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Abstract

The emergence of drug-resistant bacteria threatens to catapult humanity back to the pre-antibiotic 

era. Even now, multi-drug-resistant bacterial infections annually result in millions of hospital 

days, billions in healthcare costs, and, most importantly, tens of thousands of lives lost. As many 

pharmaceutical companies have abandoned antibiotic development in search of more lucrative 

therapeutics, academic researchers are uniquely positioned to fill the resulting vacuum.

Traditional high-throughput screens and lead-optimization efforts are expensive and labor 

intensive. Computer-aided drug discovery techniques, which are cheaper and faster, can accelerate 

the identification of novel antibiotics in an academic setting, leading to improved hit rates and 

faster transitions to pre-clinical and clinical testing. The current review describes two machine-

learning techniques, neural networks and decision trees, that have been used to identify 

experimentally validated antibiotics. We conclude by describing the future directions of this 

exciting field.

Introduction

Addressing the threat of drug-resistant bacteria is one of modern medicine’s greatest 

challenges. The excitement surrounding Alexander Fleming’s discovery of penicillin in 

1928, which has rightfully been described as a “turning point in history” (1), was quickly 

followed by the disheartening realization that bacteria can mount a counterassault. 

Penicillinase, a β-lactamase capable of degrading penicillin, was identified even before 

penicillin had been applied clinically (2). Following widespread use in hospitals, 

sulfonamide-resistant S. pyogenes and penicillin-resistant S. aureus emerged in the 1930s (3) 

and 1940s (4), respectively. Many other bacterial strains have subsequently developed 

resistance, including some that are impervious to multiple antibiotics (1, 5).

In retrospect, this development is hardly surprising. Humans use hundreds of thousands of 

tons of antibiotics per year (6) for medical, veterinary, and agricultural purposes (5), thereby 

applying tremendous anthropogenic evolutionary pressure that favors resistance. Many 

resistance-conferring bacterial proteins existed even before the medical use of antibiotics 
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(7), and novel mutations in modern times have produced additional resistance genes. To 

complicate matters further, gene exchange, often plasmid mediated (8), is a “universal 

property of bacteria” (1) that does not respect even taxonomic and ecological boundaries (5), 

allowing resistance to spread quickly. As a single example of this phenomenon, consider the 

fact that 40–60% of nosocomial S. aureus in the U.S. and U.K. is now methicillin-resistant 

(MRSA), and many strains are multi-drug resistant (MDR) (5).

The economic and social burdens associated with treating resistant bacterial infections are 

substantial. Each year in Europe and the United States alone, these contagions result in ~11 

million additional hospital days and over $20 billion in additional health care costs (9, 10). 

Europe reports ~400,000 annual MDR infections that result in 25,000 deaths (9). While the 

development of novel therapeutics might initially appear to be profitable given the 

magnitude of the threat, in fact pharmaceutical companies have shied away from antibiotic 

development in recent years. New antibiotics are typically only used after more traditional 

medicines have failed. Rather than developing “drugs of last resort” with short-term utility, 

industry has shifted its focus to more lucrative long-term treatments to manage chronic 

conditions (10, 11).

A Unique Opportunity for Academia and Computer-Aided Drug Design

Given industry’s reluctance to develop novel antibiotics, academia is uniquely positioned to 

play a leading role in the earliest stages of lead identification and optimization (1). In 

response to this and other opportunities, academic drug-discovery centers have already been 

established at universities in Belgium, Sweden, the United Kingdom, and the United States 

(12). Success in these new settings depends on adapting industry approaches to the 

constraints of university research. For example, in industry high-throughput screens (HTS) 

are used to identify pharmacologically active lead antibiotic compounds by testing hundreds 

of thousands of compounds in highly automated assays (13, 14). Unfortunately, although 

robotics and miniaturization have led to increased efficiency, traditional HTS is beyond the 

reach of most academic researchers due to its high costs and labor requirements.

To make high-throughput testing more tractable, many have sought to complement large-

scale experimental testing with software that predicts molecular recognition (i.e., ligand 

binding). Computer-aided drug design (CADD) techniques, though still in their infancy, 

have already contributed to the discovery and development of a number of drugs, including 

captopril, dorzolamide, boceprevir, aliskiren, nelfinavir, saquinavir, zanamivir, oseltamivir, 

and raltegravir, among others (15). By applying predictive CADD techniques to entire 

compound databases, computational biologists can recommend sets of compounds that are 

typically far more likely to bind to a given antibiotic drug target than compounds selected at 

random, thus requiring fewer subsequent in vitro and in vivo experiments. Further 

compound optimization can then be performed to ensure that any identified hits are capable 

of traversing the bacterial cell wall to reach those targets, if necessary.

Both ligand- and receptor-based methods for predicting molecular recognition have been 

developed. Ligand-based methods (e.g., Quantitative Structure-Activity Relationships, or 

QSAR) seek to identify molecules that are similar to known binders by algorithmically 
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mapping small-molecule descriptors to biological activity, independent of the receptor (16). 

QSAR can be as simple as determining whether or not a candidate ligand is structurally 

similar to known binders (e.g., through substructure or Tanimoto similarity searching). In 

more complex implementations, mathematical/statistical analyses of the molecular 

properties of known binders (e.g., LogP, molecular weight, polarizability, etc.) are used to 

build predictive models that can then be applied to new compounds, including models that 

simultaneously predict ADMET/Tox properties (17–20) and activity against multiple 

bacterial strains (21, 22). Some QSAR approaches even align 3D models of known small-

molecule binders in order to find consistent patterns in the locations of key interacting 

groups (e.g., hydrogen-bond donors or acceptors, aromatic moieties, etc.). Novel compounds 

are then evaluated based on how well their 3D chemical configurations match these patterns, 

or pharmacophores (23, 24).

Receptor-based techniques, which require crystallographic, NMR, or homology models of 

the drug target (receptor), similarly seek to formulaically predict binding affinity. Rather 

than considering molecular descriptors, receptor-based approaches evaluate ligand-receptor 

interactions using “scoring functions.” If required, “docking programs” can be used to first 

predict the binding pose of a potential ligand within the drug-target binding pocket.

Notably, some receptor-centric scoring functions are generalized, meaning they can be 

applied to a novel drug target without any prior knowledge of specific ligands, though 

positive controls are certainly useful for pre-experimental validation. Furthermore, 

generalized docking/scoring protocols are arguably more likely to identify ligands that are 

structurally distinct from known binders, as they are not trained on a limited set of 

experimentally validated, target-specific modulators.

Machine Learning Applied to Computer-Aided Drug Design

Both ligand- and receptor-based techniques rely on intuitive, mathematical, or statistical 

“mappings” between 1) structural, molecular, or pharmacophoric data that can be evaluated 

in silico, and 2) experimentally verified enzymatic or biological activity. Traditional CADD 

techniques generally attempt to reduce binding to a single formulaic or statistical form, 

neglecting the subtle and perhaps nonlinear synergistic interplay between the many 

molecular factors that govern binding. In contrast, newer nonparametric machine-learning 

techniques learn directly from crystallographic and assay data without requiring explicit, 

programmatic instruction. They find patterns in observations of nature herself without the 

constraints of formulas or even human theories. By learning directly from the natural world, 

machine-learning techniques can often achieve accuracies not possible with more 

conventional approaches.

The remainder of this review describes specific antibiotic drug-discovery projects that have 

used advanced nonparametric machine-learning techniques to map chemical/binding 

properties (i.e., “descriptors”) to metrics of biological activity. We will focus on recent 

studies that have used neural networks or decision trees to identify potential antibiotics that 

were subsequently experimentally validated.
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Neural Networks Applied to Antibiotic Drug Discovery: Ligand-Based 

Approaches

Artificial neural networks (ANNs) attempt to mimic the cellular architecture of the brain. 

Neurons and synapses are represented by virtual “neurodes” and “connections,” 

respectively. Network behavior is governed by both neurode organization and connection 

strength. An initial training phase involves systematically modifying the strengths of the 

connections in order to optimize the network’s ability to accurately predict experimentally 

measured activities when given corresponding vectors of molecular, structural, or 

pharmacophoric descriptors. The trained networks can subsequently be used to predict the 

activity of other potential ligands not included in the training set (25–27).

In recent years, ANNs have been used in conjunction with ligand-based QSAR to identify 

novel antibiotics. A 2004 study by Murcia-Soler et al. (28) considered a diverse set of 217 

antibiotics spanning multiple classes and targets, as well as 216 decoys. This library of small 

molecules was divided into a training set (70%) and a testing set (30%). An ANN that 

mapped 62 structure-based molecular descriptors to the biological activity of the training-set 

compounds had an accuracy of 91.4% on the testing set, validating the network’s utility. The 

same descriptors were then generated for all the compounds of the Available Chemicals 

Directory and similarly fed into the trained ANN. Ten of the top predicted antibiotics were 

experimentally tested against both gram positive and gram negative bacteria (E. faecalis, S. 

aureus, E. coli, and P. aeruginosa). Of these, four had low micromolar potency against one 

or more strains, including one that was more effective against S. aureus and E. faecalis than 

the two known inhibitors included as positive controls (cephalosporin C and nalidixic acid).

In 2012, Sabet et al. (29) studied thirty-one 3-hydroxypyridine-4-one and 3-hydroxypyran-4-

one antibiotics, known chelators that act by depriving bacteria of iron cations. An ANN was 

trained to use bond-based physiochemical (MOLMAP) molecular descriptors to classify 

these 31 compounds by their experimentally determined MIC values. In conjunction with 

other techniques, this trained network was then used to prioritize 302 novel 3-

hydroxypyridine-4-one compounds. The ANN successfully predicted the activity of 84% of 

the 19 compounds ultimately tested; ten of these were able to kill S. aureus.

ANNs have also been used to identify novel bacteriocidal cationic peptides. In 2009, two 

similar papers were published describing the application of neural networks to peptide 

design (30, 31). Forty-four “atomic-resolution” descriptors were generated for ~1,400 

peptides, both active and inactive against P. aeruginosa. This data set was used to train a 

predictive ANN, which then prioritized 100,000 novel “virtual peptides.” Rather than 

selecting only the best of these 100,000 peptides, the researchers synthesized and tested 

compounds with a wide range of predicted potencies, allowing them to confirm that the 

QSAR scores and experimentally measured IC50 values were highly correlated. 

Furthermore, a number of the best predicted peptides were in fact effective against P. 

aeruginosa in the low micromolar range, more potent, even, than the best peptide from the 

training set. Some peptides were effective against several muti-drug resistant strains, and 

two showed in vivo efficacy in a mouse model of invasive Staphylococcal infection.
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Neural Networks Applied to Antibiotic Drug Discovery: Receptor-Based 

Approaches

Aside from using neural networks in ligand-based QSAR, ANNs have also been used to 

create generalized receptor-based scoring functions. The distinction between ligand- and 

receptor-based techniques is important. Unlike ligand-based approaches, which consider 

small-molecule physical, chemical, and structural properties, receptor-based scoring 

functions consider ligand-receptor interactions. As they are interaction centric rather than 

ligand centric, in theory these scoring functions 1) can be applied to a novel drug target 

without the need for prior validated small-molecule binders, and 2) are more likely to 

identify inhibitors with novel scaffolds.

In 2010 and 2011, Durrant et al. published two papers describing a novel class of scoring 

functions based on ANNs: NNScore 1.0 (26) and NNScore 2.0 (27) (hereafter called NN1 

and NN2, respectively). Briefly, a database containing thousands of models of diverse 

ligand-receptor complexes with associated experimentally determined binding affinities was 

derived from the MOAD (32) and PDBbind-CN databases (33, 34). Descriptors of each of 

these complexes were calculated by considering the structural features of the models 

themselves. In NN1, these descriptors included tallies of 1) ligand atoms, 2) juxtaposed 

ligand/receptor atoms, 3) and pairwise electrostatic energies, categorized by AutoDock atom 

type. Additionally, the number of ligand rotatable bonds was also considered. In NN2, the 

terms of the AutoDock Vina scoring function (35), as well as the more complex ligand-

receptor interactions identified using the BINANA algorithm (36), were additionally 

considered. Neural networks were trained so that they could accurately predict 

experimentally measured binding affinities from a vector containing the appropriate 

descriptors. Though only recently developed, these scoring functions have already been used 

in a number of studies, in both industry and academia (personal communications, as well as 

refs. (37–42), for example).

In 2013, Lindert et al. used NNScore to identify inhibitors of farnesyl diphosphate synthase 

(FPPS), a critical enzyme in the mevalonate isoprenoid biosynthetic pathway (43). FPPS 

inhibitors have potential application as antiparasitic, antitumor, and antibiotic therapeutics. 

In bacteria, FPPS is essential for cell-wall biosynthesis. Lindert et al. docked a small-

molecule library of 1,008 compounds into an allosteric FPPS pocket using AutoDock Vina 

(35) and Schrödinger’s Glide. When the Vina-docked poses were rescored with NN1, the 

rankings of the known inhibitors improved substantially. By experimentally testing 

compounds that ranked well in both the NN1 and Glide screens, a single low micromolar hit 

was ultimately identified. Chemically similar compounds were then subjected to the same 

computational protocol in a secondary screen that identified ten additional low micromolar 

inhibitors, including one with an IC50 value of 1.8 μM. Although Lindert et al.’s screen 

targeted human FPPS, subsequent studies demonstrated that the lead compound was 

effective against both E. coli and S. aureus, likely due to dual inhibition of bacterial FPPS 

and undecaprenyl pyrophosphate synthase, a second enzyme in the same pathway (44, 45).

In a separate 2013 study, Durrant et al. demonstrated that NNScore is well suited to several 

other bacterial drug targets (25). To compare NNScore performance to that of AutoDock 
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Vina and Schrödinger’s Glide, Durrant et al. turned to the Directory of Useful Decoys (46), 

a benchmark set of forty diverse receptors with associated validated ligands. These known 

ligands were docked into their appropriate targets with Vina and Glide and optionally 

rescored with NN1 and NN2. A set of 1,560 structurally diverse presumed non-binders (the 

NCI Diversity Set III) was also included in the screen, and screen performance was 

evaluated by comparing the rankings of the known inhibitors to those of the decoys. In this 

benchmark study, NNScore performed particularly well against three antibiotic targets: M. 

tuberculosis enoyl-acyl-carrier-protein reductase (ENR), L. casei dihydrofolate reductase 

(DHFR), and E. coli AmpC β-lactamase.

M. tuberculosis ENR is the drug target of isoniazid, a first-line medication in the treatment 

of tuberculosis (47). Durrant et al. found that rescoring Vina-docked poses with NN2 was 

particularly effective at identifying true ENR inhibitors, as judged by a ROC-curve metric of 

early performance. In brief, given that only the top-ranking compounds found in a virtual 

screen are typically submitted for experimental validation, the goal of any screen should be 

to minimize the number of recommended compounds that are not ligands (the false positive 

rate, FPR), while maximizing the number of recommended compounds that are ligands (the 

true positive rate, TPR). To judge virtual-screen performance, Durrant et al. found the 

number of top-ranking compounds from the Vina-NN2 screen that would have to be 

recommended in order to achieve a FPR of no more than 5%. Recommending this same 

number of top compounds would have yielded a TPR of 47%. In contrast, this same TPR 

would have been only 35%, 21%, and 26% had Vina, Glide HTVS, or a three-tiered Glide 

HTVS/SP/XP protocol been used.

An NNScore-based protocol for identifying L. casei DHFR inhibitors was also particularly 

predictive. DHFR is the drug target of trimethoprim and its derivatives. Durrant et al. found 

that when the poses generated by the Glide HTVS/SP/XP docking/scoring protocol were 

rescored with NN1 and NN2, the TPR was 88% when the FPR was fixed at 5%. In contrast, 

the TPR was 8% and 0% when Vina and Glide HTVS were used for docking/scoring, 

respectively. (For technical reasons, it was not possible to obtain the TPR at 5% FPR for the 

HTVS/SP/XP protocol in this case.)

This same protocol (HTVS/SP/XP/NNScore) was also effective against E. coli AmpC β-

lactamase, a bacterial enzyme targeted by drugs like clavulanic acid, sulbactam, tazobactam, 

and avibactam in order to make otherwise resistant bacteria susceptible to β-lactam 

antibiotics. The TPR of the HTVS/SP/XP/NNScore protocol was 29% when the FPR was 

fixed at 5%. The same TPR was 24%, 24%, and 2% when HTVS/SP/XP without NNScore, 

Glide HTVS, and Vina were used, respectively.

It is important to note that the screens performed by Durrant et al. were retrospective, not 

prospective. Nevertheless, they suggest that these neural-network scoring functions have 

great potential against antibacterial and other targets, so much so that the authors are 

currently using NNScore to pursue novel DHFR-inhibiting antibiotics.
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Decision Trees Applied to Antibiotic Drug Discovery: Ligand-Based 

Approaches

A decision tree is a hierarchical representation of rules that can map a vector of descriptors 

to a given classification (48). Modern techniques allow decision trees to be automatically 

generated from large training sets without requiring direct human input. Suppose, for 

example, that a training set contains both known ligands and decoys, and that a number of 

descriptors (e.g., lipophilicity, molecular weight, polarizability, etc.) have been calculated 

for each compound. During the training phase, a decision tree is constructed by first 

considering many different descriptor cutoffs in order to determine the single best rule for 

separating the compounds according to their activity.

For the purpose of illustration, suppose this single best rule is to partition the compounds 

into two groups, with molecular weights greater than 400 daltons (likely ligands) and less 

than 400 daltons (likely decoys). It is not that this rule is perfect; many true ligands may 

have molecular weights less than 400 daltons. It is only that this rule happens to be better 

than any other at separating ligands from decoys. The same procedure is then applied 

separately to the two partitions, generating an additional layer of “rules” for further dividing 

the data. Applying the same procedure recursively again and again eventually yields a 

hierarchical set of rules capable of accurately classifying compounds as binders or 

nonbinders. These same sets of rules can then be applied to novel compounds not included 

in the training set.

A random forest is comprised of an ensemble of decision trees (49). A given training set is 

randomly partitioned many different ways. Additionally, the descriptor space can also be 

randomly partitioned. Diverse compound and descriptor subsets are then used to train many 

different individual decision trees. A given compound is classified by considering the output 

of these many trees (e.g., by calculating the average output, the mode, etc., of the whole 

forest), rather than considering the output of a single tree. These ensemble-based techniques 

often lead to improved accuracy.

Like neural networks, decision trees have been used extensively in ligand-based QSAR 

methods. In 2013, Lira et al. used a decision tree to identify novel antimicrobial peptides 

(50). Sixty known peptides, each with 53 calculated physicochemical molecular descriptors, 

were used for training. The decision tree was ultimately able to classify the antibacterial 

activity of each peptide as either none, low, medium, and high. This same tree was then used 

to prioritize five peptides similar to colossomin, a known antibiotic. Two peptides, 

colossomin C and colossomin D, were ultimately tested against both Gram-positive and 

Gram-negative bacteria. The peptides were particularly effective against S. aureus.

In a second study from 2007, Debeljak et al. sought to identify novel antibiotic coumarin 

derivatives (51). A random forest was generated using 64 quantum-mechanical and chemical 

descriptors calculated for 33 known coumarin-based antibiotics. Using a consensus score 

that combined the predictions of the forest and two other methods, Debeljak et al. ultimately 

identified two promising 4-morpholino coumarin derivatives that were effective against S. 
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aureus and C. albicans. Improvements in antifungal efficacy over the original compounds 

were particularly notable.

Decision Trees Applied to Antibiotic Drug Discovery: Receptor-Based 

Approaches

Receptor-based generalized rescoring functions have also benefited from the random-forest 

approach. In 2010, Ballester et al. published RF-Score, a random-forest scoring function 

analogous in many ways to NNScore (52). RF-Score was trained on over 1,000 ligand-

receptor complexes with known binding affinities, taken from the PDBbind-CN database 

(33, 34). Like NNScore, RF-Score binding-event descriptors were determined based on the 

distances between juxtaposed receptor-ligand atom pairs. Ballester et al. found that the 

predictive accuracy of RF-Score was better than that of 16 well-established classical scoring 

functions that do not rely on machine learning.

In a separate 2012 study, Ballester et al. used RF-Score to identify novel inhibitors of M. 

tuberculosis and S. coelicolor type II dehydroquinase, a member of the shikimate 

biosynthetic pathway required for bacterial synthesis of aromatic amino acids, folic acid, 

ubiquinone, etc. (53). They initially identified ~4,000 compounds with shapes similar to 

those of known ligands from among the nine million compounds in the ZINC repository 

(54). These compounds were then 1) docked into several type II dehydroquinase structures 

using the GOLD docking program (55), 2) rescored using a consensus score comprised of 

three scoring functions (ChemScore, GoldScore, and ASP), and 3) rescored with RF-Score. 

The top predicted compounds were then tested experimentally to confirm enzymatic 

inhibition, ultimately identifying 100 new inhibitors with 50 new active molecular scaffolds. 

Importantly, RF-Score had a better hit rate than the consensus score, and RF-Score-

identified compounds had better median potency.

Future Directions

Traditional drug-discovery paradigms have failed to keep up with the growing need for 

novel antibiotics. Many pharmaceutical companies have abandoned antibiotic research 

entirely in search of more lucrative markets. Even those companies that have sought novel 

therapeutics have faced great challenges. For example, between 1995 and 2001 

GlaxoSmithKline performed a total of 70 high-throughput screens in search of novel 

antibiotics with Gram-positive or broad-spectrum activity, resulting in only five leads (a 

success rate four to five times lower than that of other targets at the time) (56). CADD may 

be able to address some of these challenges. Far more compounds can be tested in silico than 

in vitro, and at a much reduced cost. By prioritizing the compounds of a library using 

computational techniques, fewer compounds need be subsequently tested experimentally.

That having been said, CADD faces challenges of its own. Ligand- and receptor-based 

methods must find a balance between speed and accuracy (57). On one hand, rigorous 

physics-based computational techniques for binding-energy prediction, such as 

thermodynamic integration, single-step perturbation, and free energy perturbation (58), are 

too time and calculation intensive for use in large-scale virtual screens. In contrast, faster 
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techniques like QSAR and computer docking sometimes lack the accuracy required to truly 

enrich a set of compounds for candidate ligands. We have personally seen computational 

techniques yield fewer true ligands than would have been obtained by picking library 

compounds at random.

Machine-learning methods have the potential to further improve the accuracy of high-

throughput ligand- and receptor-based screening without sacrificing speed. They permit 

more nuanced binding estimates by freeing affinity prediction from predetermined formulaic 

or statistical forms. Rather, these techniques find patterns in observations of nature herself, 

independent of formulas or human theories.

While we expect that machine-learning QSAR will continue to be widely applied to 

antibiotic research, more recent artificial-intelligence receptor-based methods, which are 

applicable to a wide range of targets, seem particularly promising. In principle, these general 

scoring functions don’t require known ligands or complex receptor-specific training 

protocols, thus facilitating widespread adoption. In practice, most of the generalized 

receptor-based machine-learning scoring functions described in the literature have not been 

publically released, and so are mere proofs of concept. To our knowledge, only NNScore 1.0 

(26), NNScore 2.0 (27), and RF-Score (52, 59) are publically available. Nevertheless, 

though still in its infancy, the application of machine learning to antibiotic research 

specifically, and drug design generally, clearly has a bright future.
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