me-
chanical methods. In the current manuscript,
we have used this approach to search for mag-
netic 2D compounds. This is a recent field of
research with huge potential for functional ap-
plications.
Our study was divided into two steps. We

have used the C2DB database as the source
of information regarding structural, electronic,
and magnetic properties of a large variety
of synthesized and computer-designed com-
pounds. These compounds were classified as
non-magnetic (NM - diamagnetic), ferromag-
netic (FM), and antiferromagnetic (AFM). It
is well-known and established, however, that
there are several other magnetic configurations
that were not included in this list, includ-
ing ferrimagnetic, helimagnet, and compounds
with frustrated interactions. More complex
than that, the AFM configurations can have
a large variety of different accommodations for
the spins, usually labeled as type-A, C, D, G,
etc. The C2DB database only accounted for
the more simple configuration, where neighbor-
ing spins are aligned in an anti-parallel con-
figuration. Even though there is much discus-
sion about the outcomes of this approach,31 the
available data should be sufficient for our ma-
chine learning purposes.
The random forest algorithm used in this

work was able to successfully differentiate mag-
netic from non-magnetic compounds with great
accuracy. Non-magnetic compounds were pre-
dicted with an accuracy of ≈ 96%, while for
magnetic compounds this accuracy was around
85%. The SHAP analysis allowed us to un-
derstand why a material was classified as M
or NM, indicating that 3d TMs greatly impact
the classification into M in comparison to 4d
and 5d TMs. Anions showed lower impact in
comparison, but a qualitative analysis showed
that halides contribute to magnetic order, in
contrast to chalcogens.
An analysis of the crystal structure of the
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magnetic 2D compounds revealed that the tran-
sition metal sublattice regularity is a common
characteristic in all structural clusters favoring
magnetic ordering. This general trend is sup-
ported by the many experimental and theoret-
ical studies of magnetism in monolayers in re-
cent years.
The classification of FM and AFM com-

pounds is more subtle than the previous one
and demands a different approach. We have
used the SISSO method which was able to suc-
cessfully find a descriptor that is able to clas-
sify FM and AFM compounds. We have used
a large set of atomic features to classify these
compounds, and the final descriptor included
information regarding the electron affinity, the
number of valence electrons, and the electroneg-
ativity of the atoms that constitute the com-
pound. More importantly, our results indicate
that it is necessary to separate the compounds
according to their space groups and spin-orbit
coupling in order to identify patterns that clas-
sify AFM and FM 2D compounds. Conse-
quently, the magnetic order of material involves
a complex competition among structural and
electronic properties.
The information provided here can be use-

ful in the search for novel 2D magnetic materi-
als, expanding the possibilities of this expand-
ing and exciting area to compounds that can
be more stable and easy to synthesize than the
candidates observed so far.
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1. Random forest classification of magnetic and
non-magnetic 2D compounds

1.1 Model evaluation metric

To evaluate the RF classification performance we used the out-of-bag (OOB)

methodology, which consists of training and validating the model using 100% of the available

data. This is done by using for validation only Decision Trees (DTs) in the RF ensemble

which were not trained with the specific instance. This way, each material is validated only

by the DTs that have never seen the specific material.]

As the magnetic materials (M) are a minority class (25.8%), meaning that the set of

materials is class unbalanced, the most appropriate accuracy metric for a classification

model is the F1 score. The F1 score takes into consideration not only the overall model

accuracy but also takes into special consideration the model’s accuracy of the minority class.

It is defined by the harmonic mean of the precision and the recall of the M class, and it is

given by the following expression:

𝐹1 =  2 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙  =  𝑇𝑀

𝑇𝑀 + 1
2 (𝐹𝑀+𝐹𝑁𝑀)
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where TM is the true M (the accuracy of the model for the M class), FM is the false

M (the ratio of M materials incorrectly classified as NM), and FNM is the false NM (the ratio

of NM materials incorrectly classified as M).

In the context of a highly class-unbalanced dataset with 99% of instances belonging

to class A and 1% to class B, for example, a naive model would always output class A, and it

would have an overall accuracy of 99%; however, its F1 score would be 0%.

1.2. Defining a structural label using an unsupervised approach

Figure S1. T-SNE of CrystalNN vectors for all 3814 two-dimensional materials in C2DB. The

color encodes the different structural clusters defined by applying DBSCAN clustering.

As stated in the main text, the crystal prototype label provided by C2DB is not

qualitatively univocal, and thus they are not proper for encoding the crystal structure. To

define a structural label, we decided to adopt an unsupervised approach. The proposed

method has three stages:
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1. Generating Crystal Fingerprints (CFs) for all materials in C2DB;

2. Embedding of CFs into a 2D space;

3. Clustering the 2D embedded space into structural clusters;

To generate the CFs we used the local coordination information from all occupied

sites within the unit cell. It is generated for each occupied site a 61-dimensional vector

( ) in which each dimension is a parameter characterizing the atom's coordination

environment given by its coordination number and its coordination environment (e.g.

octahedral, tetrahedral, trigonal planar). is given by the CrystalNN [1] method and by

the method described by Zimmermann et al. [2]. Each dimension of gives the likelihood

of the site having a , where , and additionally its likelihood

of having the coordination environment ( ), where the set of possible is

given by . As an example, the following vector shows that for , some of the

possible coordination environments are for L-shaped geometries, for a water-like

angle geometry and for linear geometry.

The set for the sites in the unit cell is then processed to generate a ,

the CF, given by statistical values of each of the 61 dimensions of the following equation in

all sites. We chose the minimum, maximum, mean, standard deviation, resulting in a

244-dimensional (7 statistical operations x 61 dimensions) for each of the 3814

materials in C2DB.

As the resulting CFs have a large dimensionality, we then used them as input for the

T-SNE embedding technique [3]. We used a T-SNE perplexity parameter of 60, with the

cosine distance as the metric. The result is a two-dimensional embedding that characterizes

the structural differences and similarities of all materials in C2DB, as shown in Figure S1.

We then finally defined the structural clusters used as a categorical feature in the RF

model (represented by the different colors in Figure S1) by employing the scikit-learn’s

implementation of the DBSCAN [5] clustering method. We used an epsilon parameter of 1.5

(which measures how close points should be to each other so they can be grouped into the

same cluster) and 3 as the minimal number of points to form a cluster. This resulted in a total
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of 56 different structural labels. After the applied filters described in Section “Results and

discussion” in the main text, the total number of structural clusters dropped to 51.

1.3. Random Forest hyperparameters

We used the scikit-learn's [4] RandomForestClassifier implementation of random

forest. The split criterion used was the Gini impurity. We used an ensemble of 1000 trees,

with no maximum depth limit. All other parameters were set to default.

1.4. Compositional SHAP values

Figure 2S. Strip plots of SHAP values of compositional features for the elements from the

groups of C and N. Each dot represents a calculated SHAP value for an instance/material

which contains the TM in its composition. Positive (Negative) SHAP values, indicated by the

red (blue) background, means that the presence of the specific element contributes to the

model to classify the material as M (NM). SHAP values concentrated around zero indicates

that having the element in the composition does not affect the model classification.
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1.5. Structural clusters SHAP values

Figure 3S. Strip plots of SHAP values of structural cluster features. Each dot represents a

calculated SHAP value for an instance/material which belongs to the given structural cluster.

Positive (Negative) SHAP values, indicated by the red (blue) background, means that the

presence of the specific element contributes to the model to classify the material as M (NM).

SHAP values concentrated around zero indicates that belonging to the given structural

cluster does not affect the model classification.
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2. Machine learning classification of AFM and FM 2D
compounds

2.1 New prototypes

The file new_combinations.tar.gz contains the file new_combinations.csv, which lists

all the new prototypes, given by [structural clusters X {V, Mn, Cr, Fe, Ni, Co, Ti} X {Br, Cl, I}]

non-repeated combinations.

At the root level, the POSCAR files define the crystal structures of the 169 new

prototypes. It is important to disclaim that these prototypes are not optimized, i.e., they were

not relaxed; they are based on a representative crystal structure from the structural clusters

(randomly picked) and then ion substituted with all the 21 possible combinations of atoms.

The POSCAR files have naming formatting of ‘index’_’structural cluster’_’cation’_’anion’,

which are fields specified in the new_combinations.csv file. For example, one of the entries

used for validating the AFM and FM model for D3h (-6m2 in the International notation)

compounds is the one using Cr as cation, Cl as an anion, and structural cluster 17 as crystal

structure prototype; its POSCAR file is named “50_17_Cr_Cl”.
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