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ABSTRACT

Context. Machine learning methods are effective tools in astronomical tasks for classifying objects by their individual features. One
of the promising utilities is related to the morphological classification of galaxies at different redshifts.
Aims. We use the photometry-based approach for the SDSS data (1) to exploit five supervised machine learning techniques and define
the most effective among them for the automated galaxy morphological classification; (2) to test the influence of photometry data on
morphology classification; (3) to discuss problem points of supervised machine learning and labeling bias; and (4) to apply the best
fitting machine learning methods for revealing the unknown morphological types of galaxies from the SDSS DR9 at z < 0.1.
Methods. We used different galaxy classification techniques: human labeling, multi-photometry diagrams, naive Bayes, logistic
regression, support-vector machine, random forest, k-nearest neighbors.
Results. We present the results of a binary automated morphological classification of galaxies conducted by human labeling, multi-
photometry, and five supervised machine learning methods. We applied it to the sample of galaxies from the SDSS DR9 with redshifts
of 0.02 < z < 0.1 and absolute stellar magnitudes of −24m < Mr < −19.4m. For the analysis we used absolute magnitudes Mu, Mg,
Mr, Mi, Mz; color indices Mu − Mr, Mg − Mi, Mu − Mg, Mr − Mz; and the inverse concentration index to the center R50/R90. We de-
termined the ability of each method to predict the morphological type, and verified various dependencies of the method’s accuracy on
redshifts, human labeling, morphological shape, and overlap of different morphological types for galaxies with the same color indices.
We find that the morphology based on the supervised machine learning methods trained over photometric parameters demonstrates
significantly less bias than the morphology based on citizen-science classifiers.
Conclusions. The support-vector machine and random forest methods with Scikit-learn software machine learning library in Python
provide the highest accuracy for the binary galaxy morphological classification. Specifically, the success rate is 96.4% for support-
vector machine (96.1% early E and 96.9% late L types) and 95.5% for random forest (96.7% early E and 92.8% late L types).
Applying the support-vector machine for the sample of 316 031 galaxies from the SDSS DR9 at z < 0.1 with unknown morphological
types, we found 139 659 E and 176 372 L types among them.

Key words. galaxies: general – methods: data analysis – galaxies: statistics – galaxies: photometry – galaxies: spiral –
galaxies: elliptical and lenticular, cD

1. Introduction

During the 1990s, artificial neural network (ANN) algorithms
were implemented for the automatic morphological classification
of galaxies since the huge extragalactic data sets had been con-
ducted. The classification accuracy (success rate) of the ANNs
was from 65% to 90% depending on the mathematical subtleties
of the applied methods and the quality of the galaxy samples. One
of the first of these works was done by Storrie-Lombardi et al.
(1992) with a feed-forward neural network, which dealt with the
classification of 5217 galaxies into five classes (E, SO, Sa-Sb,
Sc-Sd, and Irr) with a 64% accuracy. A detailed comparison of
human and neural classifiers was presented by Naim et al. (1995),
who used a principal component analysis to classify 831 galaxies;

⋆ The catalog is only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/648/A122

the best result was with an rms deviation of 1.8 T-types. Summa-
rizing the first attempts, Lahav et al. (1995, 1996) resulted that “the
ANNs can replicate the classification by a human expert almost to
the same degree of agreement as that between two human experts,
to within 2 T-type units”.

An excellent introduction to the classification algorithms for
astronomical tasks, including the morphological galaxy classifi-
cation, is given in various studies (Ball & Brunner 2010; Way
et al. 2012; VanderPlas et al. 2012; Ivezic et al. 2014; Al-Jarrah
et al. 2015; Fluke & Jacobs 2020; El Bouchefry & de Souza 2020;
Vavilova et al. 2020a). We also refer to the classical work by
Buta (2011), and to a good pedagogical review by Conselice et al.
(2014) with a discussion of principal methods in which galaxies
are studied morphologically and structurally.

The Sloan Digital Sky Survey (SDSS), which started in
2000, collected more data in its first few weeks than had been
amassed in the history of astronomy. Now, 20 years later, its
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archive contains about 170 terabytes of information. Soon its
successor, the Large Synoptic Survey Telescope (LSST), will
acquire that quantity of data every five days (York et al. 2000).
It provided entry points for the computer scientists who want to
engage in astronomical research, and explains why big data min-
ing and machine learning methods are gaining such popularity:
they are able to categorize celestial bodies in big data sets with
more accuracy than ever.

In this context we review below several works where differ-
ent approaches were developed and great efforts were made to
identify the morphological types of galaxies from the SDSS in
the visual and in the automated modes.

Ball et al. (2004) tested a supervised ANN for 50 mor-
phological classifications and found that it can be used with-
out human intervention for the SDSS galaxies (correlations
between predicted and actual properties were around 0.9 with
rms errors on the order of 10%). de la Calleja & Fuentes (2004)
developed a method that combines two machine learning algo-
rithms: locally weighted regression and ANN. They tested it
with 310 images of galaxies from the New General Catalogue
and obtained an accuracy of 95.11% and 90.36%, respectively.
Kasivajhula et al. (2007) explored support-vector machine, ran-
dom forest, and naive Bayes algorithms as the galaxy image clas-
sifiers, and principal component analysis for the direct image
pixel data compressing, but favored random forest. They cited
the opinion of several astronomers on the successful perspec-
tive of galaxy classification by morphological features as “one
of the most cumbersome areas in celestial classification, and the
one that has proven the most difficult to automate”. Neverthe-
less, Andrae et al. (2010) applied a probabilistic classification
algorithm to classify the SDSS bright galaxies and obtained that
it produces reasonable morphological classes and object-to-class
assignments without any prior assumptions.

For the visual morphological classification conducted dur-
ing recent years, we note the following: Nair & Abraham (2010)
prepared the detailed visual classifications for 14 034 galaxies
from the SDSS DR4 at z < 0.1, which can be used as a good
training sample to calibrate the automated galaxy classification
algorithms. Banerji et al. (2010) provided a significant study
where galaxies from the Galaxy Zoo Project1 formed a train-
ing sample for morphological classifications of galaxies from the
SDSS DR6 into three classes (early types, spirals, spam objects).
These authors showed, at a high confidence level, that using a
set of certain galaxy parameters, a neural network can reproduce
human classifications to better than 90% for all these classes,
and the Galaxy Zoo catalog (GZoo1) can serve as a training
sample.

Hundreds of thousands of volunteers were involved in the
Galaxy Zoo project (GZoo) to make a visual classification of
a million galaxies in the SDSS (Lintott et al. 2008). Most
of their results have found good scientific applications. For
example, using the raw imaging data from SDSS that was
available in the GZoo1, and the handpicked features of galax-
ies from the SDSS, Kates-Harbeck (2012) applied a logistic
regression classifier and attained 95.21% classification accuracy.
Willett et al. (2013) issued a new catalog of morphological
types from the GZoo2 Project in synergy with the SDSS DR7,
which contains more than 16 million morphological classifica-
tions of 304 122 galaxies and their finer morphological features
(bulges, bars, and the shapes of edge-on disks as well as param-
eters of the relative strengths of galactic bulges and spiral arms).
Simmons et al. (2017) cross-verified 48 000 galaxies from the

1 http://data.galaxyzoo.org

CANDELS survey and their detailed morphological features
from the GZoo (clumpiness, bar instabilities, spiral structure,
merging). It allowed them to create a list of galaxies with fea-
tureless disks at 1 ≤ z ≤ 3, which may represent “a dynamically
warmer progenitor population to the settled disk galaxies seen at
later epochs”.

Kuminski & Shamir (2016) have generated a morphology
catalog of the SDSS galaxies with the Wndchrm image anal-
ysis utility using the nearest neighbor classifier. They pointed
out that about 900 000 of the instances classified as spirals and
about 600 000 of those classified as ellipticals have a statisti-
cal agreement rate of about 98% with the GZoo classification.
Murrugarra & Hirata (2017) evaluated a convolutional neural
network to classify galaxies from the SDSS into two classes
(ellipticals and spirals) by image processing, and attained an
accuracy of 90–91%. Using the same machine learning tech-
nique, the convolutional neural network and especially the incep-
tion method, Rahman & Azhari (2018) conducted classification
into three general categories: ellipticals, spirals, and irregulars.
They used 710 images (206 E, 320 S p, 184 Irr) and obtained
that images after processing showed a relatively low testing
accuracy compared to those that did not undergo any form of
image processing. Their best testing accuracy was 78.3%.

Supervised and unsupervised methods were both applied by
Gauthier et al. (2016) to study the GZoo data set of 61 578 pre-
classified galaxies (spiral, elliptical, round, disk). They found
that the variation in galaxy images is correlated with brightness
and eccentricity, and that the random forest method gives the best
accuracy (67%); meanwhile, its combination with regression to
predict the probabilities of galaxies associated with each class
can reach 94% accuracy. Beck et al. (2018) analyzed the inte-
gration of visual labeling and automated morphological assign-
ment with random forest for more than 200 000 galaxies from
the GZoo2 project. They managed to show that such a combi-
nation increases the binary classification rate with quite good
accuracy (93.1%), focusing on the velocity, one of the four Vs
of astronomical data (volume, variety, velocity, and value).

The photometric and spectral parameters of each object,
as well as their images, are available through the SDSS web-
site. It uses a well-known fact that galaxy morphological type
is correlated with several parameters, for example the color
indices, luminosity, de Vaucouleurs radius, and inverse concen-
tration index. In our series of works we have demonstrated the
effectiveness of a combination of the visual classification and
the two-dimensional diagrams of color indices g − i and one
of the parameters mentioned above (Vavilova et al. 2009, 2015;
Melnyk et al. 2012; Dobrycheva & Melnyk 2012). Specifically,
using the color indices versus inverse concentration index dia-
grams for each galaxy with radial velocities 3000 < V <
9500 km s−1 from the SDSS DR5, we obtained criteria for sep-
arating the galaxies into three classes, namely (E) early types–
elliptical and lenticular, (S ) spiral S a− S cd, and (LS ) late spiral
S d − S dm and irregular Im/BCG galaxies (Melnyk et al. 2012).

Making a ternary automated morphological galaxy classifi-
cation we attained good accuracy: 98% for E, 88% for S, and
57% for LS . We applied this approach based on the photometric
data alone (multi-parametric diagrams) to classify a sample of
316 031 SDSS galaxies at 0.003 ≤ z ≤ 0.1 from the SDSS DR9
(142 979 E, 112 240 S , 60 812 L; Dobrycheva 20132). The cri-
terion was determined visually by the graph of the relationship

2 http://leda.univ-lyon1.fr/fG.cgi?n=hlstatistics&a=

htab&z=d&sql=iref=52204
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between these two values. In each graph we indicated the regions
where there are a maximum number of galaxies of morphologi-
cal types E, S , and LS and a minimum number of other morpho-
logical types. At that time, we used the training sample as a test
sample, which means that the actual accuracy was at least a few
percentage points lower. A more detailed explanation is given by
Dobrycheva et al. (2018).

The ternary classification is a partial case of decision tree
classifier and provides an accuracy level of morphological classi-
fication that is not very high. We tried to use other more sophisti-
cated machine learning methods and to compare them. In works
by Dobrycheva (2017), the results on a binary morphological
classification of this sample using software with an open-source
KNIME Analytics Platform ver. 3.5.0 were presented, and three
machine learning methods were compared: naive Bayes, random
forest, and support-vector machine based on WEKA 3.7 soft-
ware and neural networks (RProp MLP). It turned out that the
random forest method provided the highest accuracy: 91% of
galaxies were correctly classified (96% for E type and 80% for
L type).

The higher rate of morphological classification was accessed
with convolutional neural network (CNN) when the imaging
data was analyzed. We note some recent works where galaxy
samples in the Local Universe were studied.

Sreejith et al. (2018) exploited 7528 galaxies from the
Galaxy and Mass Assembly (GAMA) survey with 0.002 < z <
0.06. These galaxies were previously visually classified indepen-
dently by three classifier teams. The statistical machine learn-
ing algorithms were trained on a set of 6022 objects (80% of
the data set) using ten independent distance parameters. These
algorithms were subsequently tested on the remaining 20% of
the data set to classify them into five galaxy types: elliptical,
little blue spheroid, early-type spirals (S0-SBa), intermediate-
type spirals (Sab-SBcd), and late-type spirals–irregulars (Sd-
Irr). Their results were as follows: support-vector machine –
75.8%, neural networks – 76.0%, classification trees – 69.0%,
and classification trees with random forest – 76.2%. Cheng et al.
(2020) used the Dark Energy Survey data combined with human
labeling from the GZoo1 project to compare the effectiveness
of several machine learning methods, among which CNN, k-
nearest neighbors, logistic regression, support-vector machine,
random forest, and neural networks. These authors obtained that
CNN is the most successful method for the binary morphologi-
cal classification dealing with galaxy images; using a sample of
∼2800 galaxies at z < 0.25, they attained an accuracy of ∼99%.

Barchi et al. (2020) produced a catalog with morphologi-
cal data for 670 560 galaxies at 0.03 < z < 0.1, where the
input data were taken from SDSS-DR7 (Petrosian magnitude in
r-band brighter than 17.78, and |b| > 30◦). They used traditional
machine learning (TML) and deep learning (DL) approaches
to distinguish elliptical (E) from spiral (S ) galaxies. These
authors presented a non-parametric galaxy morphology system,
named CyMorph, which determines concentration (C), asym-
metry (A), smoothness (S), entropy (H), and gradient pattern
analysis (GPA) metrics. All the studied TML methods (decision
tree, support-vector machine, and multi-layer perceptron) pro-
duced a 98% overall accuracy. Despite an imbalance of types
in the training set (S galaxies, 87%, and E galaxies, 13%) at
least 95% accuracy and 96% recall for E systems were attained.
Since S galaxies constitute most of the training set, it is not sur-
prising that accuracy and recall were 99%, establishing a model
with 99% overall accuracy for this data set. In general, the CNN
method (GoogLeNet Inception) with the imbalanced data sets
and 22-layer network resulted in 98.7% overall accuracy for

binary morphological classification. Mittal et al. (2020) intro-
duced the data augmentation-based MOrphological Classifier
Galaxy using Convolutional Neural Networks (daMCOGCNN)
and obtained a testing accuracy of 98%. Their data sets of 4614
images were collected from SDSS Image Gallery, Galaxy Zoo
challenge, and Hubble Image Gallery.

It can be seen that, in general, the implemented methods with
CNN provide accuracy around 98% for the morphological clas-
sification of galaxies. However, they require imaging data with
a good resolution, and work well for nearby galaxies. On the
contrary, in our classifiers we use easily observed photometric
parameters, which could even be defined for distant galaxies.

The above brief discourse into the history of the automated
morphological classification of various galaxy samples from a
homogeneous Sloan Digital Sky Survey shows that classifica-
tion accuracy (success rate) depends not only on the obvious
factors such as the quality of the data (photometric, image, spec-
tral) or human labeling, but also on the applied machine learn-
ing methods. Moreover, it is important to discuss not only the
effectiveness of the methods, but also the problem points that
are hidden in general statistics of a success rate. Specifically,
they are directly related to the evolutionary features of galaxies.
Here the developed tools and catalogs based on the photometric
data augmentation may serve an essential role as training sam-
ples for the data analysis of upcoming biggest surveys as LSST
and Euclid.

This work deals with the automated morphological classifi-
cation of the low redshift galaxies from the SDSS DR9. We used
the cosmological WMAP7 parameters ΩM = 0.27, ΩΛ = 0.73,
Ωk = 0, H0 = 0.71 and set the following tasks:

– to verify various machine learning methods and to select
most effective among them for classifying the morphological
types of galaxies at z < 0.1 from the SDSS DR9;

– to determine the margins where the automated morphology
classification based on the photometric parameters of galaxies
gives the best result, e.g. morphological peculiarities, at different
redshifts;

– to reveal typical problem points of the automated morpho-
logical classification based on the photometric data and human
labeling;

– to apply the developed criteria for the automated morpho-
logical classification of galaxies at z < 0.1 from the SDSS DR9
with unknown morphological types.
We organized the paper as follows. Section 2 deals with galaxy
samples. Section 3 describes the studied machine learning
methods (naive Bayes, logistic regression, k-nearest neighbors,
random forest, and support-vector machine) and the setting
parameters used in each method. The results are presented in
Sect. 4. In the discussion we raise questions about several prob-
lem points of the supervised machine learning methods for the
automated galaxy morphological classification (Sect. 5.1) and
compare the effectiveness of different methods (Sect. 5.2). Con-
cluding remarks are highlighted in Sect. 6.

Our other approach dealing with the deep learning similarity
to define morphological features of galaxies from this studied
sample is described in the next paper by Khramtsov et al. (2020).

2. Galaxy samples from the SDSS DR9 for the

automated morphological classification

2.1. Galaxy sample

A preliminary sample of galaxies at z < 0.1 with the abso-
lute stellar magnitudes −24m <Mr < − 13m from the SDSS DR9
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Fig. 1. Diagram of color indices g− i and inverse concentration indexes
R50/R90 of the training sample (6163 galaxies randomly selected with
different redshifts and luminosities from the SDSS DR9). The visually
classified galaxies (human labeling) of early E − S 0 types are shown in
red, and the late Sa − Irr types in blue.

contained ∼724 000 galaxies. Following the SDSS recommen-
dation, we input limits mr < 17.7 by visual stellar magnitude
in r-band to avoid typical statistical errors in spectroscopic flux.
After excluding the images with duplicates of the same galaxy
and artificial objects, the final sample contained N = 316 031
galaxies. To clear the sample from segmented images of the same
galaxy, we used our code based on the minimum angle distances
between such SDSS objects.

The absolute stellar magnitude of the galaxy was obtained
by the formula

Mr = mr − 5 · lg(DL) − 25 − Kr(z) − extr,

where mr is the visual stellar magnitude in r-band, DL the lumi-
nosity distance, extr the Galactic absorption in r-band in accor-
dance to Schlegel et al. (1998), Kr(z) the k-correction in r-band
according to Chilingarian et al. (2010), Chilingarian & Zolotukhin
(2012).

The color indices were calculated as

Mg − Mi = (mg − mi) − (extg − exti) − (Kg(z) − Ki(z)),

where mg and mi are the visual stellar magnitude in g- and
i-band; extg and exti the Galactic absorption in g- and i-band; and
Kg(z) and Ki(z) the k-correction in g- and i-band, respectively.

A ternary morphological classification with the method of
multi-parametric diagrams (in-box classification) does not attain
a reasonable accuracy to classify spiral galaxies of S a−S cd type
(see Sect. 1, and Dobrycheva et al. 2015, 2018; Vavilova et al.
2020a). To verify the various supervised machine learning meth-
ods we decided to provide a binary automated morphological
classification: early-type galaxies E, from ellipticals to lenticu-
lars; late-type galaxies L, from S0a − Sdm to irregular Im/BCG
galaxies.

2.2. Training samples

The supervised machine learning methods are used in the search
for a relationship between the input and output data, in our case,
between features of galaxies (photometric parameters) and their
morphological types. A training sample should represent these

Fig. 2. Distribution of the morphological types (early in red, late in blue)
depending on the photometric parameters: (left panel) color indices
Mg − Mi, (right panel) inverse concentration index R50/R90) for the
training sample of 6163 galaxies as in Fig. 1.

features as much as possible, allowing us to generalize and to
build the model for predicting the target variables (see, e.g.,
Kremer et al. 2017). That is why our first step before applying
the machine learning methods was to compose a good quality
training sample.

We visually identified the morphological types (E and L)
of 6163 galaxies from the sample described in Sect. 2.1, which
were randomly selected at different redshifts and with different
luminosity. This is ∼2% of the total number of the studied galaxy
sample. We used images from multiple bands for the visual clas-
sification.

To eliminate the human error factor, cross-validation of the
same galaxies for their types and morphological features was
performed by the authors of this paper. To label the galaxy
types at different redshifts in the case of disputable visual clas-
sification, we took into account their spectral data for addi-
tional clarification (e.g., the presence of a strong emission line
Hα for the spiral galaxy SDSS J124332.66+172004.3 at z =
0.02 and an absorption line Hβ for the elliptical galaxy SDSS
J155947.57+263334.4 at z = 0.09).

Using one of the three color indices and such parame-
ters as the inverse concentration index, absolute stellar magni-
tude, de Vaucouleurs radius, and scale radius (color − R50/R90,
color − Mr, color − deVRadr, and color − expRadr diagrams,
respectively), it is possible to carry out a reliable preliminary
morphological classification without invoking visual inspection.
The dependence of the color indices and the parameter R50/R90
gives the best fit because the parameter values do not depend on
the radial galaxy velocity and because the selection effects are
avoided (Dobrycheva & Melnyk 2012). As an example, see the
diagram of inverse concentration indexes R50/R90 as a function
of color indices g − i for 6163 galaxies of the training sample,
which is shown in Fig. 1. It demonstrates a good separation into
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the early and late galaxy types (Fig. 2) and also reveals the well-
known effect of color indices bimodality (Balogh et al. 2004).
The overlap of morphological types in the range of Mg−Mi from
1.1 to 1.3 is still substantial and will be discussed in Sect. 5.

3. Supervised machine learning methods and

morphological classification

The learning can be supervised, semi-supervised, unsupervised,
and reinforced (Burkov 2019). In our work we only used the
supervised methods where the data set is a collection of the
labeled examples (xi, yi)N

i=1.
In our case each element xi among N is a galaxy feature

vector, where each dimension j = 1, . . . ,D contains a value
that describes yi. That value is called a feature and is denoted
as x( j). For instance, if each example x in our collection repre-
sents a galaxy, then the first feature, x(1), could contain abso-
lute magnitude Mu, the second feature, x(2), could contain color
indices Mu − Mr, and x(3) could contain the inverse concentra-
tion index R50/R90. Summing up, there are absolute magnitudes
Mu,Mg,Mr,Mi,Mz; color indices Mu − Mr,Mg − Mi,Mr − Mz;
and inverse concentration indexes R50/R90 to the center. For all
examples in the data set, the feature at position j in the feature
vector always contains the same kind of information. This means
that if x

(2)
i

contains color indices Mu − Mr for some example xi,
then x

(2)
k

will also contain color indices Mu−Mr in each example
xk, k = 1, . . . ,N. The label yi can be either an element belonging
to a finite set of classes 1, 2, . . . ,T , or a real number, or a more
complex structure, like a vector, a matrix, a tree, or a graph. In
our work we only have two classes, E and L, where E means the
early-type galaxy and L means the late morphological type.

The goal of a supervised learning algorithm is to use the data
set to produce a model that takes a feature vector x as input, and
outputs information that allows us to deduce the label for this
feature vector. For instance, the model with a data set of galaxies
could take a feature vector describing the morphological type of
galaxy as the input information and a probability that the galaxy
has E or L morphological type as the output information.

Using the Scikit-Learn machine learning library (ver. 0.2.2
for the Python programming language (Pedregosa et al. 2011),
which is a simple tool for data mining and data analysis (see,
e.g., Ivezic et al. 2014), we trained naive Bayes, random forest,
support-vector machine, k-nearest neighbors, and logistic regres-
sion. To train the classifier we used the absolute magnitudes
Mu,Mg,Mr,Mi,Mz; color indices Mu − Mr,Mg − Mi,Mr − Mz;
and the inverse concentration index R50/R90 (Sect. 2.2).

3.1. Naive Bayes

The naive Bayes classifiers are based on the Bayes theorem and
conditional independence of the features to calculate the prob-
ability of class G (in our case it is a morphological type of
galaxies) with a given feature vector (set of galaxy attributes)
X = (x1, . . . , xi):

p(G|X) =
p(G)p(X|G)

p(X)
.

If we accept the conditional independence assumption,
instead of computing the class-conditional probability for each
combination of X, we only have to estimate the conditional prob-
ability of each xi, given G. To classify a test record, the naive

Bayes computes the posterior probability for each class G:

p(G|X) =
p(G)

∏n
i=1 p(xi|G)

p(X)
.

3.2. Random forest

The random forest (RF) classifiers works as follows. The training
sample contains N objects whose dimension of objects feature is
M (Mu,Mg,Mr,Mi,Mz,Mu−Mr,Mg−Mi,Mr−Mz, inverse con-
centration indexes R50/R90 to the center) and the parameter m

is given (usually m =
√

M) as an incomplete number of traits
for training. Then we build the committee tree; the most com-
mon way is as follows. First, we generate a random subsample
with size N likely in the training sample. Thus, some objects
will hit two or more times, and on average N(1 − 1/N)N , and
approximately N/e objects will not hit at all. Next, we construct
the decision tree that classifies the objects in this subsample.
The next node of the tree in the process of creating will use not
all M objects features, but only m, which are randomly chosen.
Finally, we develop the tree up to the complete exhaustion of the
subsample.

The classification of objects is conducted by voting: each tree
of the committee puts the object into one of the classes, and the
class wins if it has the most significant number of trees voted
(Breiman 2001). In our case the forest consisted of 500 trees and
the maximum depth of the tree was equal to 11.

3.3. Support-vector machine

We get a training data set of n points of the form
(x1, y1), . . . , (xn, yn), where yi is either 1 or −1 (in our work it is
E or L morphological type of the galaxy). Each point indicates
to which type the point xi belongs (set of attributes of galax-
ies). Each xi is a p-dimensional real vector. We should find the
“maximum-margin hyperplane” that divides the group of points
xi, for which yi = 1, from the group of points, for which yi = −1
is defined in such a manner that the distance between the hyper-
plane and the nearest point xi from either group is maximized.
Any hyperplane can be written as the set of points xi satisfy-
ing wixi − b = 0, where wi is the normal vector (not necessarily
normalized) to the hyperplane. It is more likely Hesse’s normal
form, except that wi is not necessarily a unit vector. The param-
eter b

‖w‖ determines the offset of the hyperplane from the origin
along the normal vector w (VanderPlas 2016; Cortes & Vapnik
1995).

We used the support-vector machine (SVM) with radial basis
function kernel without limit on the number of iterations until
the condition of the solution is fulfilled. The inverse of regular-
ization strength index C was equal to 78 (smaller values specify
stronger regularization). The parameter gamma was defined as
“scale” by default.

3.4. K-nearest neighbors

The classifier based on k-nearest neighbors (k-NN) is an example
of the most straightforward machine learning algorithm. It does
not create class-dividing functions, but remembers the position
of training sample objects in the hyperspace of features. This
method’s disadvantage is that its productivity linearly depends
on the size of the training sample, the dependence on metrics,
and the difficulty in selecting statistical weight. To implement
this method it is enough to choose the number of neighbors
(k, the distance metric), find the k-nearest neighbors in this
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Fig. 3. Diagram of color indices g− i and inverse concentration indexes
R50/R90 of 316 031 galaxies at z < 0.1 from the SDSS DR9 after
applying the support-vector machine (SVM) method: red for early E
types (from elliptical to lenticular) and blue for late L types (from S0a
to irregular Im/BCG). The color bar from 0 to 1 shows the SVM prob-
ability to classify galaxy as late to early morphological types.

Table 1. Accuracy (in %) of the supervised machine learning methods
for the automated binary morphological classification of galaxies from
the SDSS DR9 at z < 0.1 (total, for early E and late L morphological
types, rms error)

Classifier vs. accuracy Total E type L type Error

Naive Bayes 89.0 92.0 82.0 ±1.0
K-nearest neighbors 94.5 93.9 95.8 ±0.6
Logistic regression 94.9 96.8 91.1 ±0.6
Random forest 95.5 96.7 92.8 ±0.3
Support-vector machine 96.4 96.1 96.9 ±0.6

metric, and assign to the object the class of the largest number
of his neighbors. This method can be used not only for binary
classification. In this case, the neighbors can be assigned a sta-
tistical weight of 1/d, where d is the distance in the features’
hyperspace. This meter is also sensitive to normalization, as all
features must make the same contribution to the distance esti-
mation. Finding the number k is important because it allows
us to describe the model avoiding retraining and undertraining
(Raschka 2015). Depending on the metric of space, the distance
will be determined in different ways, for example, in Euclidean
space:

di, j =

√

∑

k

|xi − x j|2.

The setting of weights for neighbors is not significant in the case
of overnumbered galaxies in the training sample. We got the best
results if this classifier made a decision based on the 11 nearest
neighbors.

3.5. Logistic regression

In logistic regression (LR) we can model a morphological type
of galaxy yi as a linear function of xi. However, with a binary
yi this is not straightforward because wxi + b is a function that
spans from minus infinity to plus infinity, while yi has only two
possible values (Burkov 2019; Raschka 2015). For binary mor-
phological classification we define a negative label as 0 and a
positive label as 1, and we would need to find a simple continu-
ous function whose codomain is (0, 1). In this case if the value

Fig. 4. Distribution of the morphological types (early in red, late in blue)
in dependence on the color indices Mg−Mi (top) and inverse concentra-
tion index R50/R90 (bottom) for the main sample of 316 031 galaxies
as in Fig. 3.

returned by the model for input x is closer to 0, then we assign a
negative label to x; otherwise, the example is labeled as positive.
One function that has such a property is the standard logistic
function (also known as the sigmoid function):

f (x) =
1

1 + e−x
.

The inverse of regularization strength index C in our work
was equal to 6.

4. Results

We used the method of k-folds validation to estimate the accuracy.
Specifically, we divided the sample into randomly selected five
batches, one by one, four of which served as the training and one
as the test sample. This procedure was repeated five times, and
the classification accuracy was defined as the average of the test
samples. We set aside 20% of the training sample to verify the
accuracy of predicting morphological types with Python. As the
next step, we used the k-folds validation to predict the types in
this delayed valid sample used to verify the method’s accuracy.

We consider the accuracy change as a function of the sample
size: if this function attains a higher level, an existing set of the
training data is enough. However, if the accuracy continues to
grow, most likely it will not hurt to increase the amount of train-
ing data. To evaluate the accuracy of the methods, we performed
the following procedures for a test sample of N = 6163 galaxies
with Python software. First we divided the training sample into
subsamples, changing the proportions between the sizes of train-
ing and test samples. Then we randomly repeated the procedure
ten times for the formation of each subsample. Next we ran these
subsamples with the Scikit-learn machine learning with Python
for all the methods and determined their accuracy.
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Fig. 5. Verification of whether there are enough galaxies in a training
sample to build a machine learning model. The green line (support-
vector machine), the red line (random forest), the pink line (logistic
regression), the blue line (k-nearest neighbors), and the orange line
(naive Bayes) show the average accuracy of ten repetitions of the eval-
uation procedure in Scikit-learn machine learning with Python.

It turned out that support-vector machine and random forest
classifiers provide the highest accuracy of the automated binary
galaxy morphological classification: 96.4% correctly classified
(96.1% E and 96.9% L) and 95.5% correctly classified (96.7%
E and 92.8% L), respectively (Table 1).

As a result, using the data on the absolute stellar magnitudes,
color indices, and inverse concentration indexes, and coaching
by support-vector machine classifier to galaxies with visual mor-
phological types, we applied these criteria to the studied sample
of N = 316 031 galaxies with unknown types. We got the fol-
lowing classifications: 139 659 early E types and 176 372 late L
morphological types (Fig. 3). The diagrams are given in (Fig. 4).

The verification of the methods whether there are enough
galaxies in a training sample to build a machine learning model
is demonstrated in Fig. 5.

The results obtained for each method’s ability to accurately
determine the morphological type of the galaxy can be easily
illustrated graphically (Fig. 6). We consider the probability of
finding the position of each galaxy (point on the graph) on the
hyper-plane of two parameters (inverse concentration index and
one of the color indices) for each of the used machine learning
methods (Table 1). In each of the panels in Fig. 6 the input data
from the training sample is embedded as in Fig. 1 (6163 galaxies
randomly selected with different redshifts and luminosity from
the SDSS DR9): red corresponds to the early morphological
type, blue to the late-type galaxies. This visualization helps to
analyze a tuning of the studied machine learning algorithms to
classify the galaxy types.

5. Discussion

Various machine learning methods are helpful not only for the
classification of objects by morphological features of celestial
bodies. They are sufficient for reconstruction of the Zone of
Avoidance (Vavilova et al. 2018), finding gamma-ray sources for
the upcoming Cherenkov Telescope Array (Bieker 2018), spatio-
temporal data (Wang et al. 2019), classification of variable stars
light curves (Kim & Bailer-Jones 2016) and light-curve shape
of a Type Ia supernova (Stahl et al. 2020), determination of
the distance modulus for local galaxies (Elyiv et al. 2020) and

Fig. 6. Probability distribution for finding the position of each galaxy on
the hyper-plane of two photometric parameters R50/R90 vs. Mg − Mi.
The training sample (Fig. 1) is embedded in each of the panels, which
shows the effectiveness of the methods used to classify galaxy types at
z < 0.1. The accuracy of each applied machine learning method for the
two-parameter classification is written in the left corner of each panel.

photometric redshift estimation (Mu et al. 2020), prediction of
galaxy halo masses (Calderon & Berlind 2019), gravitational
lenses search (Khramtsov et al. 2019a), automating discovery
and classification of variable stars (Bloom et al. 2012), and for
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analyzing huge observational surveys, for example the Zwicky
Transient Facility (Mahabal et al. 2019), or finding planets and
exocomets from the Kepler and TESS surveys (Kohler 2018).

Among other recent examples, we also note the determina-
tion of physical properties of galaxies (density, metallicity, col-
umn density, ionization) from their emission-line spectra with
support-vector machine algorithms employed and developed in
a new GAME numerical code by Ucci et al. (2017); predic-
tion of the HI content of massive galaxies at z < 2 based on
optical photometry data (SDSS) and environmental parameters,
which was performed by Rafieferantsoa et al. (2018) with regres-
sors and deep neural network (see also examples of applica-
tions of the AstroML Python module 5 for the large-scale obser-
vational extragalactic surveys3). In addition to the traditional
approach for classifying the galaxy types automatically in the
optical range, the machine learning methods also demonstrate a
strong utility for classifying the radio galaxy types and peculiar-
ities (Aniyan & Thorat 2017; Alger et al. 2018; Wagner et al.
2019; Lukic et al. 2019; Ralph et al. 2019).

When implementing machine learning methods for different
astronomical tasks it is very useful to discuss their advantages
and problem points, data quality regularity, and flexibility of the
classification pipeline.

5.1. Several problem points of the supervised machine
learning methods and data quality for the automated
morphological classification of galaxies from the SDSS

The main problems of machine learning related to the morpho-
logical classification can be divided into two categories. The first
concerns a sample preparation, which includes determining the
parameters that are the best for dividing objects into classes,
selecting a homogeneous data set for classification parameters,
creating a sub-directory for training algorithms, cleaning the
sublist of undesired (misclassified) objects, determining the most
effective methods for the decision making, and selecting the best
machine learning features to build training sample. The second
category includes problems related to the individual peculiarities
of selected objects and the quality of the image, the photometry,
and the spectrum galaxy data.

Selection of the best parameters of machine learning for
training. To determine the training parameters, we need the rela-
tionship between the model’s accuracy in training and test sam-
ples. In other words, we must choose parameters in such a way
that (a) the accuracy of the test sample is as high as possible,
(b) the accuracy of the methods applied to the training sample
should not attain 100% value to avoid overfitting (see, e.g., the
figures on the prediction accuracy by Vasylenko et al. 2019),
and (c) the difference in accuracy between the test and training
samples is minimal. However, these requirements do not always
coincide simultaneously. So, the averaged values of the training
and test samples’ accuracy ratios should be analyzed for a larger
number of cycles to determine the best parameters.

To select the optimal parameters, we applied the Grid-
SearchCV tool from the Scikit-learn library and the balanced
class scales for the classifiers, except for the Gaussian naive
Bayes. The balanced mode in models uses the values to auto-
matically adjust the weights, which are inversely proportional to
the input data’s class frequencies.

Features of galaxies, which are the best fitted for the
morphology classification into types. To determine these

3 https://www.astroml.org

Fig. 7. Estimation of the relative importance of some photometric
parameters for the random forest classifier of galaxies from the SDSS.
The training sample contains 11 000 galaxies. Parameters with the
highest values correspond to the most significant parameters: deVABu,
deVABg, deVABr, deVABi, deVABz for the de Vaucouleurs radius fit
b/a in different bands; expABu, expABg, expABr, expABi, expABz

for the exponential fit b/a in different bands; z for redshift; Mu − Mr,
Mg − Mi, Mr − Mz for the color indices; Mu, Mg, Mr, Mi, Mz for the
absolute magnitudes, and R50/R90 for the inverse concentration index
to the center.

photometry parameters, we need (a) to create a small homoge-
neous galaxy sample for training, where all the data sets have
certain types available in the database; (b) to test these param-
eters using, for example, the Fisher method for evaluating the
significance of these features (Fig. 7); and (c) to determine the
distribution of galaxies of different types at different redshifts
selecting sets of benchmarks by analyzing slices for one or sev-
eral parameters.

We can see in Fig. 7 that the higher relative importance
among photometric parameters, which correlate with morphol-
ogy, have the color indices Mu − Mr, Mg − Mi, Mr − Mz, and
inverse concentration index to the center R50/R90. Other fea-
tures such as absolute magnitudes Mu, Mg, Mr, Mi, Mz; expo-
nential fits b/a in different bands expABu, expABg, expABr,
expABi, expABz; de Vaucouleurs radius fits b/a in differ-
ent bands deVABu, deVABg, deVABr, deVABi, deVABz; and
redshift z are less important. We verified that inclusion of
exponential fits, de Vaucouleurs radius fits, and redshifts as the
additional features of galaxies does not increase the accuracy
of machine learning methods applied to the training sample of
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Fig. 8. Examples of images of galaxies from the SDSS DR9 at z < 0.1
classified correctly as early E and late L types.

11 301 galaxies. This is 83.6% when they are also included (see
Table 2 for SVM classifier). We did not use them, and this
allowed us to also reduce the computational cost.

Image–photometry–spectrum quality of the data. The
examples of images of galaxies, which are correctly classified
into early and late types, are given in Fig. 8. The problem
points of the SDSS galaxy data, which led to their morphol-
ogy misclassification, are as follows (Fig. 9): (1) interacting
galaxies (Fig. 9a), (2) background galaxy (Fig. 9b), (3) stars
covering the galaxy image (Fig. 9c), (4) artifacts (diffraction,
satellites) (Fig. 9d), (5) red spiral galaxies or 6) galaxies with
a bright nucleus (Fig. 9f), (7) bad background, (8) dim objects
(low signal-to-noise ratio), (9) face-on and edge-on galaxies
(Figs. 9g, h), and 10) “false” objects, such as gravitational lenses.
(Fig. 9e). These objects can be simply identified and deleted
at the step of building the finest quality training sample (see
Sect. 2.2).

We also used the spectra in combination with image and
photometry data in several questionable cases for the face-on
spirals, lenticulars, and E0-E1 type galaxies to train classifiers
(for instance, SDSS J124332.66+172004.3, SDSSJ155947.57+
263334.4). Nevertheless, we conclude that such morphologically
misclassified objects contribute ∼1% error in the classification of
a general galaxy sample (see also Kasivajhula et al. 2007).

(a) Interacting galaxy
RA=206.6429, DEC=60.3069,
z=0.072

(b) Background galaxy
RA=205.6965, DEC=26.3649,
z=0.064

(c) Stars overlapping the galaxy
image RA=246.6660,
DEC=40.4781, z=0.034

(d) Artifacts
RA=252.1989, DEC=26.9678,
z=0.054

(e) Gravitational lens
RA=233.9972, DEC=4.6089,
z=0.032

(f) Face-on spiral galaxy with
a bright nucleus, RA=176.5507,
DEC=20.3916, z=0.023

(g) Ultra-flat spiral galaxy
RA=227.72756,
DEC=5.72077, z=0.02211

(h) Edge-on spiral galaxy with
a bright bulge, RA=168.71352,
DEC=35.50226, z=0.021

Fig. 9. Examples of images of galaxies from the SDSS DR9 at z <
0.1, when the morphological types can be misclassified in the machine
learning pipeline.

Human labeling (HL) was the only way to determine the
morphological types of galaxies until the advent of the big data
era (see, e.g., references on the early and modern galaxy surveys
and catalogs in our review Vavilova et al. 2020b).

Among the works with 100% successful visual inspection
that led to the discovery and cataloging of galaxies with types
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Fig. 10. Confusion matrices after cross-matching of the studied samples
and GZoo2: HL – 4834 galaxies from training sample; SVM – ∼173 000
galaxies with the support-vector machine classifier: E, early-type galax-
ies; L, late-type galaxies; green, galaxies that have the same type in both
samples; red, galaxies where the types did not match.

that do not fit into classical morphological schemes are on the
interacting galaxies, galaxies with excess radiation in certain
spectral ranges, compact galaxies, galaxies of low and high
surface brightness, and others. For example, the use of the
catalogs of galaxies of low surface brightness (dwarfs and nor-
mal) based on visual inspection, even in the absence of data on
redshifts, made it possible to determine their role in the large-
scale structure of normal galaxies in the Local Supercluster (see,
e.g., Karachentseva & Vavilova 1994, 1995; Lisker et al. 2008;
Miskolczi et al. 2011; Paudel et al. 2018).

Even though visual inspection of galaxies is becoming pro-
hibitively time-consuming, the human labeling method remains
a necessary classifier of morphological types both when compil-
ing small samples of galaxies for solving various astrophysical
and astrochemical tasks (Pilyugin et al. 2018; Du et al. 2019;
Martin et al. 2020), and for building the training samples in tasks
of automated classification.

Under these circumstances, we paid special attention to the
labeling and cross-validation of the same galaxies from the train-
ing sample. As we mentioned in Sect. 2.2, it was performed by
the authors.

At the same time, following works by Willett et al. (2013),
Kuminski & Shamir (2016), and Beck et al. (2018) mentioned
in the Introduction, we compared our results and the debi-
ased GZoo2 data trying to take into account all the differ-
ences in approach to the labeling of morphological features of
galaxies.

With this aim, we cross-matched 316 031 galaxies and their
morphological types obtained by the support-vector machine
with the GZoo2 data, which yielded ∼173 000 galaxies (SVM
and GZoo2 in Fig. 10). The accuracy is 69.7%. We also cross-
matched 6 163 galaxies from the training sample (HL in Fig. 10)
with the GZoo2 data, which yielded 4834 common galaxies. The
accuracy is 72.2%. The coordinate error for cross-matching in
both cases is dRA,Dec ≤ 1′′.

The similarity of accuracy values indicates, first of all,
that both support-vector machine and human labeling manage
equally well when we use the photometry-based approach to
compare our binary classification with the GZoo2 data. Second,
the Fig. 10 highlights a different approach to the visual labeling
of galaxies by morphological types for our galaxy sample and
the GZoo2 sample. The confusion matrices allow us to under-
stand the differences in this labeling: the left panel demonstrates
to what extent our visual classification (HL) of galaxies from
the training sample coincides with the GZoo2 classification; the
right panel gives information to what extent the automated clas-
sification with the support-vector machine (SVM) coincides with
the GZoo2 classification. The percentage of the samples that do
not coincide is about 30% in both cases.

For this reason, we decided to determine the main photo-
metric parameters used in our work (color indices Mg − Mi and
inverse concentration index R50/R90) for the ∼173 000 matched
galaxies from the GZoo2. We can see in Figs. 11 and 12 that the

Fig. 11. Distribution of ∼173 000 galaxies at z < 0.1 from the GZoo2
on the plane of photometric parameters of color indices g− i and inverse
concentration indexes R50/R90: early (red) and late (blue) morpholog-
ical types are from the GZoo2 labeling.

Fig. 12. Distribution of the morphological types (early, red; late, blue)
in dependence on the photometric parameters: color indices Mg − Mi

(top) and inverse concentration index R50/R90 (bottom) for the GZoo2
sample of ∼173 000 galaxies, as in Fig. 11.

dispersion in the data of the GZoo2 sample is more extensive
compared with our studied sample (Fig. 2). First of all, there is a
strong asymmetry by the photometric parameters: the bimodal-
ity in distribution of early (red) and late (blue) morphological
types for our sample (Fig. 2) and the blur in distribution by types
(no bimodality) for the GZoo2 data (Fig. 12). Secondly, there is
a bigger overlap of the early- and late-type galaxies. This asym-
metry confirms that galaxies of the same type were labeled dif-
ferently in the two samples.

To analyze this case we selected randomly 5% of the 173 000
matched galaxies (∼8500) and applied the support-vector
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machine classifier to this GZoo2 sample. We used the mor-
phological types labeled by GZoo2 volunteers and photometric
parameters adopted in our study. The obtained accuracy is 76%.
As can be seen in Fig. 11, the GZoo2 morphological classifi-
cation is not as efficient when we apply our photometric crite-
ria (Sect. 2.1 and Fig. 7). The drop in the accuracy can arise
due to the inconsistency regarding human labeling in our clas-
sification and that of GZoo2. One of the partial reasons can be
the attribution of irregular galaxies in GZoo2, which have red-
der color indices, to the elliptical (early-type) galaxies, and vice
versa, elliptical galaxies with the bluer color indices to the spiral
(late-type) galaxies.

The detailed comparison of these features is not the purpose
of this article; however, this labeling bias means that we cannot
get an accuracy significantly exceeding 76% when we use the
GZoo2 data as a training sample for machine learning with the
photometry-based approach.

We find that the morphology based on the supervised
machine learning methods trained over photometric parameters
demonstrates significantly less bias than morphology based on
citizen-science classifiers. This conclusion is in agreement with
the results by Cabrera-Vives et al. (2018), who found that “this
result holds even when there is underlying bias present in the
training sets used in the supervised machine learning process”.

5.2. Comparison of the supervised machine learning
methods for the automated morphological classification
of galaxies

Accuracy of the methods as a function of redshift. We esti-
mated the prediction of galaxy morphological type in depen-
dence on the redshift by five supervised machine learning
techniques.

We tested the dependencies with equal binning δz = 0.008
by redshift and when each redshift bin contains the same number
of galaxies (left and right panels, respectively, in Fig. 13). Each
point in each bin in this figure shows the absolute number of
coincident morphological types of galaxies at a given redshift
interval.

We can see in Fig. 13 that random forest and logistic regres-
sion give higher averaged accuracy (green lines) for all intervals
of redshifts. Our calculations also demonstrate that random for-
est clearly gives the highest accuracy (95%) for the nearby galax-
ies (see Sect. 3.2). The support-vector machine and k-nearest
neighbors have, on average, good results for all morphologi-
cal types, on a par with the other supervised machine learning
methods which have slightly higher accuracy of determining the
early galaxy type for all intervals of redshifts than for the late
galaxy type (see also tuning for all these methods in Fig. 6).

So, we did not find a dependence on the redshift for the accu-
racy of supervised machine learning methods to determine the
morphological type of galaxies from the SDSS at z < 0.1. But it
must be remembered that a well-formed representation of galax-
ies at all redshifts in the training sample plays a key role in the
absence of this dependence.

The overlap of the types in range of Mg − Mi from 1.1
to 1.3. The aforementioned misclassification error related to
the image–photometry–spectrum quality of the data (Sect. 5.1)
is the same when we make a decision on how to recognize
morphological types of galaxies in a region, where their photom-
etry parameters are overlapping (see Fig. 1 for training and Fig. 3
for the main samples) in the region of Mg − Mi from 1.1 to 1.3.
Should we select only morphologically well-defined objects to

Fig. 13. Accuracy of each of the supervised machine learning methods
to determine the morphological type of galaxies from the SDSS at z <
0.1 as a function of redshift (late type, blue; early type, red; averaged
accuracy, green). Left panel: uniform binning by redshift (EZ) with δz =
0.008; right panel: each bin contains the same number of galaxies (EN).
Only the tops of the histograms are shown.

avoid visual classification errors? or add poorly classified objects
in the hope of finding more subtle features for each morpholog-
ical type?

To answer these questions we added ∼5000 galaxies from
this region into the training sample. They were selected by
the ability to determine a certain binary morphological type
(50 ± 5%) with support-vector machine classifier. This allowed
us to test accuracy changes and to define benefits from such a
tuning (see also Fig. 6 for this method in a range of color indices
from 1.0 to 1.3). We can see in Table 2 that such an approach
worsened the accuracy results of the classification (for compari-
son, see Table 1). The reason is that the training sample becomes
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Table 2. Accuracy (in %) of the supervised machine learning methods
for the automated binary morphological classification (total, for early
E and late L morphological types, rms error) of modified training sam-
ple of 11301 galaxies from the SDSS DR9 at z < 0.1 (region with the
overlap of types in Figs. 1 and 3).

Classifier vs. accuracy Total E type L type Error

Naive Bayes 66.8 64.1 70.4 ±1.2
K-nearest neighbors 79.4 80.3 78.6 ±0.7
Logistic regression 81.9 83.9 80.3 ±0.3
Random forest 82.4 87.6 78.6 ±0.4
Support-vector machine 84.3 89.0 80.6 ±0.5

(a) J090817.46+212636.0,

z= 0.009026
(b) J082708.18+274837.6,

z= 0.020330

Fig. 14. Examples of the SDSS galaxies illustrating the overlap of the
early and late morphological types: (left) NGC 2764 (lenticular), which
is the HI-rich early-type galaxy; (right) HI-poor spiral galaxy (Sc type).
(a) J090817.46+212636.0, z = 0.009026. (b) J082708.18+274837.6,
z = 0.020330.

subjective depending on the human labeling rather than on the
parameters for machine learning classifiers (see also Sect. 5.1 on
human labeling).

Most of the galaxies with misclassified types are related
to the bluer HI-rich galaxies of early-type galaxies (Fig. 14a)
and to the redder HI-poor spiral galaxies (Fig. 14b, which are
labeled as early type galaxy in GZoo2). As well, there are pop-
ulations of HI-rich spirals having very red integrated colors
indistinguishable from those for elliptical and lenticular galaxies
(Schommer & Bothun 1983) and the so-called “anemic” (van
den Bergh 1991) or “passive” spirals, which have spiral mor-
phologies, but do not show star formation activity. For the lat-
ter case, we note the work by Goto et al. (2003) for a study of
25 813 SDSS galaxies at 0.05 < z < 0.1. These galaxies can be
considered a transition population between early-type galaxies
at low redshifts and late-type galaxies in higher redshift clus-
ters (0.2 < z < 0.5). The population of such spirals with the high
level of dust extinction is more numerous in these clusters (Bekki
& Couch 2010). So, the major or minor mergers can influence
the age distribution of stars making their red disks observable
(see, e.g., Davidge et al. 2012 for an explanation of this case for
spiral M31). In addition, the star formation in early-type galaxies
determined in HI content (see Grossi et al. 2009; Nyland et al.
2017; Yıldız et al. 2020) causes their color indices to turn bluer
in the optical range. So, only the spectral data may serve arbi-
trarily to distinguish these misclassified morphological types.

Edge-on and face-on galaxies.We used the Revised Flat
Galaxy Catalogue (RFGC) with 4444 galaxies (Karachentsev

Table 3. Accuracy for edge-on galaxies from the RFGC catalog to be
classified as the late morphological types by the machine learning meth-
ods and multi-parametric diagram.

Classifier Accuracy, %

Multi-parametric diagram 54.4
Naive Bayes 70.2
K-nearest neighbors 61.6
Logistic regression 71.6
Random forest 77.2
Support-vector machine 63.3

et al. 1999) and the Two-Micron Flat Galaxy Catalogue (2MFGC)
with 18 020 galaxies (Mitronova & Korotkova 2015) (1) for cross-
verification of the edge-on galaxies from our sample, which
should be recognized as the late-type spirals and never as the
ellipticals, and (2) for an analysis of a contribution of this error
type into the accuracy of the applied machine learning meth-
ods. The RFGC gives the data on coordinates, axis ratio, posi-
tion angles, and names of galaxies (including the names in the
Principal Galaxy Catalogue; Paturel et al. 1989), but does not
contain information on the radial velocities or redshifts. After
cross-matching, our sample contains 934 flat galaxies from the
RFGC as well as 3143 galaxies from the 2MFGC.

We estimated the accuracy of an edge-on galaxy to be clas-
sified as a late morphological type by five machine learning
techniques and the multi-parametric method. We can see in
Table 3 that random forest and logistic regression give the high-
est mean accuracy. More importantly, this accuracy is 86% for
naive Bayes and 72% for logistic regression for edge-on galax-
ies at z ≤ 0.05 and ∼50% for random forest and support-vector
machine at z > 0.05. As a result for these samples (galaxies from
RFGC and 2MFGC), we conclude that all five machine learning
techniques and multi-parametric diagrams provide the correctly
classified edge-on types for 2/3 of the total samples of galaxies.
This error is mostly related to the galaxies at very low redshifts
(see Fig. 9h).

Edge-on galaxies are not the only ones that contribute errors in
the accuracy of determining morphological type based on the pho-
tometric parameters. Some inconsistencies can also be explained
by such factors as errors in determining the type of galaxies seen
face-on (especially with a pronounced bulge, see Fig. 9f) or the
evolutionary peculiarities of blue early-type galaxies (Fig. 14a).
Altogether they complicate the biasing of results requiring more
time for verification than the human labeling. For the first notice,
we recommend a paper by Lingard et al. (2020), who developed
a novel method, Galaxy Zoo Builder, which works well with
face-on galaxy image modeling based on the four-component
photometric decomposition of spiral galaxies. The second notice
related to the transformation from disk to elliptical morphology
of low redshift galaxies is well described by Schawinski et al.
(2014), who used SDSS, GALEX, and GZ data.

A separate case of flat galaxies are the bulge-less (ultra-flat)
galaxies with inclination 87◦ ÷ 90◦ for seen edge-on (Fig. 9g)
and 10◦ ÷ 0◦ for seen face-on. One of the criteria is the major-
to-minor diameter ratio in blue (a/b)B ≥ 7 (as for the RFGC,
where the fraction of ultra-flat galaxies is ∼19%). We note that
most of these galaxies look, on average, almost two times thin-
ner in the Hα filter than those in the red continuum (Kaisin et al.
2020). A less stringent criterion (a/b)B ≥ 3 was used in com-
piling catalogs of SDSS galaxies with a bulge to super-thin ones
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(Kautsch et al. 2006; Bizyaev et al. 2014). The face-on bulge-
less galaxies can be considered counterparts to the edge-on
disk galaxies giving additional information on their parameters,
including photometry, hidden by the projection effect. These
objects can be correctly and easily classified as late-type spirals
at the stage of training sample building.

At the same time, the results of applying the deep convo-
lutional neural network to the images of our studied sample
(Khramtsov et al. 2019b, 2020) with the same aim of a binary
morphological classification have shown limitations. Specifi-
cally, deep learning methods can classify rounded sources as
ellipticals, but it cannot catch the spectral energy distribution
properties of galaxies more clearly than support-vector machine
methods trained on the photometric features of galaxies.

Generally, we have overestimated the number of elliptical
galaxies and underestimated the number of spiral galaxies when
the face-on and edge-on galaxies are classified morphologically.
This problem can be decided when we form training samples
through several steps (pre-training, fine-tuning, and classifica-
tion). The steps of fine-tuning include (1) limitations on the axes-
ratio for elliptical galaxies, (2) additional photometry parameters
for the face-on spiral galaxies to estimate the bulge-to-disk ratio,
and (3) trainings with multi-band images and spectral features of
galaxies.

6. Conclusions

We presented the results of the automated morphological classifi-
cation of 316 031 galaxies from the SDSS with redshifts of 0.02 <
z < 0.1 and absolute stellar magnitudes of−24m < Mr < −19.4m.

Using the visual classification of galaxies and multi-
parametric diagrams color-Mr, color-R50/R90, color-deVRadr,
and color-expRadr, we found prominent criteria for separating
the galaxies into three classes: (1) early types, elliptical and
lenticular; (2) spirals S a − S cd, and (3) late spirals S d − S dm
and irregular Im/BCG types. Due to a low accuracy for the
S a − S cd types of galaxies, we concentrated our exploration of
the automated classification on two classes, E early and L late
types of galaxies.

We evaluated the accuracy of different supervised machine
learning methods to be applied to the binary automated morpho-
logical classification of galaxies (naive Bayes, random forest,
support-vector machine, logistic regression, and k-nearest neigh-
bors algorithm). To study the classifier, we used absolute mag-
nitudes Mu, Mg, Mr, Mi, Mz; color indices Mu − Mr, Mg − Mi,
Mu − Mgg, Mr − Mz; and the inverse concentration index to the
center R50/R90. We paid special attention to the training sample
building, which contains 2% of the main sample. To select the
optimal parameters, we applied the GridSearchCV tool from the
Scikit-learn library and the balanced class scales for the classi-
fiers, except for the Gaussian naive Bayes. The balanced mode in
the models uses the values to automatically adjust the weights,
which are inversely proportional to the input data’s class fre-
quencies. We proposed the visualization, which helps to analyze
a tuning of the studied machine learning algorithms to classify
galaxy types as a probability distribution in the hyper-plane of
the selected photometric parameters.

We obtained that methods of support-vector machine and
random forest with the Scikit-learn software machine learning
library in Python provide the highest accuracy for the binary
galaxy morphological classification with the photometry-based
approach. We found a success rate of 96.4% for support-vector
machine (96.1% early E and 96.9% late L types) and 95.5% for
random forest (96.7% early E and 92.8% late L types).

This allowed us to create a catalog of morphological types
of 316 031 galaxies from the SDSS at z < 0.1. Applying
the support-vector machine, we revealed 139 659 E-type and
176 372 L-type galaxies among them.

We cross-matched 316 031 galaxies and their morphological
types obtained by the support-vector machine with the GZoo2
data, which yielded ∼173 000 galaxies. The morphological types
labeled by GZoo2 volunteers were gone with our photometry-
based approach and demonstrated a labeling bias. The bimodal-
ity distribution by color indices was a key principle in our study.
We concluded that the GZoo2 as a training sample for machine
learning with the photometry-based main parameters cannot pro-
vide accuracy significantly exceeding 76%. So, the morphology
based on the supervised machine learning methods trained over
photometric parameters demonstrates significantly less bias than
morphology based on citizen-science classifiers.

We verified the dependencies of the accuracy of supervised
machine learning methods on the redshift, data quality, human
labeling bias (including the cases of edge-on and face-on galax-
ies), and overlap of different morphological types for galaxies
with the same color indices.

We did not find a dependence of the supervised machine
learning accuracy to predict galaxy morphological type on the
redshift. But it must be remembered that for the absence of this
dependence, a well-formed representation of galaxies at all red-
shifts in the training sample plays a key role. We checked the
overlap of the early and late galaxy types in range of Mg − Mi

from 1.1 to 1.3 for the studied sample and found that the pre-
diction of types becomes subjective depending on the human
labeling rather than on the parameters for machine learning clas-
sifiers. Most galaxies with misclassified types are related to the
bluer HI-rich galaxies of early-type galaxies and to the redder
HI-poor spiral galaxies.

An analysis of problem points showed that support-vector
machine and random forest are effective tools for the auto-
mated galaxy morphology classification based on the photomet-
ric parameters. Moreover, it once again confirmed that when the
relationships between the parameters for classification the more
complex, the more flexible model should be applied.

The image-based similarity learning approach with the use of
a convolutional neural network trained on the images of galaxies
from the studied sample matched in the GZoo2 data set will be
presented in our next paper by Khramtsov et al. (2020).
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