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Abstract
When put into practice in the real world, predictive maintenance presents a set of challenges for fault detection and prognosis
that are often overlooked in studies validated with data from controlled experiments, or numeric simulations. For this reason,
this study aims to review the recent advancements in mechanical fault diagnosis and fault prognosis in the manufacturing
industry using machine learning methods. For this systematic review, we searched Web of Science, ACM Digital Library,
Science Direct, Wiley Online Library, and IEEE Xplore between January 2015 and October 2021. Full-length studies
that employed machine learning algorithms to perform mechanical fault detection or fault prognosis in manufacturing
equipment and presented empirical results obtained from industrial case-studies were included, except for studies not written
in English or published in sources other than peer-reviewed journals with JCR Impact Factor, conference proceedings and
book chapters/sections. Of 4549 records, 44 primary studies were selected. In 37 of those studies, fault diagnosis and
prognosis were performed using artificial neural networks (n=12), decision tree methods (n=11), hybrid models (n=8),
or latent variable models (n=6), with one of the studies employing two different types of techniques independently. The
remaining studies employed a variety of machine learning techniques, ranging from rule-based models to partition-based
algorithms, and only two studies approached the problem using online learning methods. The main advantages of these
algorithms include high performance, the ability to uncover complex nonlinear relationships and computational efficiency,
while the most important limitation is the reduction in model performance in the presence of concept drift. This review
shows that, although the number of studies performed in the manufacturing industry has been increasing in recent years,
additional research is necessary to address the challenges presented by real-world scenarios.
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1 Introduction

Machine maintenance, with its impact on machine down-
time and production costs, is directly related to a manufac-
turing companies’ ability to be competitive in terms of cost,
quality, and performance [1, 2]. The purpose of maintenance
goes beyond repairing an equipment after it malfunctions.
Its main objective is to maintain the functionality of machin-
ery and minimize breakdowns.

As the name suggests, predictive maintenance consists in
the early detection of problems. Under a predictive main-
tenance program, maintenance is performed by monitoring
the actual condition of machinery and repairing or replacing
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components after a certain level of deterioration has been
detected, instead of performing repairs after a fault has
occurred [3]. This approach has several advantages over
reactive and preventive maintenance strategies [4, 5],
namely:

– Prevention of catastrophic failures.
– Extension of an equipment’s useful life.
– Optimization of preventive maintenance tasks.
– Improved management of the maintenance inventory.
– Optimization of equipment availability.
– Improved productivity.

By preventing serious failures, reducing unexpected
faults, and maximizing the mean time between failures
(MTBF), predictive maintenance helps reduce workplace
accidents and their severity, reduces the number of repairs
and the mean time to repair (MTTR) and extends the useful
life of equipment, all of which results in increased earnings,
less maintenance and production costs and more sustainable
manufacturing [4, 6]. According to Sullivan et al. [5],
the successful implementation of a predictive maintenance
program can lead to an average reduction of maintenance
costs between 25% and 30% and a return on investment
(ROI) of 1000%.

Predictive maintenance is a form of condition-based
maintenance [4], which relies on the prediction and
detection of incipient faults in the equipment based on
parameter measurements that reflect a machine’s real
condition [7–9]. In condition-based maintenance, decision-
making is supported by diagnostics and prognostics
techniques [7].

Diagnostics, which involves performing fault detection
and identification (FDI), is generally performed using
hardware redundancy methods or analytical redundancy
methods. Hardware redundancy consists in measuring the
same parameters using more than one sensor and then
comparing the duplicate signals by means of various
techniques, such as signal processing methods [10].
Analytical redundancy methods are based on mathematical
models of the system and can be divided in quantitative,
or model-based, methods and qualitative, or data-driven,
methods [10, 11]. Both methods compare predicted or
estimated parameters to real, measured values, but while
model-based methods estimate the parameters of interest
based on a mathematical model of the system under normal
operating conditions, data-driven methods employ historical
data and artificial intelligence algorithms to predict such
parameters or detect anomalous values.

While diagnostics deals with the detection, isolation and
identification of faults, prognostics aims to predict faults in
the monitored system before they occur [7]. Specifically,
prognostics techniques are used to estimate how soon -
i.e., estimation of the remaining useful life (RUL) - and

how likely a fault is to occur, but most of the literature
on machine prognostics focuses on the former type of
prediction [7]. RUL estimation methods, which can also be
data-driven, aim to predict how long a machine will function
before a fault occurs or if the machine is going to fail in a
given time interval [7].

Since they don’t require additional hardware, analytical
redundancy methodologies are less expensive to implement
than hardware redundancy methods [10, 11]. Given the
emergence of Internet of Things (IoT) technologies in
industrial settings it is now possible to obtain a real-
time digital representation of the production processes and
current status of the equipment [12], which has led to
an exponential growth of the volume of industrial data
[13]. Data-driven methods, in particular machine learning
and data mining techniques, are well suited to extract
knowledge from this wealth of data and have successfully
been used in the context of predictive maintenance [9,
14]. Moreover, although model-based methods can produce
good results if the model of the system is precise, building
an accurate mathematical model of a system is an arduous
task that makes model-based methods a less viable option
for complex systems [7, 10]. Recent review papers [9,
15] focusing on the use of machine learning techniques
for predictive maintenance have identified that commonly
used data-driven methods include artificial neural networks
[16–20], support vector machines [21–23], decision trees
(including ensemble methods) [24, 25] , k-means [26, 27]
and logistic regression [28, 29], among others.

Predicting and detecting faults in industrial equipment
are difficult tasks that require the choice of adequate
techniques to obtain accurate results. The present study
performs a systematic literature review of the machine
learning methods used for the detection of mechanical faults
and the prognosis of faults in manufacturing equipment in
real-world scenarios. It is meant to serve as a foundation for
the implementation of predictive maintenance systems and
help identify future research opportunities. The literature on
mechanical fault detection and fault prognosis is vast, but to
the best of the authors’ knowledge no systematic literature
review on this specific topic of study exists.

The review focuses on the detection of mechanical
faults because these types of faults are a leading cause
of breakdowns in manufacturing equipment [30, 31]. As
mentioned above, fault prognosis aims to predict the time
left before a machine breaks down and/or the probability
of failure, without seeking to identify the type of fault
(diagnostics techniques can be used for this purpose) [7].
Therefore, primary studies focusing on both mechanical
fault detection and fault prognosis were considered in this
review.

Another important aspect of this review is that only
real-world industrial cases are considered. When put into

1 3

Machine learning techniques applied to mechanical fault diagnosis... 14247



practice in the real world, predictive maintenance presents
a set of challenges for fault diagnosis and prognosis
that are often overlooked in studies validated with data
obtained from controlled experiments, testbeds, or numeric
simulations. Manufacturing systems are characterized by
complex, non-stationary processes where noise and other
disturbances are a reality [8, 32, 33]. This conditions the
choice and applicability of machine learning methods, as
do other aspects of practical order such as the absence
of historical fault data that occurs frequently in industrial
settings and restricts the learning task to unsupervised and
semi-supervised methods. For these reasons, this study
aims to present an overview of the current landscape of
fault diagnosis and prognosis in real-world scenarios using
machine learning techniques.

The study here presented was guided by five research
questions aimed at characterizing the relevant research in
terms of publication sources and scientific fields, as well
as examining the state-of-the-art machine learning methods
for mechanical fault detection and fault prognosis in
manufacturing equipment, their strengths and weaknesses,
and their application in the context of data stream learning.
A search for eligible publications was conducted in
five academic databases, which, after applying a set of
criteria, culminated in the selection of forty-four primary
studies.

The rest of this document is organized as follows:
Section 2 presents the review protocol developed for this
study, including the definition of the research questions,
search strategy, study selection criteria and the data
extraction strategy. The results obtained from conducting
the review and answering the research questions are
described in Section 3 and discussed in Section 4. Finally,
Section 5 presents the concluding remarks and provides
directions for future work.

2Methods

This study follows the PRISMA statement [34], which
establishes a checklist and a flow diagram for reporting
systematic reviews. However, the PRISMA statement is
oriented towards the healthcare field, whereas the present
review covers themes related to engineering and computer
science. Healthcare research differs significantly from
research performed in engineering and computer science
and, as such, the PRISMA statement does not apply in
its entirety. For this reason, this study is also guided by
the procedure presented in [35], which adapts different
medical guidelines for performing systematic reviews to the
particularities of software engineering, but is applicable to
other scientific fields as well. The three main phases of
this procedure, namely planning, conducting, and reporting

the review, as well as related activities are presented in
Table 1.

The need for this review was identified while researching
the literature of interest for the first author’s PhD thesis
about machine learning methods for fault detection and
prediction. As far as the authors are aware, no systematic
literature review of the machine learning methods used
for mechanical fault detection and fault prognosis in
manufacturing equipment in real-world scenarios currently
exists.

Before undertaking the necessary research work, a
review protocol was developed to establish suitable research
questions and define the search strategy, study selection
criteria and the data extraction process. The protocol is
described in more detail in the following subsections.

2.1 Research questions

The first step in developing the protocol consisted in
formulating meaningful research questions to guide a state-
of-the-art review of the topic of study (Table 2).

The first research question is intended to help understand
where papers that describe the use of machine learning
for mechanical fault detection and fault prognosis in
manufacturing equipment have recently been published.
The purpose is to identify not only the publication venues
where the studies have been published and whether they
tend to cluster around specific venues or not, but also
determine the types of venues in which they were published.
The latter is of particular interest considering this review
focuses on industrial case-studies. Because fault detection
and prognosis are studied in a wide range of scientific
fields, the second research question aims to identify the
fields that most commonly use machine learning methods
for that purpose and if multidisciplinary approaches are
present.

The purpose of research question three is to survey
the machine learning algorithms and methods employed
in the recent literature about mechanical fault detection

Table 1 Systematic review process

Phase Activities

Planning the review Identification of the need for the review

Development of the review protocol

Conducting the review Identification of research

Selection of primary studies

Study quality assessment

Data extraction and monitoring

Data synthesis

Reporting the review
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Table 2 Research questions

ID Research Question

RQ1 In which publication venues are studies about the use of
machine learning for mechanical fault detection and fault
prognosis in manufacturing equipment published?

RQ2 In which scientific fields has the use of machine learning
for mechanical fault detection and fault prognosis in
manufacturing equipment been researched?

RQ3 What machine learning algorithms and methods are currently
employed for mechanical fault detection and fault prognosis
in manufacturing equipment?

RQ4 What limitations and advantages do those algorithms and
methods present?

RQ5 Which of those algorithms and methods are used for data
stream learning?

and fault prognosis in manufacturing equipment. To answer
this question, aspects such as which machine learning
algorithms are most frequently used, what types of learning
tasks are addressed, or whether hybrid and ensemble
methods are used should be considered. It is also important
to learn why these algorithms are being used and what their
weaknesses are, a matter addressed by research question
four.

Much of the data used to predict and detect faults
in manufacturing equipment is acquired by sensors that
monitor the machines and produce high-speed data streams.
Classical machine learning methods are not adequate to
learn from these data streams, a task that presents unique
challenges [36]. For that reason, research question five
focuses on machine learning methods meant for data
stream learning. The main aim is to determine how
widespread the use of these methods is for mechanical fault
detection and fault prognosis in manufacturing equipment,
but also to understand how such techniques are being
used.

2.2 Search strategy

To identify recently published research about machine
learning methods for mechanical fault detection and
fault prognosis in manufacturing equipment in real world
scenarios, the following search strategy was devised.

2.2.1 Information sources

The five academic databases listed in Table 3 were chosen
after considering search systems that were appropriate for
systematic reviews [37] and whose subject was compatible
with the topic of study. Although IEEE Xplore is not
ideally suited for systematic reviews, it is an important
research database in the fields of engineering, electron-

ics, and computer science and can be used to supple-
ment the results obtained from the other four databases
[37].

2.2.2 Search string

The search string used to find publications with the potential
of being included in this systematic review was built by
combining several search terms using the Boolean operators
OR and AND (Table 4).

To identify studies that use machine learning, the terms
“mining”, “learning” and “knowledge discovery” were
included. The decision to use other terms besides “machine
learning” stems from the fact that there is considerable
overlap between machine learning and data mining, and the
terms are often used interchangeably. Moreover, although
“mining” and “learning” are meant to represent “data
mining” and “machine learning”, respectively, the choice of
using broader terms was made with the intention of finding
research that employs other, related terms, such as “pattern
mining” or “data stream learning”. “knowledge discovery”
was included as well because it often makes use of machine
learning techniques and can be relevant in the context of
fault detection and prognosis.

To find research pertaining to mechanical fault detection
and fault prognosis, the inclusion of the terms “fault
detection”, “fault prediction” and “fault prognosis” was an
obvious choice. However, it also made sense to include the
term “predictive maintenance” since studies about this topic
often propose fault detection or prognosis methods.

The search string is purposefully broad, not containing
any terms that allude to mechanical faults, manufacturing
equipment or industrial case-studies. If the string included
those terms, the search results would be too narrow and
many studies that do not explicitly use those terms would be
left out.

Since the chosen academic databases have slightly
different rules for building search strings, after devising the
general search string presented in Table 4, specific strings
were created for each of them. The following example
illustrates the search string specified for the Web of Science
(the TS tag field indicates the search terms should be looked
up in the title, abstract and keywords):

TS = ((“mining” OR “learning” OR “knowledge
discovery”) AND (“fault detection” OR “fault prediction”
OR “fault prognosis” OR “predictive maintenance”))

2.3 Study selection criteria

A set of inclusion and exclusion criteria was defined to
select the relevant studies from the search results. As can
be seen in Table 5, the studies that should be included
in the systematic literature review are those whose subject
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Table 3 Research databases

Search system Databases URL

Web of Science Core Collection – SCI-EXPANDED, SSCI, CPCI-S, CPCI-SSH https://www.webofknowledge.com/

ACM Digital Library The ACM Guide to Computing Literature https://dl.acm.org/

Science Direct https://www.sciencedirect.com/

Wiley Online Library https://onlinelibrary.wiley.com/

IEEE Xplore https://ieeexplore.ieee.org/Xplore/home.jsp

matter is the use of machine learning techniques for the
detection of mechanical faults or prediction of faults in
manufacturing equipment. Only studies that meet one or
more of the inclusion criteria are of interest for the purpose
of this review.

The exclusion criteria presented in Table 6 are meant
to filter out research that does not satisfy other important
characteristics. Duplicate publications are to be eliminated,
as are publications that are not written in English or
studies that were published in venues other than conference
proceedings, book chapters/sections or journals with impact
factor as defined in Clarivate’s Journal Citation Reports
(JCR). Additionally, only full-length articles published
since 2015 that present empirical results obtained from
industrial case-studies are to be considered.

2.4 Data extraction strategy

The data collected from the selected studies is meant to
answer the systematic review’s research questions. For
that purpose, a data form template was created to extract
information from each of the selected studies in a consistent
manner (Table 7). To determine the ‘scientific fields’ of
publications, an examination of the scientific categories
of the publication venues will be carried out. In the
case of conferences, the necessary information will be
obtained from the official websites, whereas for journals the
categories defined by Clarivate’s Journal Citation Reports
(JCR) will be taken into consideration. Whenever a given
publication is indexed in more than one JCR category, the
category with the highest ranking will be chosen. If two
categories or more have the same ranking, the authors of this
review will decide which category is more appropriate. The

Table 4 Search string

Field of study Search terms

Machine Learning (“mining” OR “learning” OR “knowl-
edge discovery”)

AND

Fault Prediction/Detection (“fault detection” OR “fault prediction”
OR “fault prognosis” OR “predictive
maintenance”)

‘country of research’ will be defined based on the country
of affiliation of the first author.

3 Results

As can be seen in Fig. 1, the execution of the previously
presented protocol resulted in the selection of 44 primary
studies. In the identification phase, the search queries
performed in the Web of Science, Science Direct, ACM
Digital Library, Wiley Online Library, and IEEE Xplore
databases yielded a total of 4549 records. After removing
duplicate entries, a total of 3377 studies remained. These
records were screened based on publication details, such as
publication venue (EC3) and language (EC5), as well as on
the information provided by the title and the abstract. Of
the 3377 studies evaluated, 2821 did not meet the selection
criteria. Additionally, seven publications had to be discarded
because the full text was not available. The remaining
549 publications underwent a more detailed full text
assessment to determine if they met the inclusion criteria
and provided empirical results obtained from industrial
case-studies (EC6). 505 studies had to be excluded, while
the 44 studies that met the described criteria were selected
for inclusion in the systematic review.

3.1 Distribution of publications by year and country

As can be seen in Fig. 2, there is a clear trend of increase
in publications from 2016 to 2019. The majority (88.6%)
of selected studies have been published since 2018, with
a noticeable surge in the number of publications that
year. However, the number of annual publications has

Table 5 Inclusion criteria

ID Criteria

IC1 The publication focuses on the use of machine learning
algorithms and methods for mechanical fault detection in
manufacturing equipment.

IC2 The publication focuses on the use of machine learning algo-
rithms and methods for prognosis of faults in manufacturing
equipment.
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Table 6 Exclusion criteria

ID Criteria

EC1 Duplicate publication.

EC2 Publication is not a full-length article.

EC3 Study not published in a peer-reviewed journal with JCR
Impact Factor, in conference proceedings, or in a book
chapter/section.

EC4 Study published before 2015.

EC5 Publication not written in English.

EC6 Study without empirical results obtained from an industrial
case-study.

been decreasing since 2020. Considering the search for
publications to include in this review was undertaken in
October 2021, it’s unclear if this trend will continue until
the end of 2021. Moreover, since the COVID-19 pandemic
affected the scientific community significantly, delaying
research work and publications [38], it is reasonable to
expect that many studies that were planned for 2020 and
2021 will only be published in later years. It is also worth
noting that no study from 2015 was selected for inclusion in
the systematic review.

These publications come from 21 different countries
(Table 8), but the distribution of the number of publications
per country is positively skewed, i.e., most nations only
published one or two studies. Only three countries published

Table 7 Data extraction form template

Data extraction form

Title:

Authors:

Country of research:

Publication venue:

Publication details:

Type of publication venue:

Scientific field:

Research questions answered:

Content:

– Which machine learning algorithms are used?

– How are they applied to the diagnosis of mechanical faults or
prognosis of faults in manufacturing equipment?

– What types of learning tasks are addressed (e.g., supervised,
unsupervised, reinforcement learning)?

– Are hybrid learning methods used?

– What types of learning techniques are employed (e.g., ensemble
learning, transfer learning, online learning, etc.)?

– What are the benefits/limitations of the machine learning techniques
used in the study?

– Which data stream learning techniques are used?

more than two studies, but together they were responsible
for publishing 43.2% of the studies included in this review
(Fig. 3). China, Germany, and Greece were the countries
that published the most studies, with Germany and Greece
contributing with six studies each and China with seven
studies.

3.2 RQ1: In which publication venues are studies
about the use of machine learning for mechanical
fault detection and fault prognosis
in manufacturing equipment published?

The 44 selected studies were published in 36 distinct
venues, of which 17 are journals and 19 are conferences,
with only five venues publishing more than one study
about the topic of interest (Table 9). The top publication
sources include IEEE Access with five studies and the 2019
31st International Conference on Advanced Information
Systems Engineering (CAiSE), CIRP Annals, Sensors and
The International Journal of Advanced Manufacturing
Technology with two studies each. 16 of the 36 publication
venues are affiliated with the Institute of Electrical
and Electronics Engineers (IEEE), representing 17.6%
of journals, 68.4% of conferences and 20% of the top
publication venues.

More than 52% of these distinct venues are conferences,
but only 45.5% of the selected studies were published in
conference proceedings versus 54.5% that were published
in journals (Fig. 4). This reveals that the average number
of papers published in journals is greater than the average
number of papers published in conference proceedings.
Furthermore, four of the five publication venues where more
than one study was published are scientific journals and
together these four venues published 25% of all the studies
included in this review, which seems to imply there is a
preference for publishing in scientific journals.

3.3 RQ2: In which scientific fields has the use
of machine learning for mechanical fault detection
and fault prognosis in manufacturing equipment
been researched?

The results show the recent research on machine learning
for fault detection and prognosis in the manufacturing
industry has been explored mostly by the computer science
community. As shown in Table 10, computer science
approaches account for 47.7% of the selected studies.
Lagging considerably behind, but still worth considering,
are engineering and multidisciplinary studies, with 25% and
13.6% respectively.

Multidisciplinary approaches involve several disciplines,
such as telecommunications and cybernetics, but contribu-
tions from the fields of computer science, engineering, and
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Fig. 1 PRISMA flow diagram
of study selection

Fig. 2 Distribution of selected
publications per year
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Table 8 Provenance of the publications included in the systematic review

Country or area Number of publications Country or area Number of publications Country or area Number of publications

China 7 Turkey 2 Portugal 1

Germany 6 UK 2 Slovenia 1

Greece 6 USA 2 South Africa 1

Australia 2 Belgium 1 Spain 1

Italy 2 India 1 Sweden 1

South Korea 2 Netherlands 1 Switzerland 1

Singapore 2 Norway 1 Taiwan 1

automation and control systems are strongly prevalent even
in this broader category.

3.4 RQ3: What machine learning algorithms
andmethods are currently employed for mechanical
fault detection and fault prognosis
in manufacturing equipment?

The selected primary studies employ a variety of machine
learning algorithms and methods to perform mechanical
fault detection and fault prognosis, including combina-
tions of different algorithms. Most studies also perform
comparative analyses between different machine learn-
ing algorithms to demonstrate the value of the proposed
method or to select the most adequate algorithm. In the
latter case, only the selected (or best performing) algo-
rithms will be described in this review. These algorithms
include: AdaBoost; agglomerative clustering (AC); autoen-
coder; autoregressive integrated moving average (ARIMA);
back-propagation neural network (BPNN); classification
and regression trees (CART); classification based on associ-
ations – classifier building algorithm (CBA-CB) ; convolu-
tional neural network (CNN); deep neural network (DNN);

Fig. 3 Share of publications by country

density-based spatial clustering of applications with noise
(DBSCAN); discrete Bayes filter (DBF); eXtended classi-
fier system (XCS); frequent pattern growth (FP-Growth);
Gaussian mixture models (GMM); gradient boosting deci-
sion trees (GBDT); hidden Markov model (HMM); hier-
archical clustering (HC); isolation forest (IF); k-means;
K-multi-dimensional time-series clustering (K-MDTSC); k-
nearest neighbors (K-NN); k-singular value decomposition
(K-SVD); local outlier factor (LOF); logistic regression
(LR); long short-term memory (LSTM); LSTM autoen-
coder; long short-term memory - generative adversar-
ial network (LSTM-GAN); mean shift clustering (MSC);
micro-cluster continuous outlier detection (MCOD); mul-
tilayer perceptron (MLP); naı̈ve Bayes (NB); neighbour-
hood component analysis (NCA); partial least squares
regression (PLSR); principal component analysis (PCA);
quadratic discriminant analysis (QDA); quantitative asso-
ciation rule mining algorithm (QARMA); random forest
(RF); random survival forest (RSF); recurrent neural net-
work (RNN); simple linear regression; spectral clustering
(SC); stacked sparse autoencoders (SSAE); support vector
machines (SVM).

To facilitate the analysis of the data, the algorithms were
grouped into different categories, as shown in Table 11.

Figure 5 illustrates that most studies included in this
review (84.1%) use machine learning algorithms belonging
to four categories, namely artificial neural networks with
12 publications, decision trees with 11 publications, hybrid
models with eight publications and latent variable models
with six publications. One of these studies uses both an
artificial neural network and a hybrid model to address
different problems. The remaining eight studies apply
algorithms from a variety of categories. It is also worth
noting that 13 studies make use of ensemble learning
techniques.

The selected studies handle different types of learning
tasks depending on the problems under consideration and
the data that is available. As can be seen in Fig. 6, 53.3% of
publications employ supervised learning techniques, 28.9%
use unsupervised learning techniques, 15.6% make use of
both supervised and unsupervised techniques and 2.2%
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Fig. 4 Proportion of publications in conferences and journals

combine semi-supervised, unsupervised, and supervised
techniques. The use of unsupervised techniques is motivated
mostly by an absence of labeled data [47, 48, 50, 54, 59–
62, 65, 70], although in some studies they are employed
to detect outliers [74], reduce dimensionality [31, 75] or
extract features [81]. In studies [39, 42, 45, 58, 66, 69,
71], labeled data was available, but was used to validate the
unsupervised learning models.

3.5 RQ4: What limitations and advantages do those
algorithms andmethods present?

Of the 44 selected studies, 33 described the motivations
for choosing a particular machine learning algorithm or
combination of algorithms. Some of these motivations relied
on the inherent strengths of the algorithms employed, while
others considered the specific advantages an algorithm
could have for fault detection and prediction, or for its
implementation in industrial environments. In addition, the
benefits provided by the proposed approach were also
reported in several studies. On the contrary, only eleven
studies presented the limitations of either the algorithms
employed or the proposed approaches.

In the following subsections, Tables 12, 13, 14, 15 and 16
summarize the advantages and limitations of these machine
learning algorithms and methods. After each table, they are
described in more detail.

3.5.1 Decision trees

Models in the decision tree category have several char-
acteristics that make them suitable for implementation in
industrial contexts. In [41], the authors decided to use a clas-
sification tree due to its interpretability. CART models are
white box classifiers whose outputs can be represented by a
series of if statements. This allows factory engineers to ana-
lyze the model and understand the reasoning that led to a
given decision. However, this advantage is lost when using
ensembles of trees, since they combine several base models
to obtain a more robust output.

Nonetheless, ensemble tree models are highly valued for
their efficiency and effectiveness. Random forest models
were used for these reasons in [44] and [53]. Specifically,
in [44] a random forest was used to develop a proof
of concept that would allow the authors to demonstrate
that relevant results could be obtained from real world
data in a short period of time. More complex algorithms
would not have been appropriate in a situation where
high predictive power and low implementation effort were
necessary. Additionally, the ability of random forest models
to reduce variance and increase generalizability was also
taken into consideration, since the amount of training
samples was relatively small, but the feature space was
large. The predictive tool proposed in [76] also makes use
of an ensemble method, specifically GBDT, due to the
algorithm’s low computational complexity and predictive
power when handling large-scale datasets. The algorithm’s
ability to assess the importance of features was also
essential to determine which time lag should be used as
input to DPCA. However, the proposed approach has the
disadvantage of lacking interpretability, not only because
GBDT uses an ensemble of decision trees, but also because
the data used to predict failures in the milling machine

Table 10 Proportion of studies per scientific field

Scientific field Studies Number of publications

Computer Science [39, 41, 44–48, 51, 55, 59, 61, 63, 64, 67, 69, 70, 77–81] 47.7% (n = 21)

Engineering [31, 54, 57, 58, 62, 65, 66, 71, 72, 75, 76] 25% (n = 11)

Multidisciplinary [40, 43, 52, 53, 56, 60] 13.6% (n = 6)

Automation & Control Systems [42, 50] 4.5% (n = 2)

Instruments & Instrumentation [73, 74] 4.5% (n = 2)

Operations Research & Management Science [68] 2.3% (n = 1)

Wireless Communications, Net-
working and Signal Processing

[49] 2.3% (n = 1)

1 3

Machine learning techniques applied to mechanical fault diagnosis... 14255



Table 11 Machine learning algorithms and methods employed in the selected primary studies

Category Method Publications Learning task

ARIMA models ARIMA [48, 61] unsupervised

Partition-based algorithms MCOD [69] unsupervised

Decision Trees Adaboost [72] supervised

CART [41, 46, 68] supervised

IF [67] supervised

RF [43, 44, 46, 52, 53] supervised

RSF [71] unsupervised

GBDT [76] supervised

Dynamic Bayes Networks DBF [63] supervised

HMM [42] unsupervised

Hybrid models ARIMA + LSTM [50] unsupervised

DBSCAN + RF [74] unsupervised + supervised

DBSCAN + SVM [70] unsupervised + supervised

[HC / time series clustering] + RNN [59] unsupervised + supervised

One-class SVM + K-Means + RF [45] semi-supervised + unsupervised
+ supervised

Autoencoder + Simple Linear
Regression

[58] unsupervised + supervised

GMM + FP-Growth + CBA-CB [75] unsupervised + supervised

CNN + NCA + Medium Gaus-
sian SVM / CNN + NCA +
ensemble subspace K-NN

[80] supervised

Instance-based algorithms K-NN [39] supervised

Latent Variable Models PCA [65] unsupervised

GMM [47] unsupervised

K-Means [54] unsupervised

PLSR [64] supervised

K-SVD [60] unsupervised

K-MDTSC [62] unsupervised

Artificial Neural Networks ANN [57] supervised

BPNN [40] supervised

CNN [78] supervised

DNN [77] supervised

LSTM [70] supervised

MLP [56] supervised

SSAE + BPNN [31] unsupervised + supervised

SSAE + Softmax Classifier [81] unsupervised + supervised

LSTM Autoencoder [73] supervised

LSTM - GAN [79] supervised

RNN [55] supervised

Conditional Variational Autoencoder [66] unsupervised

Rule-based models R4RE (“Rules 4 Rare Events” based on QARMA) [49] supervised

XCSR [51] supervised

consists in the principal components obtained from the
application of DPCA, which do not represent any physical
properties or measurements of the system. The study
presented in [67] used an ensemble method as well due to its

efficiency in terms of computation time and memory when
handling large amounts of data.

In [71], the proposed model (manufacturing system-
wide balanced random forest [MBRSF]) incorporated a
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Fig. 5 Number of publications
per category of machine
learning algorithms

random survival forest because of its ability to handle
bias and variance issues. The model captured complex
fault patterns and diverse fault propagation pathways
and made breakdown predictions for a time horizon
not yet found in the manufacturing systems literature.
Another advantage pointed out by the authors, was
the theoretical guarantee provided for the prognostic
performance due to the integration of the RSF model with
data balancing techniques. Research undertaken by the
authors demonstrated the MBRSF could attain a prognostic
performance, with respect to an integrated Brier score, 90%
better than other methods.

3.5.2 Artificial neural networks

Like ensemble methods, artificial neural networks suffer
from a lack of interpretability, making them unsuitable for
use in situations where it is necessary to know what factors
contributed to a machine failure. They do, however, possess
several advantages including good fault tolerance, the
ability to learn complex nonlinear relationships and strong
generalization abilities, which motivated their application
in [57]. Likewise, in [77], a deep neural network was used

due to its ability to map the complex relationship between
signals and the health status of industrial equipment. The
use of a deep learning model was also considered because
such models are capable of uncovering patterns in raw
time series data, which eliminated the need to use signal
processing techniques.

The method described in [78] explored the ability of
convolutional neural networks to recognize and classify
images by transforming time series data into images and
using them as inputs to a CNN model. This approach
has been shown to be suitable for maintaining temporal
information and learning time-invariant features, thus
resulting in improved classification performance. The
proposed framework also included the option of using a
parametric rectified linear unit (PReLU) function as an
activation function to further improve performance when
dealing with large datasets.

In [40], to overcome the BPNN’s limitations the authors
used a genetic algorithm to optimize the network’s initial
weights, thresholds and number of hidden layer neurons.
With this technique, they were able to obtain faster
convergence, more accurate fault predictions and less
computational complexity.

Fig. 6 Types of learning tasks
considered in the selected
studies
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Table 12 Advantages and limitations of the decision tree algorithms employed for mechanical fault detection and fault prognosis

Publication Advantages Limitations

[41] Algorithm: interpretability. Not identified

[44] Algorithm: high predictive per-
formance; low implementation
effort; reduces variance and
increases generalizability.

Not identified

[76] Algorithm: high predictive per-
formance; low computational
complexity; provides information
about feature importance.

Proposed approach: lacks interpretability.

[53] Algorithm: efficiency; effectiveness. Not identified

[67] Algorithm: computational efficiency Not identified

[71] Algorithm: handles bias and variance issues

Proposed approach: theoretical
guarantee for prognostic perfor-
mance; captures complex fault
patterns and fault propagation
pathways.

Not identified

Similarly, the authors of the study proposed in [73]
chose to detect faults and predict the RUL using LSTM-
autoencoders because the combination of LSTMs and
autoencoders has shown potential for accurate time series
forecasting. According to the authors, LSTM-autoencoders
have produced better forecasts than multilayer perceptrons,
deep belief networks or LSTMs, due to their ability to
identify the temporal patterns present in time series data
and their superior feature extraction capability. However,
the hyperparameters of the network impacts its performance
significantly and choosing them can be a difficult task.
The proposed approach, whereby one LSTM-autoencoder
for each health state is trained, can be adjusted to handle
different health states (labels) and be applied to different
machines. However, the complexity of the architecture
can increase rapidly, and the system might not be able
to identify neighbouring health states. Additionally, this
approach requires labelled data, which is not easily available
in industrial settings.

Deep learning models are able to learn features from raw
data as long as the training and test data share the same
distribution and feature space. However, under time-varying
conditions, such as those encountered in real industrial
settings, this condition often does not hold. To handle this
issue, the method proposed in [31] goes beyond simple
pattern recognition and classification of existing faults by
using deep learning to identify the dynamic properties of
the machine tool. This enabled the early detection of fault
features and the diagnosis of the machine’s health status
under time-varying operation.

The framework presented in [66] also addresses the issue
of time-varying operations. The proposed method relies
on two conditional variational autoencoder (CVAE) models

to estimate the health index of the machining centre and
predict its future condition for a given operating regime.
The authors of this study chose the CVAE due to its ability
to remove noise from sensor data and extract meaningful
features from the data automatically. Additionally, CVAEs
are capable of learning complex conditional probability
distributions regardless of the dimensionality of the feature
space and can, therefore, be used to generate conditional
data. This characteristic can be very helpful when handling
industrial data since it facilitates the simulation of different
production sequences regarding the current health state of
a machine. Owing to these characteristics, the authors were
able to develop a method that can estimate a machine’s
health under time-varying operations in a scenario where
very little labelled data was available, as is often the case in
real industrial settings.

In [81], the problem of different data distributions in
the training and test data was also addressed, as was the
issue of insufficient or low-quality training data, a common
problem in the manufacturing industry. To solve these
issues, the authors of the study combined deep transfer
learning with digital-twin technology. The digital entity was
used to simulate the entire product life cycle and generate
vast amounts of data under different working conditions,
while deep transfer learning was used to extract knowledge
from the digital domain and apply it in the physical domain
where the model was fine-tuned. With this approach, the
authors of the study were able to explore shared knowledge
and create a model that remained viable when put into
production.

Changes in the data distribution were also the focus of
the method proposed in [55]. SERMON is a model capable
of modelling the temporal dependency present in streaming
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Table 13 Advantages and limitations of the artificial neural networks employed for mechanical fault detection and fault prognosis

Publication Advantages Limitations

[31] Proposed approach: early detection of fault
features; diagnosis of machine’s health status
under time-varying operation.

Algorithm: performance decreases when training
and test data don’t share the same distribution.

[40] Proposed approach: faster convergence; improved
prediction performance; less computational com-
plexity.

Algorithm: slow convergence speed; low preci-
sion; falls easily into local minimum; number of
hidden layers difficult to determine.

[57] Algorithm: fault tolerance; learns complex nonlin-
ear relationships; strong generalization abilities.

Algorithm: lack of interpretability.

[81] Proposed approach: knowledge sharing; genera-
tion of vast amounts of data through simulation of
the entire product life cycle.

Algorithm: performance decreases when training
and test data don’t share the same distribution.;
poor performance in case of insufficient or low-
quality training data.

[78] Proposed Approach: improved classification per-
formance; maintains temporal information and
learns time-invariant features.

Not identified

[77] Algorithm: learns complex nonlinear relation-
ships; uncovers patterns in raw time series data.

Not identified

[55] Proposed approach: online learning capabil-
ity; autonomous structural evolution; capable of
adapting to drifts in the input data; capable of
learning under finitely/infinitely delayed label sce-
narios.

Not identified

[73] Algorithm: capable of processing time series
data; superior feature extraction capability; better
forecasting ability.

Algorithm: choice of suitable hyperparameters
is complex and affects the performance of the
network;

Proposed approach: can be adjusted to different
types of machines and labels.

Proposed approach: using multiple ANNs can be
a difficult task; might not be able to identify
neighbour states; requires labelled data.

[79] Proposed approach: capable of generating large
volumes of fault data; avoids mode collapse;
improved accuracy and efficiency.

Not identified

[66] Algorithm: denoising effect; automatic extraction
of meaningful features; capable of learning com-
plex probability distributions; well-understood
and stable; can be used for conditional data gener-
ation.

Not identified

Proposed approach: estimation of machine’s
health status under time-varying operations; capa-
ble of handling sparse industrial data; product-
specific health index can be used for scheduling
maintenance and production.

data and adapt to the changing characteristics of the data as
it arrives in real-time. It does so thanks to the self-evolving
architectures of its two RNNs. The SERN component can
dynamically change the number of hidden units, while the
MERN component can dynamically change the number of
hidden layers as well. Moreover, to handle scenarios where
labels might be delayed or inexistent, SERMON includes
a mapping unit that employs an autoencoder to suggests
possible data labels.

An LSTM-GAN was used in [79] as part of a PdM
methodology that can not only monitor the health state
of machines and predict faults before they occur, but also

provides the factory’s maintenance staff with maintenance
plans that are appropriate to deal with the issues detected
by the state prediction and fault prediction models. The
GAN was used to generate a large volume of synthetic
fault data to improve the accuracy of the model. However,
GANs may suffer from mode collapse. Due to the
inclusion of memory units, gate structures and attention
mechanisms, LSTM networks can alleviate the mode
collapse issue. Moreover, LSTMs are capable of extracting
patterns from long sequences of input data, making them
ideal to detect abnormalities in condition monitoring
data.

1 3

Machine learning techniques applied to mechanical fault diagnosis... 14259



Table 14 Advantages and limitations of the hybrid models employed for mechanical fault detection and fault prognosis

Publication Advantages Limitations

[45] Proposed approach: detects and classifies different
mechanical faults in unlabeled data.

Not identified

[50] LSTM: captures nonlinear relationships in sequen-
tial data.

ARIMA: models linear associations present in
time series data.

Not identified

Proposed approach: optimization of the perfor-
mance of the proposed fault prognosis model.

[59] WPGMC clustering: interpretability.

RNN: captures complex, nonlinear relationships
in time series data.

Not identified

Proposed approach: uncovers patterns of wear and
tear in unlabeled data.

[74] Random Forest: improved performance; robust-
ness when handling numerical data and real-world
problems.

Not identified

Proposed approach: improved accuracy.

[58] Autoencoder: can learn the relationship between
the input data variables.

Proposed approach: anomaly threshold is defined
arbitrarily; could use more a more sophisticated
model to improve prediction accuracy.

Proposed approach: can learn from unlabeled data;
applicable to different domains.

[75] GMM: capable of reducing the number of clusters. Not identified

FP-Growth: handles large databases efficiently;
can handle itemsets with low support threshold.

Proposed approach: interpretability; can handle
different types of sensor data; simple to set-up.

3.5.3 Hybrid models

Hybrid machine learning models are created with the
intention of solving tasks that a single algorithm, or
type of algorithms, is not suited to handle. The analysis
performed in [45] demonstrated that supervised learning
algorithms are more appropriate for classification tasks but
require labeled data and misclassify unknown faults. Semi-
supervised algorithms can overcome these limitations, but
are not capable of distinguishing between fault types, which
is where unsupervised clustering algorithms can be useful.
The combination of these different types of algorithms led
to the development of a predictive maintenance system
capable of detecting and classifying different mechanical
faults from unlabeled data.

In [50], Cheng et al. decided to combine the strengths of
ARIMA models and LSTM neural networks to optimize the
performance of the proposed fault prognosis model. Since
LSTM networks are artificial neural networks capable of
handling long-term dependencies, they are ideal to capture
nonlinear relationships in sequential data. Conversely,
ARIMA models, which were developed for time series

analysis, are well suited to model the linear associations
present in time series data.

The study presented in [59] employed clustering
techniques and a recurrent neural network to overcome
the problem of missing labels. The weighted pair-group
method using centroid (WPGMC) was chosen for its
ability to create homogeneous groups that could be more
easily interpreted, while the RNN was selected because
it possesses internal memory and is, therefore, able to
capture complex, non-linear relationships in time series
data. This ability is particularly important to uncover
the patterns of wear and tear that occur in industrial
equipment.

In [74] a random forest was used to perform fault
detection due to its robustness when handling numerical
data and real-world problems. Nonetheless, to improve the
model’s performance, DBSCAN was first used to detect
outliers that might represent noise in the sensor data. This
method improved the random forest’s accuracy by 1.462%
and further experiments demonstrated that using DBSCAN
to detect and remove outliers improved the accuracy of other
models as well.
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Table 15 Advantages and limitations of the latent variable models employed for mechanical fault detection and fault prognosis

Publication Advantages Limitations

[47] Algorithm: suitable to handle data generated from
multimodal distributions.

Algorithm: assumes the data was generated from
a mixture of finite Gaussian distributions.

[65] Proposed approach: real-time analytics; scalable
distributed implementation.

Not identified

[54] Algorithm: cluster centers can adapt to new data;
capable of classifying data despite noise and
outliers.

Not identified

Proposed approach: capable of gaining a deep
understanding about the equipment’s perfor-
mance.

[64] Algorithm: interpretability; suitable for small
sample size and high-dimensional data.

Not identified

Proposed approach: Produces stable and consistent results.

[60] Algorithm: high computational efficiency; greater
adaptability; robust to noise; uncovers patterns in
raw time series data.

Not identified

Proposed approach: superior periodic impulse extraction.

[62] Algorithm: can handle raw multi-dimensional
time series; solves the problem of empty cluster
creation.

Algorithm: the time-series must be synchronous

The approach proposed in [58] constructs a health index
by taking advantage of an autoencoder’s ability to learn the
relationship between the input data variables. Simple linear
regression was subsequently used to predict future values
of the health index and calculate the RUL. The proposed
methodology is capable of learning from unlabeled data,
and it was demonstrated that it can be applied in different
domains. However, it is precisely because run-to-failure
data wasn’t available that the anomaly threshold had to be
defined somewhat arbitrarily. Additionally, the prediction
accuracy could be improved by using algorithms more
sophisticated than simple linear regression.

The methodology proposed in [75] combines several
learning models to perform fault prediction in a press
module. An important concern when developing the fault
prediction method was its interpretability, which is why
the authors opted for an association rules approach.
Additionally, the proposed approach requires few tuning of
parameters and is generic enough to be applied to other
types of sensor data.

3.5.4 Latent variable models

In the study presented in [47], the authors identified
multimodal distributions when plotting the data. As a non-
parametric method of density estimation, a GMM represents
an appropriate choice for this kind of problem. However,
this type of model has the disadvantage of assuming the data

is generated from a mixture of finite Gaussian distributions
of unknown parameters.

In [65], Yu et al. developed a fault detection system
using a distributed version of PCA. The selection of PCA
took into consideration its real-time analytics ability when
integrated with cloud computing, as well as the scalability
of the distributed implementation. PCA was also a natural
choice since labeled data was unavailable.

In [54], the authors opted for a cognitive analytics-
based approach in order to gain a deeper understanding of
how an industrial robot arm performed. Unlike what the
authors identified as traditional data analytics frameworks,
the proposed framework merges the information from the
different data sources and analyses the correlation between
the data features to understand how the robot arm operates
under normal circumstances. K-means was used due to its
ability to accurately cluster the data even in the presence
of noise, but also because the cluster centres can be
dynamically adapted when new data arrives.

PSLR was used in [64] because it is theoretically
adequate to handle high-dimensional data and small sample
sizes. PSLR was also chosen due to its explanatory power.
Using correlation plots it’s possible to determine the
contribution of each variable to the prediction result. In
addition, PSLR produces results that are stable, consistent,
and can be easily maintained.

The authors of [60] took advantage of K-SVD’s robust-
ness to noise and its ability to capture the characteristic
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Table 16 Advantages and limitations of other algorithms and methods employed for mechanical fault detection and fault prognosis

Category Publication Advantages Limitations

Dynamic Bayes Networks [42] Algorithm: suitable to model time series data; can
detect long-term degradation; can handle dynamic
features in an unsupervised way.

Algorithm: performance decreases when
training and test data don’t share the same
distribution.

Proposed approach: handles data with asyn-
chronous sampling rates; doesn’t require compre-
hensive domain knowledge.

[63] Algorithm: capable of integrating data from
heterogeneous sources; capable of incorporating
information about uncertainty; able to rapidly
adapt to changes; short execution time; low
memory requirements; high performance.

Not identified

Partition-based algorithms [69] Algorithm: appropriate for online learning; low-
memory and processing requirements; compre-
hensible results.

Algorithm: Sensitive to the input parameters.

Rule-based models [49] Algorithm: allows for quantification of the conse-
quent item in closed intervals; incorporates online
pruning of the generated rules within the search
process.

Not identified

Proposed approach: improvement of the RUL
estimates; reduced error rates in the test set.

[51] Algorithm: appropriate for online learning; detects
dependencies between variables.

Not identified

Proposed approach: provides valuable information
to identify the origins of failures.

components hidden in raw signals to denoise the original
vibration signal. However, prior to doing so the K-SVD was
improved (IKSVD) to make it significantly more efficient
and adaptable. IKSVD in combination with fast spectral
correlation (FSC) demonstrated to be superior to traditional
approaches when it comes to extract periodic impulses from
vibration data.

The algorithm proposed in [62] is based on k-means
but employs a generalized notion of the Euclidean distance
to handle multi-dimensional time-series and also addresses
the issues k-means has with empty clusters. Moreover, the
algorithm is capable of handling raw time series without
needing any transformations such as the Fourier transform,
or the wavelet transform. Because of the generalized
distance defined for the algorithm, it is necessary for the
time series data to be synchronous but this can be achieved
with adequate data pre-processing.

3.5.5 Other approaches

The authors of [42] used a HMM since these models
assume that a system’s current hidden state is influenced
by its previous hidden state. This means a HMM is an
appropriate model for time series data and can be used to
detect long-term degradation. The HMM is also capable

of handling dynamic features in an unsupervised way. In
addition, the proposed approach, which combines a HMM
with sliding windows and a genetic algorithm, can handle
data with asynchronous sampling rates and doesn’t require
comprehensive domain knowledge. Nonetheless, since the
parameters of the HMM depend on the feature values of
the production cycles, when the contamination probability
distribution of a production cycle differs substantially from
the probability distributions of the production cycles used
to train the HMM the model’s performance decreases. This
can be remedied by taking into consideration the advice of
the maintenance experts when choosing production cycles
to train the HMM.

The R4RE algorithm proposed in [49] is an improvement
of the QARMA framework. As such, like QARMA, R4RE
is fully distributed and guarantees that all the resulting rules
are meaningful and meet the interestingness criteria defined
by the user. The R4RE algorithm surpasses QARMA by
overcoming two of its important limitations, namely it
allows for quantification of the consequent item in closed
intervals and incorporates online pruning of the generated
rules within the search process. In the study presented in
[49], these developments resulted in the improvement of the
RUL estimates and reduced the error rates obtained in the
test set.
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The rule-based method (XCS) presented in [51] has a
“covering” mechanism that enables the recalibration of the
rule set for unseen data without needing to re-train and
re-test the whole model, making it appropriate for online
learning. Since the proposed model is also suitable to detect
dependencies between variables and to recognize different
failure patterns, the rules generated by the XCS can provide
valuable information to identify the origins of failures.

In [63], the choice of a DBF to predict the degradation of
machinery took into account the difficulties of implement-
ing a predictive maintenance system. DBFs are well suited
to predict faults in industrial settings due to their ability
to integrate data from heterogeneous sources, to incorpo-
rate information about uncertainty and to rapidly adapt
to changes. Moreover, these models have a short execu-
tion time, low memory requirements and high performance,
which are key properties of industrial systems.

In [69], MCOD was chosen because of its low-memory
and processing requirements, which make it ideal for
processing streaming data, as well as for producing results
that are easy to understand. This algorithm has the downside
of being sensitive to the input parameters, which can
influence the number of outlier reports.

3.6 RQ5: Which of those algorithms andmethods
are used for data stream learning?

Only the studies presented in [55] and [69] proposed
methods for detecting faults directly from real-time data and
applied stream learning techniques.

The model proposed in [55], named SERMON, consists
of two RNNs that work in a cooperative manner to
obtain better results in terms of modelling the temporal
dependency present in streaming data, and the ability to
self-evolve allows them to adapt to the changes (drifts) that
characterize non-stationary data. This model is described in
more detail in Section 4.3.

The algorithm used in [69], MCOD, is a state-of-the-
art clustering algorithm developed for outlier detection in
data streams that is applied using a sliding window over
the most recent data [82]. As such, some parameters that
affect the functionality of the algorithm and how it is used
with streaming data must be defined. Parameters R and
k define, respectively, the radius of the neighborhood and
the minimum number of neighbors that must exist inside
that radius for a point to be considered an inlier. The
window size W constrains the amount of data that will be
processed at each step, either as a time interval or as the
number of datapoints, and the slide size S determines the
speed/length of movement of the window. MCOD performs
distance-based outlier detection, that is, a given object is
considered an outlier if it has less than k neighbors inside
radius R.

Asides from these studies, it is mentioned in studies [49,
51] and [39] that the proposed approaches are suitable or
can potentially be used for online learning, but in none of
them is that actually performed and described.

4 Discussion

The results presented in Section 3 will be discussed in
more detail in this section with the purpose of identifying
interesting trends and ideas. This section also aims to
provide an overview of the challenges faced when using
machine learning methods to detect mechanical faults and
predict faults in real manufacturing scenarios and consider
how future research efforts might address them.

4.1 RQ1: In which publication venues are studies
about the use of machine learning for mechanical
fault detection and fault prognosis
in manufacturing equipment published?

As presented in Section 3.2, studies about the topic of
interest have been published in a variety of conferences and
journals, ranging from journals about operations research
& management science to multidisciplinary conferences.
While the journals considered in this review are all peer-
reviewed journals with JCR Impact Factor (exclusion
criterion 3), 58.8% of which are ranked Q1 [31, 59–61,
63–67, 73, 74], the same quality verification could not
be performed for conferences since there is no ranking
system that evaluates the quality of conferences across
different scientific fields. However, it was observed that
of the eleven computer science studies published in
conferences, six were published in conferences ranked by
the Computing Research and Education Association of
Australasia (CORE). Two in conferences ranked C [41, 46],
three in conferences ranked A [51, 69, 70] and one in a
conference ranked A* [55].

As can be observed in Fig. 7, the number of publications
in conferences decreased in 2017 in comparison with the
previous year but increased considerably between 2017 and
2019. However, the number of publications in conferences
decreased again in 2020 and there were no conference
publications in 2021 (until October). On the other hand,
while no study was published in journals before 2017, the
number of journal publications has been increasing steadily
since 2018 and the number of publications in 2021 has
already equalled the number of studies published in 2020
(as of October 2021).

Figure 8 shows the distribution of publications in
conferences and journals for the most prolific countries.
While China published considerably more in journals
than in conference proceedings, the opposite was true
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Fig. 7 Publications in
conferences and journals across
the years

for Germany and Greece. However, since most countries
contemplated in this review only published one or two
studies it is difficult to discern which type of venue is
favored.

4.2 RQ2: In which scientific fields has the use
of machine learning for mechanical fault detection
and fault prognosis in manufacturing equipment
been researched?

It was shown in Section 3.3 that 21 of the 44 selected
studies consist in contributions from the computer science
community. This can be attributed to this review’s focus

on machine learning, a discipline that arose from the
intersection of computer science and statistics and is seen
as a major branch of artificial intelligence [83, 84]. In
addition, the presence of eleven engineering studies and six
multidisciplinary studies is in line with the nature of fault
detection and prognosis, which involves knowledge from
different areas of engineering and computer science.

A more in-depth analysis reveals about as many
computer science studies were published in conferences
as in journals (Table 17). This can be attributed to the
fact that, while most scientific fields prefer to publish in
high quality journals, the computer science community
typically favors publishing in prestigious conferences [85].

Fig. 8 Publications in
conferences and journals for the
top 3 countries
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Table 17 Publication per scientific field and venue type

Scientific Field Conference Journal

Computer Science 11 10

Multidisciplinary 5 1

Engineering 1 10

Automation & Control Systems 2 0

Instruments & Instrumentation 0 2

Operations Research &
Management Science

0 1

Wireless Communications,
Networking and Signal
Processing

1 0

This aspect is further supported by the fact that about 44%
of the conferences where computer science studies were
published have a CORE ranking of A or A*.

Most multidisciplinary studies and all the studies from
the fields of automation & control systems and wireless
communications, networking, and signal processing were
published in conferences. On the contrary, the majority of
engineering studies were published in journals, as were all
of the studies from the remaining scientific fields.

Figure 9 shows the percentages of studies published per
year by the top three scientific fields. Computer science
studies were published almost every year between 2016 and
2021, except for 2017 when all the studies originated from
the field of engineering. Although the largest proportion
of publications between 2018 and 2020 came from the
computer science community, the number of publications
from this field has been decreasing since 2019. On the
contrary, the number of engineering publications has been
increasing since 2019 and, until October 2021, there were
more publications from the field of engineering in 2021 than
from computer science. The number of multidisciplinary
studies published since 2018 has been very similar, with
no notable increase or decrease in the number of yearly
publications.

As seen in Section 3.2, several studies were published in
venues affiliated with the IEEE. This might be explained by
the fact that 86.4% of the 44 selected publications consist in
computer science, engineering or multidisciplinary studies,
which are some of the areas of focus of that organization
[86].

4.3 RQ3: What machine learning algorithms
andmethods are currently employed for mechanical
fault detection and fault prognosis
in manufacturing equipment?

In this subsection, the different algorithms and techniques
presented in Section 3 are examined in more detail.
The descriptions of the studies are organized according
to the categories identified in Section 3.4: decision tree
models, artificial neural networks, hybrid models, latent
variable models and other approaches. Additionally, within
each category, the studies are organized according to
subcategories (where pertinent) and year of publication.

4.3.1 Decision Trees

Machine learning algorithms and methods belonging to
the category of decision trees were some of the most
commonly used for the tasks of detecting mechanical
faults and predicting faults in manufacturing equipment in
industrial environments. Ensemble methods, in particular,
were widely used, as exemplified by the application of
random forest models in 11.4% of the studies under
consideration. In 2018, Amihai et al. [44] derived key asset
health condition indices from raw vibration data and used a
random forest model to forecast these metrics up to seven
days ahead. A comparison of RMSE values for different
look-ahead times demonstrated the random forest always
performed better than a persistence model. In that same
year, the authors of [46] tested different machine learning
algorithms to predict equipment faults using process data
from anode manufacturing machines. The best results were

Fig. 9 Proportion of studies
published per year by the top 3
scientific fields
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obtained with a random forest model (accuracy = 99.2%;
max depth = 5-10) and with a decision tree model (accuracy
= 99.2%; max depth = 5), showing it was possible to predict
faults 5 to 10 minutes before their occurrence. Paolanti et al.
[43] implemented in 2018 a predictive maintenance system
to predict the health status of the spindle’s rotor of a CNC
woodworking machine. To achieve this, the authors trained
a random forest model on drive and vibration data collected
from the machine to classify its condition into one of four
classes, having obtained an average accuracy of 92%. In
a study published in 2019,Binding2019, operational data
and downtime data from a large central imprint printing
press were used to predict failure events with a prediction
horizon of 30 minutes. After analyzing the data, the authors
focused on the prediction of mechanical failures in print
units, such as leakages and deterioration of components.
To achieve this, different classification models were trained
and evaluated, namely logistic regression, random forest
and extreme gradient boosted trees (XGBoost). Considering
the F1-score for different decision thresholds, the random
forest and XGBoost models yielded the best results, but
the authors of the study chose to use the random forest
model in the implementation of the predictive maintenance
system. The predictive algorithms were also used to help
identify print unit failures in the downtime data, in a manner
similar to iterative semi-supervised labelling schemes. Also
in 2019, the study described in,Aremu2019 used Kullback-
Leibler divergence to construct a health indicator (HI) of
multi-sensor systems to represent a system’s deviation from
its normal state. The usefulness of the HI for prognosis
purposes was evaluated by comparing the RUL predictions
for a semiconductor manufacturing equipment using the
original data and the HI data. The results obtained using
random forest regression and Gaussian process regression
demonstrated the constructed HI always provided more
accurate predictions, with the random forest model outdoing
the Gaussian process in terms of RMSE (20.34 vs 24.7) and
MAE (26.02 vs 28.63).

Other examples of decision tree ensembles include the
work presented in [72] in 2017, where the authors described
a procedure for fault prediction that leveraged cyclic
manufacturing process data from similar work systems
to improve the accuracy of the fault detection model.
Since faulty cycles were rare, machine-to-machine (M2M)
communication was used to acquire data from five injection
moulding machines, thus increasing the amount of available
fault data. To assess the effect of using data from several
machines of the same type on model performance, three
AdaBoost models, with decision stumps as estimators, were
fitted to the data and evaluated using a machine-to-machine
methodology (M2M): 1) a model trained and tested with
data from all the work systems, 2) a model trained and
tested with data from a single work system and 3) a

model trained with data from all the work systems except
one whose data was used exclusively to test the model.
Through a series of experiments, the authors demonstrated
that the best performing model was the one trained and
tested on data from all the machines (F1-score = 0.082),
while the performance of the model tested with data that
was not used for training was considerably worse (F1-score
= 0.03). It should be noted that the performance of the
proposed method depends on the degree of imbalance of
the data. The F1-score results were low because the ratio
of faulty to normal cycles (1:1484) was very low, but the
model trained with data from all the machines performed
considerably better than random guessing. Additionally,
these results show that sharing data from similar work
systems can improve the fault detection accuracy if data
from the system of interest is also used to train the model.
In 2020, the authors of [76] proposed a predictive tool for a
cyber physical production system that uses GBDT to predict
equipment failures in a CNC milling machine. Data was
collected from the machine’s central control system, as well
as from external sensors used to monitor parameters such as
vibration severity and amplitude. Rolling summary statistics
of these variables, within 10, 30 and 60 second windows,
were also added to the historical data. Additionally,
information about the machine’s operation mode, operator
door mode (open or close) and program block number was
used to infer when failure events occurred and label the
data accordingly. GBDT was used initially to determine
the relative importance of features and select the most
appropriate time lag (60 sec) to use as input to dynamic
principal component analysis (DPCA). DPCA was used to
eliminate the autocorrelations present in the data and extract
the principal components from the normalised 60-second
lag feature space. This data was then fed to the GDBT
to learn a binary classification model that predicted the
probability of a production stop. Using the AUC score, the
authors showed the predictive tool has an accuracy of 73%
on unseen data.

Tree ensembles were also used for survival analysis [71]
and anomaly detection [67]. In 2019, the study presented
in [71] explored the rich data provided by the plant
floor automation and information system (PFS) of a real-
world automotive manufacturing line to learn complex
and dynamic machine breakdown patterns. The authors
proposed a manufacturing system-wide balanced random
forest (MBRSF) model, whereby a random survival forest
was used to estimate a hazard function from balanced
system-wide data with the purpose of quantifying the
likelihood of breakdown events over time. Experiments
performed on 20 machines demonstrated the performance
of the MBRSF was about 90% better, in terms of the
intergrated Briers score, than the performance of other
survival models. In a study published in 2020, Kolokas
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et al. [67] presented a methodology for fault prognosis
that used an anomaly detection technique to predict faults
from process data, but approached the problem as a case of
binary classification. An isolation forest was used to detect
anomalies in real industrial data, related to aluminum and
plastic production, and correlate them with upcoming faults
according to a predefined forecasting horizon. The model’s
performance was assessed using the Matthews correlation
coefficient (MCC) to measure the correlation between the
anomalies detected by the IF and the data’s target labels,
having obtained results up to MCC = 0.73.

CART models are also present, being the models of
choice in 6.8% of the selected studies. In 2016, Linard
and Bueno [41] described a new method for dynamic
maintenance scheduling of large-scale printers. Labelled
data obtained from printing test pages was used to train
a decision tree that was deployed in real-time to predict
whether failures would occur or not in the nozzles of the
printers. The output of the decision tree was then used to
update an automatic maintenance schedule defined by a
timed automaton. The authors compared the performance
of different classifiers but decided to use a decision tree
not only because it provided the best results (precision =
0.788; recall = 0.631), but also due to its nature as a white
box model since interpretability is particularly important in
industrial contexts. In 2019, decision tree models were also
used in [68] to estimate the failures of cold forging machines
in an industrial company of the automotive industry. The
decision tree model provided better results than the other
evaluated algorithms, successfully predicting failures that
occurred unexpectedly in the factory between 2014 and
2017 with an accuracy of 77%.

4.3.2 Artificial neural networks

Publications where artificial neural networks were
employed for mechanical fault detection and fault prog-
nosis account for more than a quarter of the studies under
consideration (27.3%).

In 2016, Qing et al. [40] proposed a BPNN optimized by
a multilevel genetic algorithm (MGA-BPNN) to predict the
RUL of segment bearings in continuous casting equipment.
The proposed model aimed to enhance the nonlinear
learning and generalization abilities of the BPNN and thus
obtain an improved forecasting model. Experimental results
showed the MGA-BPNN model was better at predicting the
RUL than either a BPNN or a BPNN optimized by a genetic
algorithm and could be used as an effective means of fault
prognosis.

In 2017, the authors of [57] describe a system
framework for predictive maintenance based on industry 4.0
concepts. The system performed fault prognosis using an
artificial neural network to uncover the hidden patterns of

degradation that led to a backlash error in a CNC machine
center. After the model was trained using historical data,
the artificial neural network was deployed in real-time to
make predictions based on condition monitoring data. These
predictions were used by a decision support system to
formulate a maintenance strategy.

Luo et al. [31] proposed, in 2018, a method for
early fault detection in CNC machine tools under time-
varying conditions that relied on deep learning to identify
impulse responses from vibration data. The deep learning
model consisted of a layer of stacked sparse autoencoders
(SSAE), meant to reduce the dimensionality of the input
data, and a back-propagation neural network (BPNN)
layer that classified the vibration signals into impulse and
non-impulse responses (accuracy = 97.3%). The impulse
responses selected by the deep learning model were used to
identify the dynamic properties of the machine tool, which
were then used to develop a health index that reflected the
equipment’s gradual deterioration process.

In the study presented in [70] in 2019, an LSTM
network was built to predict faults in industrial ovens
from sensor data and log events. The network was trained
using consecutive time series and was used to predict
the five subsequent future events, i.e., it predicted events
25 minutes into the future. Considering the data used to
train the network was strongly imbalanced, its performance
was assessed using the Matthews correlation coefficient
(0.691), recall (0.790) and F1-score (0.803) as evaluation
metrics. The results showed the values of the evaluation
metrics decreased the further into the future a prediction
was, but the network’s performance was acceptable for all
predictions.

Also in 2019, the fault diagnosis method proposed in
[81] took advantage of digital twin technology to transfer
fault information from the virtual entity to its physical
counterpart. The digital twin consisted in a high-fidelity
dynamic virtual model of a car body-side production line
that simulated the entire product life cycle. This simulation
data was used to build a diagnosis model that combined a
SSAE layer to perform feature extraction from unsupervised
data and a softmax classifier that used the extracted features
as inputs and assigned probabilities to the class labels.
Subsequently, deep transfer learning was used to relay
the knowledge gained in the virtual space to a new fault
diagnosis model built in the physical space. Monitoring data
from the physical entity was used to improve the model,
and an adaptation layer between the feature extraction and
classification layers minimized the distance between the
data distributions from the virtual space and the physical
space. The virtual and physical entities of this digital twin-
assisted fault diagnosis method cooperated with each other
to provide accurate fault predictions (average accuracy =
97.96%) and adapt to new working conditions.
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The study described in [78] introduced in 2020 a
predictive maintenance framework to detect and classify
the severity of mechanical faults in conveyor AC motors.
Principal component analysis was used to reduce the
dimensionality of time series data collected from the
conveyor system to two channels, after which the data
was encoded into images using the Gramian angular
field method. The resulting images were used to train a
convolutional neural network which outputted the “fault
severity in the system”, i.e., based on the input images
the CNN classified the motor’s state as “no fault”, “minor
fault” or “critical fault”. To improve the model’s accuracy
when using more extensive networks, the authors added
the option to use a PReLU activation function instead of
the more common rectified linear unit function (ReLU).
The proposed approach was compared with an SVM and
a CNN that used ReLU as its activation function. As
shown in the experimental results, for small datasets the
CNN’s performance was very similar using either PReLU or
ReLU, with an accuracy of 100% in both cases. The SVM
performed considerably worse, having obtained an accuracy
of 55.2%.

In 2020, deep learning was also used to perform fault
prognosis from times series data in [77]. The authors
proposed a TensorFlow-enabled deep neural network to
perform multiclass classification of the condition of a small
trolley’s cylinder in an automobile production line. The
performance of the proposed approach was compared to two
other methods, namely PCA and HMM. The TensorFlow-
enabled DNN performed better in all of the experiments,
with an average accuracy of 80% versus 63% for the HMM
and 50% for PCA. After training the DNN model offline
using historical data, it was deployed in real-time to track
the degradation of the equipment.

In another study presented in 2020 [56], a multilayer
perceptron was used for fault prognosis of industrial
packaging robots. Due to the facility’s lack of IoT
technology, the data of interest, which consisted in failure
notifications and associated information, was obtained from
the enterprise resource planning (ERP) system. The MLP
was composed of eight input nodes, 20 hidden layer nodes
and four output nodes that indicated where and when a
future failure would occur (accuracy = 91%). The authors
of the study also performed a component-based reliability
analysis whose results validated the MLP’s predictions
(reliability = 75%).

Still in 2020, the method proposed by Das et al. combines
two self-evolving recurrent neural networks to detect
machine faults autonomously and in an online fashion [55].
The model, named SERMON, consists of two components:
SERN, a Skip-connected Evolving Recurrent Network, and
MERN, a Multilayer Evolving Recurrent Network. The two
networks work in a cooperative manner to obtain better

results in terms of modelling the temporal dependency
present in streaming data, and the ability to self-evolve
allows them to adapt to the changes (drifts) that characterize
non-stationary data. SERMON also includes a mapping
unit (MU) that suggests possible data labels in the event
of a delay in the arrival of the true label. SERMON was
validated using data from a real-world industrial case study,
i.e., to predict the condition of a 3D printing nozzle as either
“healthy” or “clogged” based on nozzle shape features
such as symmetry shape feature and slope feature, among
others. The performance of SERMON was compared with
seven other models in terms of classification rate, parameter
count, hidden unit count and execution time and considered
scenarios of no-delay, finite delay, and infinite delay in
receiving labels. The classification rate and hidden unit
count of SERMON was better than all the other models
in all scenarios (average accuracy in a no-delay scenario:
72.08%; average accuracy in a finite/infinite delay scenario:
69.39%) and while one model (SkipE-RNN) obtained better
results in terms of parameter count and execution time,
its accuracy rate was always more than 10% lower than
SERMON’s.

In 2021, Bampoula et al. [73] proposed an approach
for fault detection and prediction based on LSTM-
autoencoders. A prototype was tested in a steel production
factory using three months of historical data obtained
from a rolling mill machine and focused on the analysis
of the surface temperatures and hydraulic forces of the
machine’s two cylinders. The condition monitoring data
obtained from the machine was segmented into time-series
sequences according to three possible equipment health
states, namely “good”, “bad” and “intermediate” operating
conditions. Subsequently, each LSTM-autoencoder was
trained using a dataset consisting only of time-series
sequences corresponding to a given state. Afterwards, new
data was fed to each LSTM-autoencoder and classified
according to the highest accuracy obtained. That is, if the
LSTM-autoencoder that obtained the highest accuracy was
the one trained only with healthy data, the new data was
classified as “good”. Finally, the authors considered the
fatigue rate of the machine was constant and estimated
the remaining useful life based on the classification
accuracy. Performance results obtained with the prototype
demonstrated that unnecessary preventive maintenance
actions could be reduced, therefore decreasing the cost of
maintenance operations.

In 2021, a PdM methodology was proposed in [79]
that uses an LSTM-GAN to monitor the health state
of machines, as well as predict when and in which
machine a fault will occur. The proposed PdM methodology
also includes a maintenance decision model that suggests
maintenance operations according to the output of the
prediction model. The methodology was tested in a
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manufacturing factory located in China, where sensing
devices monitored eight different machines (two automated
guided vehicles, two robots, two milling machines and
two turning machines) for over two years. Initially, the
health state of the manufacturing system was predicted as
being in one of four states: “good”, “watching”, “warning”
and “fault”. If a machine was in “good” condition, no
maintenance was required. If it was in either “watching”
or “warning” states, a minor maintenance strategy would
be implemented. In case of a “fault” state, the fault
type and time of occurrence would be predicted by the
fault prediction model and a major maintenance strategy
would be implemented. Both the state prediction and
the fault prediction abilities of the LSTM-GAN were
compared with the results obtained using three other types
of neural networks. The comparison analysis revealed the
LSTM-GAN outperformed the other networks in both state
prediction (average accuracy = 98.87%) and fault prediction
(average accuracy = 98.92%).

In an additional study published in 2021 [66], the health
model of a predictive maintenance system that takes into
account time-varying operational conditions and allows for
the subsequent scheduling of maintenance and production
was introduced. The system uses condition monitoring
sensor data, production data and future production orders
to create a production schedule that incorporates the
necessary maintenance actions. The proposed framework
was validated in a real industrial use case with data
from a multifunctional machining centre used to produce
automotive components. The machine’s condition was
assessed using two CVAE models: 1) HA-CVAE that takes
as input condition monitoring data and the corresponding
operating regime information and derives a set of health
indexes that model the underlying trend of degradation
under time-varying operational conditions, and 2) DS-
CVAE, a data simulator used to generate realistic sensor
data based on the conditional probability distribution
learned from the training data for a specific operating
regime and health state. The estimation of the health index
was evaluated using metrics described in the prognostics
and health management (PHM) literature to assess the
trajectory of the health index over time (e.g., monotonicity,
consistency). Validation experiments demonstrated that the
proposed method was not only capable of estimating the
machine’s health under different operating conditions and
in a scenario where labelled data was scarce but was also
able to predict the machine’s future health and degradation
condition.

4.3.3 Hybrid models

Hybrid models integrate different machine learning models
and techniques to solve problems that a single model is not

capable of handling, or to obtain better performance. 18.2%
of the studies selected in this review made use of hybrid
models, in some cases to address the absence of labeled
data.

In 2018, Syafrudin et al. [74] proposed and described
the implementation of a real-time monitoring system that
combined IoT-based sensors, big data technology and a
hybrid prediction model to predict faults in manufacturing
equipment. The system was tested for 8 months in
an automotive manufacturing company in Korea. In the
proposed prediction model, the DBSCAN algorithm was
first used to detect outliers in the sensor data that might
represent noise introduced by problems in the sensing
devices or by network connection issues. The detected
outliers were removed from the dataset before it was used
to train a random forest model which was then deployed in
the monitoring system to perform fault prediction in real-
time. When compared with other classification models, such
as naive Bayes (accuracy = 93.57%), logistic regression
(accuracy = 97.95%) and multilayer perceptron (accuracy
= 96.78%), the DBSCAN + random forest hybrid model
achieved better results (accuracy = 100%). Furthermore,
the use of DBSCAN to remove noisy data improved
the performance of the other classifiers as well, but the
proposed model remained the best performing one.

In the same year, Strauß et al. [45] proposed a predictive
maintenance approach that combined semi-supervised,
unsupervised and supervised learning techniques to detect
and classify mechanical faults in a heavy lift EMS at the
BMW Group. Although fault data was available, the authors
took into consideration the fact that this information is
often scarce. As such, the problem of fault detection was
initially approached using a semi-supervised method to
perform anomaly detection. Three different models were
built using normal data exclusively but were evaluated
using a dataset containing both normal and fault data to
assess their ability to detect data points that diverged from
‘normality’. Since there were several types of faults and the
semi-supervised models were unable to distinguish between
them, unsupervised models were used to cluster the fault
data. By using semi-supervised and unsupervised models
together, the authors were able to create a dataset that
contained normal data, as well as instances of three different
types of failures. This data was then used to train and
evaluate eight supervised models, four of which had an F1-
score of more than 90%. Model deployment in the predictive
maintenance system took into consideration not only each
model’s performance but also computational requirements
- the final selected models were one-class SVM, K-means
and random forest.

In 2019, the study presented in [50] proposed a fault
prognosis model which combined an ARIMA model with a
LSTM network to predict faults in a ball bearing automatic
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production line. The ARIMA model was used to forecast the
linear component of the time series (sensor data) collected
from the production line, whereas the LSTM forecasted the
nonlinear component obtained from the ARIMA model’s
prediction. The final predicted value resulted from the
summation of the linear component with the prediction
error of the nonlinear component of the ARIMA prediction.
Experimental verification demonstrated that the proposed
hybrid model performed better than either model by itself
(MAE = 0.00425; RMSE = 0.03584).

As described in the artificial neural networks subsection,
in 2019 Rousopoulou et al. [70] presented a solution for
predictive maintenance of the industrial ovens used by a
medical devices manufacturer. However, while the authors
selected an LSTM network to predict faults from condition
monitoring sensor data and log events, they decided to
combine an outlier detection method with a classifier
to detect faults in unlabeled acoustic data. Three outlier
detection algorithms were tested and compared, namely
DBSCAN, LOF and mean absolute deviation (MAD), with
DBSCAN yielding the best results, i.e., it detected the most
outliers. The detected outliers were marked as faulty, but
since this class accounted for only 14% of the data, the
synthetic minority oversampling technique (SMOTE) was
used to increase the number of data points belonging to the
minority class and balance the dataset. This data was then
used to train an SVM capable of detecting new faults in live
audio measurements with an accuracy of 85% and an F1-
score of 0.86. A fault notification was issued by the system
if the model detected five consecutive faults.

In another study published in [59], the development
of a prognostic maintenance model in a context where
no labeled data existed was described. The study was
carried out at a German automotive manufacturer to address
the situation where maintenance of a milling tool was
performed subjectively by machine operators based on
visual inspections. Although no labels were available, the
proposed method was developed with the intention of
uncovering latent information hidden in historic data that
included maintenance and production records, control data
and sensor data. After performing a thorough analysis of
the data, taking domain knowledge into consideration, the
authors approached the problem from two orthogonally
related dimensions: 1) time dimension, that is, the time
when a tool was replaced and 2) condition dimension,
referring to information about damaged and undamaged
tools that was inferred from the available data. Based
on these dimensions, a 4-field matrix was defined to
differentiate between correct and incorrect tool replacement
decisions. Clustering techniques were applied along both
dimensions to assign the data observations to the 4-
field matrix. The time dimension was grouped using
the agglomerative hierarchical clustering algorithm named

weighted pair-group method using centroid (WPGMC),
with cluster one representing tool replacements that were
performed at a late moment in the tool’s lifetime and cluster
two representing tool replacements that were performed
early. When considering the condition dimension, time
series’ sequences were clustered into two groups using
the MAD to measure the intensity of the sequences’
oscillations. Sequences with a lower MAD value, i.e.,
weaker oscillations, were assigned to cluster one, while
the remaining sequences were assigned to cluster two. The
results obtained from clustering the data were orthogonally
related and, based on that, the data observations were
assigned to each of the quadrants of the 4-field matrix.
Since time series’ sequences of “type 1” in the 4-field
matrix represented the replacement of an undamaged tool
late in its lifetime, thus reflecting correct decisions made
by the machine operators, this data was used to train and
test a RNN to predict the tools’ RUL. The RNN model
was then used to predict the RUL of “type 3” observations
(undamaged tools replaced too early), showing that using
the prognostic model would have resulted in an extension
of the tools’ lifetimes for about one-third of these tool
replacements.

In 2020, Tran et al. [80] described a method to detect
drill faults from sound data recorded from a drill machine
at Valmet AB in Sweden. To detect abnormalities in the
drilling machine, sound data was collected when the drill
was broken and when it was operating normally. The
drill sounds were converted to images, specifically mel
spectrogram images and scalogram images, and features
were extracted from these images using a pre-trained CNN
architecture – VGG19 architecture trained on the ImageNet
dataset. NCA was then used to select the most representative
features and reduce the dimensionality of the data.
Afterwards, the features obtained from the mel spectrogram
images were used to train several classifiers based on KNN
and SVM, whose performance was compared to select
the best model. The best overall accuracy was obtained
by the Medium Gaussian SVM and the Quadratic SVM,
but since the purpose of this study was the detection of
broken drills, the selected model was the Medium Gaussian
SVM, which attained an accuracy of 90.12% and a recall
of 0.88 when classifying the broken sounds. A similar
procedure was followed using the scalogram images, but
in this instance the best performing classifier was the
ensemble subspace KNN with an accuracy of 80.25%.
These two approaches were compared with additional
techniques and the results demonstrated that the proposed
methods performed considerably better at classifying the
drill sound signals.

In 2021, the authors of [58] proposed a framework
based on autoencoders and simple linear regression to
construct a health index that was subsequently used to
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predict the RUL of industrial equipment. The proposed
methodology is applicable to situations where no fault
history data is available. To construct the health index, an
autoencoder is used to learn the normal structure of the
data. The health index consists in the difference between
the input data and the reconstructed data which is calculated
across all variables using the mean absolute error (MAE).
Subsequently, the authors use simple linear regression to
predict the trend of the health index as new data is fed into
the system. If the trend of the health index increases and the
slope parameter of the regression becomes large, it means
the monitored equipment is displaying abnormal behaviour.
The RUL is defined as the difference between the health
index at the current time and the time at which a failure is
predicted to occur. This methodology was applied in two
industrial use-cases: a pump equipment and a robot arm. In
the first case, data was collected from three different pumps
and a small amount of failure data was obtained for purposes
of model validation. Experimental results demonstrated the
value of the health index rose before the occurrence of
a failure, which was accurately predicted. For the robot
arm use case, vibration sensors were attached to the edge
of the arms of five different robots to collect data at an
average rate of 1500 samples per day for periods of time
between three and ten months. Once again, the proposed
method was capable of correctly predicting the occurrence
of faults. To verify the reliability of their proposal, the
authors run additional experiments to predict the RUL with
an isolation forest. A comparison of results based on the
MAE and the root mean square error (RMSE) demonstrated
the proposed method was better at predicting the RUL in all
the experiments undertaken using data from both the pumps
and the robot arms.

Also published in 2021, the study presented in [75]
describes a methodology for fault detection and prediction
in cold forming processes of a Phillips factory in the
Netherlands using GMM, the FP-Growth algorithm and
CBA-CB. In this study, information about the normal
operating conditions of a press module was collected for
over a year. The data included: material batch, maintenance
logs and data from acoustic emission sensors. Using the
matrix profile - a data structure for time series analysis -, two
meta-time series were obtained from the acoustic emission
data, which were used for anomaly detection, and for fault
prediction using rule mining. For anomaly detection, the
authors opted for a statistical approach since no labelled
data was available that could guide the definition of the
anomaly threshold. The matrix profile was also used for
fault prediction by first mining salient subsequences to find
common patterns. Subsequently, PCA was applied to the
salient subsequences and the resulting principal components
were clustered using GMM. The acoustic emission data
was then segmented into non-overlapping time windows

and each pattern within a window was labelled according
to previously discovered clusters. Finally, the acoustic
emission data was integrated with the maintenance logs
and FP-Growth was used to mine association rules from
this data, which were then used to build a classifier
using a modified version of the CBA-CB algorithm. The
results obtained with the fault prediction module were
compared with the performance of a majority classifier,
which obtained a high micro F1-score but was unable to
predict any events. The proposed method, on the other
hand, was able to predict faults related to three of the
four maintenance events of interest with a micro F1-score
of 0.632. It should be noted these events are extremely
infrequent, occurring less than 0.05% of the time.

4.3.4 Latent variable models

Publications that employ latent variable models account for
13.6% of the selected studies.

In 2018, Amruthnath et al. [47] described a methodology
for mechanical fault detection of a furnace fan using
unsupervised learning. The authors began by computing
a 99.9% confidence interval using Hotelling’s T-squared
statistic, after which the data was clustered using a Gaussian
mixture model fitted by expectation-maximization. The
clusters obtained using the GMM model were then
identified using the T-squared statistic and the maintenance
crew’s expert knowledge. Using only unlabeled vibration
data, the proposed methodology was able to discover
a healthy state, a faulty state, and a reset state (fan
substitution).

The study presented in [65] in 2020 proposed a big
data architecture for predictive maintenance. The fault
detection system used sensor data, such as temperature and
vibration, to predict failures in manufacturing equipment.
Since the data was unlabeled, anomalies in the equipment
were detected by a distributed version of PCA that was
implemented using MapReduce. The output of the PCA
model was combined with a deterministic mechanism that
monitored the number of anomalies detected in a 5-minute
time window to warn the factory engineers about an
impending failure if the number of anomalies exceeded a
certain threshold. The proposed architecture was tested from
2013 to 2018 in a real production environment.

In the same year, a framework was proposed in [54]
that consists in a cognitive analytics-based approach for
machine condition monitoring and anomaly detection. The
authors used unsupervised learning and sensor fusion to
continuously monitor the health of an industrial robot and
detect anomalies in its operation, as well as predict the
time when maintenance activities might be needed. The
experimental study was performed using only data that
reflected the robot’s operation under normal conditions,
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i.e., no information about faulty states was available. The
data was obtained from three independent sources, namely
the robot controller, an energy meter and accelerometer
sensors. The proposed cognitive analytics framework
involved performing several pre-processing tasks to the data
obtained from each independent source so that it could
be synchronized before it was fused and clustered using
the k-means algorithm. Considering three positions for the
robot arm (top, middle and bottom), the data was grouped
into three clusters. Since this data represents the robot’s
operation under healthy conditions, the framework’s AI
engine model, which monitored data arriving in real-time,
calculated the distance from the new data points to the
centres of the clusters. If that distance exceeded a predefined
threshold, the data point was flagged as an anomaly. The AI
engine was also responsible for monitoring the deviation of
the clusters’ centres over time to determine when the robot
might need maintenance actions.

Also in 2020, a method that combines FSC with an
improved version of K-SVD was proposed in [60] to detect
early weak faults in rotating machinery (or faults affected by
strong background noise). IKSVD is an improved version
of K-SVD that uses self-adaptive matching pursuit instead
of optimal matching pursuit for sparse coding, which
makes IKSVD considerably more adaptable and efficient.
The proposed method was used to detect faults in a coal
mill of a cement plant, which displayed a large vibration
phenomenon related to the bearing pedestal. Traditional
approaches using envelope demodulation spectrum and FSC
could not extract the fault features of the rolling bearing,
but the proposed method, which uses the IKSVD method to
enhance the impulse feature components of the signal and
FSC to extract the fault features from the denoised signal,
was able to detect a fault in the small gear of the coal mill.
Disassemblage of the mesh gears confirmed the presence of
wear damage on the small gear tooth.

The study presented in [64] in 2021 describes a predictive
maintenance approach that consists in predicting the current
wear of a rotating metal bush at Tata Steel in the UK.
Motivated by the lack of practical studies in industrial
contexts, the authors of the study put together a predictive
maintenance system and demonstrated how a data-driven
model could be used for bearing wear prediction in
situations where the data is scarce, high-dimensional and
of poor-quality. To predict the condition of the bush, data
was collected from the set-up sheet, the data warehouse
and two sensor-based data sources that log process-related
parameters. Three different models were applied to the data
to assess their performance in predicting the condition of the
bush, namely PLSR, an ANN and a random forest. RMSE
and R2 were used as performance metrics to compare the
results obtained by each model. In experiments undertaken
with different training sample sizes, the PLSR had the

largest R2 and the smallest RMSE on average and, as such,
was implemented in the predictive maintenance system
deployed at Tata Steel to monitor the metal bush’s condition.
It should be noted that the purpose of this study was
the prediction of the real-time condition of the bush and
not its future condition. That is, the aim of the authors
was developing a PdM system that predicted the bush’s
condition at a given moment and not the state of the bush
after a period of time. This approach made sense because
the condition of the component could only be determined
at the end of each maintenance cycle, and, therefore, the
factory personnel had no means of knowing if the bush
really needed to be replaced at that time or if they could
postpone (or anticipate) the replacement. By predicting the
current condition of the bush, the proposed PdM approach
could facilitate the transition from preventive maintenance
to predictive maintenance and reduce maintenance costs at
the factory.

In the same year, k-multi-dimensional time-series clus-
tering (K-MDTSC), a modified version of k-means that
is capable of handling multivariate time-series, was pro-
posed to predict the wear of welding electrodes used in
the body-in-white welding stage of a car manufacturing
plant [62]. K-MDTSC is based on k-means but employs
a generalized notion of the Euclidean distance to han-
dle multi-dimensional time-series and addresses the issues
k-means has with empty clusters. Moreover, K-MDTSC
works directly with raw synchronous time-series, without
requiring any transformation of the time-series data. To
validate the proposed algorithm, voltage and current data
was collected from the welding process performed by two
robots at the body-in-white shop of the plant. After the
data was pre-processed, K-MDTSC was used to cluster the
multi-dimensional time-series and discover different weld-
ing profiles. The clusters were then characterized according
to the wear and tear of the welding electrodes. After analyz-
ing the results, the domain experts realized the wear of the
electrodes wasn’t having a negative impact on the welding
process and that preventive maintenance operations were
being performed before they were actually necessary. These
preventive maintenance operations could, therefore, be post-
poned, resulting in a reduction in maintenance time and
costs.

4.3.5 Other approaches

18.2% of the selected studies employed machine learning
algorithms belonging to other categories, such as instance-
based algorithms, rule-based models, or dynamic Bayes
networks, to name a few.

The study presented in [42] in 2017 describes a predictive
maintenance approach that combines sliding windows with
a genetic algorithm and a hidden Markov model to estimate
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and predict a hard masking deposition tool’s long-term
degradation. Since the available data was sampled at
different rates, summary statistics were calculated over
sliding windows to synchronize the data features. To
handle the features’ dynamic nature, a HMM was used
to cluster the time series data and estimate the tool’s
degradation by considering past and present states of
the tool’s condition. The genetic algorithm was used in
conjunction with the HMM to select the most suitable
subset of features. Considering the tool’s degradation was
estimated and predicted in an unsupervised manner, the
proposed method was evaluated using historical data and
taking into consideration information provided by the
maintenance experts of the semiconductor manufacturing
company.

In 2019, Naskos et al. [69] proposed a method that
was capable of detecting oil leakages in real time in the
large tanks of a BENTELER Automotive factory. To detect
outliers in real-time, the authors applied the micro-cluster
continuous outlier detection (MCOD) algorithm to streams
of sensor data. Additionally, domain knowledge of the
production cycle was used to determine the operational
status of the machinery and enhance the algorithm’s
performance. When compared with variants of the proposed
method, including the application of MCOD to raw data (no
prior domain knowledge), the combination of MCOD with
domain knowledge obtained the best results.

In another study published in 2019, Graß et al. [39]
described an anomaly detection method to detect faults in
the fans of a reflow oven. Asides from the absence of labeled
data, which conditioned the type of learning methods that
could be applied to the problem, the authors also had to
consider that different items were processed in the same
production line. A reconfiguration of machine parameters
occurs whenever the production of a new item begins,
leading to different patterns of sensor measurements in the
time series data that should not be interpreted as anomalies.
To deal with this problem the authors began by clustering
the data according to the different machine configurations.
After this, for each cluster, the data was segmented, and
suitable features were extracted for each segment. Finally,
K-NN was used to define an anomaly threshold based
on the mean distance between a given segment and its k
nearest neighbors. The proposed approach was tested using
seven years of historical data, successfully demonstrating its
ability to detect fan malfunctions.

Continuing in 2019, the authors of [49] used a
quantitative association rule mining method to predict the
RUL of industrial equipment. The proposed algorithm,
named “Rules 4 Rare Events” (R4RE), improves an
algorithm previously proposed by the same authors, by
allowing quantifications of the consequent item in closed
intervals and integrating online pruning of the generated

rules. After being applied to sensor data collected from a
real factory between October and December of 2018, the
R4RE algorithm produced about 4500 rules that estimated
the RUL (RUL-time) of the machines that were being
monitored. Additionally, the authors used an expanded
dataset to predict the RUL in terms of produced parts (RUL-
parts), i.e., the number of units a machine can produce
before a failure occurs. Measuring the RUL in terms of
parts was considered by the authors as being a more robust
measure, since it does not consider the periods when a
machine was idle or turned off. When compared with other
machine learning models, the R4RE model achieved the
best results in the prediction of the RUL-time (RMSE =
34.2 ; MAE = 28.7; MAPE% = 20.1) and was among the
top contenders in the prediction of the RUL-parts (RMSE =
668.7 ; MAE = 120.8; MAPE% = 3.76).

Still in 2019, Chen et al. [51] also used a rule-based
method to predict the RUL of machinery. Specifically, the
authors used a modified version of the eXtended Classifier
System (XCS) to predict the RUL of a digital radio
frequency matching box (RF-MB), a machine employed in
the semiconductor manufacturing process. XCS is a rule-
based machine learning method that can recalibrate its rule
set though interaction with the environment. Whenever the
rule set does not satisfy the current environmental condition,
a special mechanism generates a new rule that matches
it. However, XCS can only process binary input data and,
as such, the authors applied a modified version of XCS
(XCSR), which is capable of processing continuous-valued
inputs. Moreover, since XCSR is a classifier, the estimation
of the RF-MB’s RUL was framed as a classification
problem. Fisher discriminant analysis (FDA) was applied
to the data to reduce the large number of variables, before
using XCRS to predict the RUL with an accuracy of 97.3%.

In 2020, Ruiz-Sarmiento et al. [63] proposed a predictive
model to estimate and predict the degradation of machinery
used in the stainless-steel industry, specifically the drums
of the heating coilers of Steckel mills. The model
consisted in a discrete Bayes filter that incorporated
expert knowledge, configuration parameters, and real time
sensor data. The expert knowledge was obtained from the
factory specialists that helped identify suitable variables and
interactions, as well as define the parameters that affected
the machines’ degradation. The DBF model was able to
estimate the machinery’s health status, but it was also used
to simulate np manufacturing processes and predict the
machinery’s degradation after execution of those processes.
The performance of the predictive model was evaluated and
compared with other models using real data from a factory
in Spain. The proposed model obtained the best results in all
instances (average RMSE = 0.59).

The fault detection method of a predictive maintenance
system developed for a mechanical metallurgy company is
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described in another study published in 2020 [48]. Since
labeled data was unavailable, the authors used a prediction-
based anomaly detection technique to discover unusual
occurrences in sensor data obtained from monitoring dif-
ferent CNC machines. An autoregressive integrated moving
average (ARIMA) model was fit to each independent data
feature and a 95% prediction interval was calculated for
the model’s forecast. Data points outside the bounds of the
prediction interval were flagged as anomalies, but since
isolated anomalies may not represent an impending fault
a 30-minute time window was used to calculate the mov-
ing average of anomaly occurrences. The predictive system
issued a fault alarm if the average of anomalies exceeded
a user-defined value (default = 0.85). Additionally, since
an imminent fault might affect more than one variable, the
authors proposed a fault detection mechanism that corre-
lated the anomalies detected for each variable and issued an
alarm according to a threshold that considered the number
of variables with correlated anomalies.

In 2021, Mohan et al. published a study describing a
method that also uses an ARIMA model to help industries
transition from industry 3.0 to industry 4.0 without having to
undergo considerable structural changes [61]. The authors
proposed using the ARIMA model to forecast the oil
contamination level of a high-pressure sand moulding line
in a foundry and subsequently calculate the RUL of the
equipment. In this study, sensor data was collected from
the hydraulic unit of the moulding line every three minutes
and the data was used to forecast the oil’s contamination
level every three hours. The hydraulic unit’s RUL was
computed based on the model’s 95% confidence level and
on a threshold level for the oil contamination. Additionally,
whenever the moving average of the oil contamination was
greater that the threshold value, the window size used for
calculating the moving average changed accordingly so
that a warning message could be issued sooner. During
the study period (September 2018 to December 2019),
the breakdown time of the high-pressure moulding line
was reduced by 84% and the number of breakdowns was
reduced by 88%. Furthermore, the MTBF increased from
604 to 5349 minutes and the MTTR reduced from 83 to
46 minutes. Considering the downtime caused by the oil
contamination specifically, the proposed approach managed
to achieve zero downtime.

4.4 RQ4: What limitations and advantages do those
algorithms andmethods present?

As described in Section 3.5, a large variety of advantages
was identified in the studies under consideration. In
addition, some studies identified not only the advantages
of the machine learning algorithms used but also of
the methods developed to address a given problem.

Notwithstanding, some benefits were mentioned more
frequently than others due to their importance in the context
of fault detection and prognosis in industrial environments.

High performance [40, 44, 49, 50, 59, 63, 71, 73, 74,
76, 78, 79], as well as the ability to uncover complex non-
linear relationships in the data [50, 57, 59, 66, 71, 77],
were two of the reasons most frequently given for choosing
an algorithm. The stochastic behavior of a manufacturing
system and the intricate relationships between its compo-
nents mean these systems are marked by unpredictability
[87]. Additionally, in real-world scenarios different prod-
ucts are often manufactured in the same production line,
requiring changes in machine configurations, components,
and production materials [32]. These non-stationary condi-
tions further complicate the task of detecting and predicting
faults. It is, therefore, crucial that machine learning algo-
rithms can discover the nonlinear and dynamic patterns
that characterize these events. High performance is equally
desirable and is directly related to an algorithm’s ability
to model the system. However, when detecting or predict-
ing failures in the real-world the definition of performance
must consider the tradeoff between false positives and false
negatives. Depending on the business requirements, fail-
ure to predict a fault might have serious consequences, in
which case false positives are preferable to false negatives.
However, there are less critical situations where a false pos-
itive, which can imply unnecessary stoppages and use of
resources, will be far more costly. This tradeoff must be
carefully defined with the help of maintenance experts.

Computational efficiency is also seen as an important
advantage for machine learning algorithms [40, 53, 60, 63,
67, 69, 76, 79]. While advanced algorithms can produce
very good results, they can also be quite demanding in terms
of computational resources. Artificial neural networks, for
example, require a lot of CPU and GPU processing power.
They also require a lot of memory, as do ensemble tree
methods, and the amount of data being processed impacts
the usage of computational resources as well. Furthermore,
demanding computations can greatly increase energy
consumption [88]. For these reasons, among others, the
development of a predictive maintenance system requires
significant investment [89]. As such, choosing machine
learning algorithms that are computationally efficient can
be a more cost-effective option, while also being more
environmentally friendly, a concern whose importance and
urgency cannot be understated.

Other advantages identified in more than one study
include the algorithms’ suitability for processing time
series data, interpretability, ability to uncover fault patterns
from unlabeled data, suitability for online learning, and
usefulness for root cause analysis. Sensor data obtained
from the monitorization of manufacturing equipment
consists in time series data. Since time series are a
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sequence of data points ordered by time that may have
an internal structure, the methods used to analyze time
series should ideally be capable of taking this structure into
account. Many machine learning algorithms, however, are
not suited for this task, which means a much greater feature
engineering effort is necessary before they can be applied
to time series data. For this reason, algorithms capable
of handling raw time series data can be advantageous. A
model’s interpretability is also seen as beneficial [41, 54,
59, 64, 75], not only because it can be useful to debug or
fine-tune a model, among other technical aspects, but also
because understanding how a model came up with a result
increases the user’s trust in the model. It also enables better
informed decision-making, and, in industrial contexts, it can
assist in the identification of a fault’s root cause. In fact, the
latter was identified as an important characteristic in other
studies as well [41, 51, 64].

Another quality that is often necessary is the ability
to learn from unlabeled data, i.e., unsupervised learning
[39, 42, 45, 47, 48, 50, 54, 58–62, 65, 66, 69–71]. For
a variety of reasons, historical fault data can be hard to
obtain. Faults might not occur very frequently, or they might
not be logged correctly. It is also possible that records of
these events exist but not for the same time periods as the
available condition monitoring data. For whatever reason,
the lack of historical fault data is a problem that arises
frequently (e.g., labeled data was absent in 10 of the 44
selected studies - 22.7%). Even when labels are present,
data representing the condition of machines during normal
operation is usually much more abundant than fault events,
which causes the representative classes to be imbalanced.
When the class imbalance is extreme, applying techniques,
such as resampling, to solve the problem might not produce
viable results. In situations such as these, machine learning
algorithms suitable for unsupervised learning can be used
to extract knowledge from the data and assist in the
detection of faults. However, validating these models is not
a straightforward task if no historical data exists that can be
used to evaluate their performance. In these circumstances,
the development of unsupervised approaches should be
guided by domain knowledge and tested in real production
environments, as demonstrated in publications [47, 59, 60,
62, 65, 75].

As reported in Section 3.5, only eleven studies identified
the limitations of the machine learning algorithms used [31,
40, 42, 47, 57, 58, 62, 69, 73, 76, 81]. While most of them
are details specific to the chosen algorithms, such as the
lack of interpretability of artificial neural networks, or the
slow convergence speed of BPNNs, the decrease in model
performance when the training and test data do not share the
same distribution is a limitation with important implications
for fault detection and prediction. This issue is related to

the concept of online learning and will be discussed in more
detail in the next subsection.

4.5 RQ5: Which of those algorithms andmethods
are used for data stream learning?

In many real-world scenarios, like the manufacturing
industry, the data generating processes are non-stationary,
causing the distribution of the data to change over time
in what is called concept drift [32, 90]. This means the
historical data used to train a model and the data used
to make predictions when the model is deployed come
from different probability distributions, which affects the
model’s performance. This issue is particularly apparent in
the context of predictive maintenance since monitoring data
is acquired at a high frequency and arrives continuously
in the form of data streams. To prevent learning models
from becoming obsolete over time they have to be updated
regularly with new input data [90, 91]. However, traditional
machine learning models are trained using batches of data
and are not adequate to process continuous flows of data,
i.e., data streams. To handle this type of data, it is necessary
to use machine learning algorithms capable of learning
incrementally or through small batches of recent data. This
type of learning, whereby algorithms process high-speed
data while adapting to concept drifts, is known as online
learning, or data stream learning [90, 92].

In the scope of this review, only two studies [55, 69]
used a data stream learning algorithm, while three others
[39, 49, 51] used algorithms suitable for online learning,
but did not apply them in that context. Considering what
has been said about the non-stationarity of manufacturing
environments and how it brings about concept drift, it is
reasonable to assume the performance of the approaches
proposed in the other selected studies would degrade over
time. One notable exception is the study presented in [81],
where digital twin technology and transfer learning were
used to address concept drift induced by changing working
conditions. Other studies have used transfer learning to deal
with different probability distributions in the training and
testing data [32], but transfer learning alone isn’t sufficient
for continuous adaptation.

More studies focused on data stream learning techniques
are necessary, particularly studies performed in real indus-
trial environments, not only to validate the applicability of
theoretical methods, but also to address several aspects of
practical order, like pre-processing streaming data, detecting
concept drift in semi-supervised and unsupervised settings,
and handling legacy system, among others [92, 93]. As this
systematic review has revealed, research of online learning
techniques applied to fault detection and prognosis in the
manufacturing industry is still in its infancy.
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5 Conclusion

This study presents a systematic literature review of
the machine learning methods used for mechanical fault
detection and fault prognosis in manufacturing equipment in
real-world scenarios. The review was conducted according
to the PRISMA guidelines and the guidelines for software
engineering systematic reviews described in [35]. Following
the steps defined in the review protocol, an initial set of 4549
records published between January 2015 and October 2021
were identified (3377 without duplicates). After assessing
them based on selection criteria, 44 primary studies were
selected for inclusion in the systematic review. These
studies were then examined in more detail based on five
research questions aimed at characterizing the publication
sources and scientific fields, the machine learning methods
used, their advantages and limitations, and their application
in the context of data stream learning.

About 84% of the selected studies employed machine
learning techniques belonging to one of four categories:
decision trees, artificial neural networks, hybrid models
and latent variable models. However, although every study
performed detection of mechanical faults or prognosis
of faults in real manufacturing scenarios, each study is
distinct in terms of the manufacturing context where the
study was undertaken, the machinery for which faults were
detected or predicted, and the characteristics of the data that
was available. These differences are to be expected from
industrial case-studies but made it difficult to compare the
different techniques.

While the number of publications is considerably larger
in the second half of the period considered for the review
than in the first half, only 44 studies were selected for inclu-
sion in this review from a preliminary group of 3377 (with-
out duplicates). The literature on mechanical fault detection
and fault prognosis in manufacturing equipment is extensive
but, despite the economic, safety and environmental benefits
predictive maintenance can provide, the number of stud-
ies performed in real-world manufacturing scenarios is still
reduced. Studies developed under experimental conditions
tend to disregard the numerous challenges presented by
manufacturing environments, which raises questions about
their applicability. Research interest in this topic of study
seems to be increasing, but there are still several issues that
need to be addressed.

An important problem that needs to be considered when
performing fault detection and prognosis in the manufac-
turing industry is the inherent complexity of manufacturing
systems and the time-varying properties of production
processes. More research is needed to develop machine
learning algorithms and methods that can handle noisy,
non-stationary data and capture the nonlinear patterns
of interaction between machinery components. A line of

research that can be pursued to deal with the issue of non-
stationarity is online learning, also known as data stream
learning. Online learning techniques that learn incremen-
tally, or from small batches of recent data, are ideal to
process high-speed streams of sensor data, while contin-
uously adapting to the changes in the data’s probability
distribution caused by non-stationary environments (i.e.,
concept drift). Learning models that do not account for
concept drift will eventually become outdated. As this
review has shown, there is still a deficit of studies devoted
to online learning methods, particularly where it relates to
the detection of mechanical faults or prediction of faults in
the manufacturing industry. As such, this line of research
provides promising opportunities for future research.

Another concern common in real-world scenarios is the
absence of labeled data, which restricts the learning task
to unsupervised and semi-supervised methods. Due to this
issue, almost half of the studies selected in this review
employed unsupervised learning techniques, but more work
is necessary not only to demonstrate the effectiveness of
these models, but also to develop new methods capable
of learning complex nonlinear relationships in the absence
of labels, while adapting to concept drift. To successfully
perform fault detection and prognosis in manufacturing
environments, it is important to consider these factors
collectively.

Predictive maintenance provides economic, safety and
environmental benefits, but the development of a predictive
maintenance system can be laborious and requires a
significant upfront investment. To justify such an investment
in terms of time and money, and derive benefits from it, it
is essential that the models developed perform as accurately
as possible, but it is also important to consider other
aspects, such as computational efficiency or interpretability,
in accordance with the business’s needs.

Acknowledgements The present work has been developed under
project PIANiSM (EUREKA - ITEA3: 17008; ANI|P2020 40125)
and has received Portuguese National Funds through FCT (Por-
tuguese Foundation for Science and Technology) under project
UIDB/00760/2020 and Ph.D. Scholarship SFRH/BD/136253/2018.

Declarations

Conflict of Interests The authors declare that they have no conflict of
interest.

References

1. Aboelmaged MG (2014) Predicting e-readiness at firm-
level: An analysis of technological, organizational and
environmental (TOE) effects on e-maintenance readiness
in manufacturing firms. Int J Inf Manag 34(5):639–651.
https://doi.org/10.1016/j.ijinfomgt.2014.05.002

1 3

M. Fernandes et al.14276

https://doi.org/10.1016/j.ijinfomgt.2014.05.002


2. Holmberg K, Adgar A, Arnaiz A, Jantunen E, Mascolo J (2010).
In: Holmberg K, Adgar A, Arnaiz A, Jantunen E, Mascolo J,
Mekid S (eds) E-maintenance. Springer, London

3. Muller A, Crespo Marquez A, Iung B (2008) On the concept of
e-maintenance: Review and current research. Reliab Eng Syst Saf
93(8):1165–1187. https://doi.org/10.1016/j.ress.2007.08.006

4. Mobley RK (2001) Predictive Maintenance. In: Plant Engineer’s
Handbook. Elsevier, pp 867–888

5. Sullivan G, Pugh R, Melendez AP, Hunt WD (2010) Operations
& maintenance best practices-a guide to achieving operational
efficiency (release 3). Technical Report, Pacific Northwest
National Lab.(PNNL), Richland

6. Rødseth H, Schjølberg P (2016) Data-driven predictive mainte-
nance for green manufacturing. In: Proceedings of the 6th inter-
national workshop of advanced manufacturing and automation.
Advances in Economics, Business and Management Research.
Atlantis Press, pp 36–41

7. Jardine AKS, Lin D, Banjevic D (2006) A review on machin-
ery diagnostics and prognostics implementing condition-based
maintenance. Mech Syst Signal Process 20(7):1483–1510.
https://doi.org/10.1016/J.YMSSP.2005.09.012, https://www.
sciencedirect.com/science/article/pii/S0888327005001512

8. Kan MS, Tan ACC, Mathew J (2015) A review on
prognostic techniques for non-stationary and non-linear
rotating systems. Mech Syst Signal Process 62:1–20.
https://doi.org/10.1016/j.ymssp.2015.02.016, https://www.
sciencedirect.com/science/article/pii/S0888327015000898

9. Zhang W, Yang D, Wang H (2019) Data-Driven
Methods for Predictive Maintenance of Industrial
Equipment: A Survey. IEEE Syst J 13(3):2213–2227.
https://doi.org/10.1109/JSYST.2019.2905565

10. Hwang I, Kim S, Kim Y, Seah CE (2010) A survey
of fault detection, isolation, and reconfiguration meth-
ods. IEEE Trans Control Syst Technol 18(3):636–653.
https://doi.org/10.1109/TCST.2009.2026285, https://ieeexplore.
ieee.org/abstract/document/5282515/

11. Gertler JJ (2017) Fault detection and diagnosis in engineer-
ing systems. CRC Press. https://www.taylorfrancis.com/books/
9781351448796

12. Boyes H, Hallaq B, Cunningham J, Watson T (2018) The indus-
trial internet of things (IIoT): An analysis framework. Comput Ind
101:1–12. https://doi.org/10.1016/j.compind.2018.04.015

13. O’Donovan P, Leahy K, Bruton K, O’Sullivan DTJ (2015) Big
data in manufacturing: a systematic mapping study. J Big Data
2(1). https://doi.org/10.1186/s40537-015-0028-x

14. Qin SJ (2009) Data-driven Fault Detection and Diagnosis for
Complex Industrial Processes. In: IFAC Proceedings Volumes,
vol 42. Elsevier, pp 1115–1125

15. Carvalho TP, Soares FAAMN, Vita R, Francisco RP, Basto JP,
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F, Matsui K, Rodrı́guez-González S (eds) Distributed Comput-
ing and Artificial Intelligence, 16th International Conference.
Springer International Publishing, Cham, pp 171–180

49. Christou IT (2019) Avoiding the Hay for the Needle in the Stack:
Online Rule Pruning in Rare Events Detection. In: 2019 16th
International Symposium on Wireless Communication Systems
(ISWCS), pp 661–665

50. Cheng C, Zhang B, Gao D (2019) A Predictive Maintenance
Solution for Bearing Production Line Based on Edge-Cloud
Cooperation. In: 2019 Chinese Automation Congress (CAC),
pp 5885–5889

51. Chen L-Y, Lee J-H, Yang Y-L, Yeh M-T, Hsiao T-C (2019)
Predicting the Remaining Useful Life of Plasma Equipment
through XCSR. In: Proceedings of the Genetic and Evolution-
ary Computation Conference Companion, GECCO ’19. Asso-
ciation for Computing Machinery, New York, pp 1263–1270.
https://doi.org/10.1145/3319619.3326879

52. Aremu OO, O’Reilly DO, Hyland-Wood D, McAree PR (2019)
Kullback-leibler divergence constructed health indicator for data-
driven predictive maintenance of multi-sensor systems. In: IEEE
International Conference on Industrial Informatics (INDIN). Inst
Elect & Elect Engineers; Tampere Univ; Finnish Soc Automat;
IEEE Ind Elect Soc, pp 1315–1320

53. Binding A, Dykeman N, Pang S (2019) Machine learning
predictive maintenance on data in the wild. In: IEEE 5th
World Forum on Internet of Things, WF-IoT 2019 - Conference
Proceedings. IEEE; Univ Limerick; IEEE Commun Soc; IEEE
Consumer Elect Soc; IEEE Reliabil Soc; IEEE Sensors Council;
IEEE Signal Proc Soc; IEEE Stand Assoc; IEEE Control Syst Soc;
IEEE Council Elect Design Automat; IEEE Council RFID; IEEE
Electromagnet Compatibil Soc;, pp 507–512

54. Farbiz F, Miaolong Y, Yu Z (2020) A cognitive analytics based
approach for machine health monitoring, anomaly detection,
and predictive maintenance. In: 2020 15th IEEE Conference on
Industrial Electronics and Applications (ICIEA). IEEE, pp 1104–
1109

55. Das M, Pratama M, Tjahjowidodo T (2020) A self-evolving
mutually-operative recurrent network-based model for online tool
condition monitoring in delay scenario. In: Proceedings of the
26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp 2775–2783

56. KOCA O, Kaymakci OT, Mercimek M (2020) Advanced Predic-
tive Maintenance with Machine Learning Failure Estimation in
Industrial Packaging Robots. In: 2020 International Conference on
Development and Application Systems (DAS), pp 1–6

57. Li Z, Wang Y, Wang K-S (2017) Intelligent predictive main-
tenance for fault diagnosis and prognosis in machine cen-
ters: Industry 4.0 scenario. Adv Manuf 5(4, SI):377–387.
https://doi.org/10.1007/s40436-017-0203-8

58. Kim D, Lee S, Kim D (2021) An applicable predictive
maintenance framework for the absence of run-to-failure data.
Appl Sci 11(11):5180. https://doi.org/10.3390/app11115180

59. Zschech P, Heinrich K, Bink R, Neufeld JS (2019) Prognostic
Model Development with Missing Labels: A Condition-Based
Maintenance Approach Using Machine Learning. Bus Inf Syst
Eng 61(3):327–343. https://doi.org/10.1007/s12599-019-00596-1

60. Wang H, Du W (2020) Fast spectral correlation based on
sparse representation self-learning dictionary and its appli-
cation in fault diagnosis of rotating machinery. Complexity.
https://doi.org/10.1155/2020/9857839

61. Mohan TR, Roselyn JP, Uthra RA, Devaraj D, Umachandran
K (2021) Intelligent machine learning based total productive

1 3

M. Fernandes et al.14278

https://www.researchgate.net/publication/228756057_Procedures_for_Performing_Systematic_Reviews
https://www.researchgate.net/publication/228756057_Procedures_for_Performing_Systematic_Reviews
https://www.researchgate.net/publication/228756057_Procedures_for_Performing_Systematic_Reviews
https://link.springer.com/content/pdf/10.1007/s13748-011-0002-6.pdf
https://link.springer.com/content/pdf/10.1007/s13748-011-0002-6.pdf
https://doi.org/10.1002/jrsm.1378
https://doi.org/10.5339/QMJ.2020.21
https://doi.org/10.1109/BigData.2018.8622076
https://doi.org/10.1145/3319619.3326879
https://doi.org/10.1007/s40436-017-0203-8
https://doi.org/10.3390/app11115180
https://doi.org/10.1007/s12599-019-00596-1
https://doi.org/10.1155/2020/9857839


maintenance approach for achieving zero downtime
in industrial machinery. Comput Ind Eng 157:107267.
https://doi.org/10.1016/j.cie.2021.107267

62. Giordano D, Mellia M, Cerquitelli T (2021) K-mdtsc: K-
multi-dimensional time-series clustering algorithm. Electronics
10(10):1166. https://doi.org/10.3390/electronics10101166

63. Ruiz-Sarmiento J-R, Monroy J, Moreno F-A, Galindo C,
Bonelo J-M, Gonzalez-Jimenez J (2020) A predictive model
for the maintenance of industrial machinery in the con-
text of industry 4.0. Eng Appl Artif Intell 87:103289.
https://doi.org/10.1016/j.engappai.2019.103289, http://www.
sciencedirect.com/science/article/pii/S0952197619302489

64. Chen X, Van Hillegersberg J, Topan E, Smith S, Roberts
M (2021) Application of data-driven models to predictive
maintenance: Bearing wear prediction at tata steel. Expert Syst
Appl 186:115699. https://doi.org/10.1016/j.eswa.2021.115699

65. Yu W, Dillon T, Mostafa F, Rahayu W, Liu Y (2020) A
Global Manufacturing Big Data Ecosystem for Fault Detection
in Predictive Maintenance. IEEE Trans Ind Inf 16(1):183–192.
https://doi.org/10.1109/TII.2019.2915846

66. Zhai S, Gehring B, Reinhart G (2021) Enabling predictive
maintenance integrated production scheduling by operation-
specific health prognostics with generative deep learning. J Manuf
Syst. https://doi.org/10.1016/j.jmsy.2021.02.006

67. Kolokas N, Vafeiadis T, Ioannidis D, Tzovaras D (2020)
A generic fault prognostics algorithm for manufac-
turing industries using unsupervised machine learning
classifiers. Simul Model Pract Theory 103:102109.
https://doi.org/10.1016/j.simpat.2020.102109, http://www.
sciencedirect.com/science/article/pii/S1569190X20300472

68. Turkoglu B, Komesli M, Unluturk MS (2019) Applica-
tion of Data Mining in Failure Estimation of Cold Forging
Machines: An Industrial Research. Stud Inf Control 28(1):87–94.
https://doi.org/10.24846/v28i1y201909

69. Naskos A, Gounaris A, Metaxa I, Koechling D, Stirna J (2019)
Detecting anomalous behavior towards predictive maintenance.
In: Proper HA (ed) Advanced Information Systems Engineering
Workshops (CAISE 2019), Lecture Notes in Business Information
Processing, vol 349, pp 73–82

70. Rousopoulou V, Nizamis A, Giugliano L, Haigh P, Martins L,
Ioannidis D, Tzovaras D, Stirna J (2019) Data Analytics Towards
Predictive Maintenance for Industrial Ovens A Case Study Based
on Data Analysis of Various Sensors Data. In: Proper HA (ed)
Advanced Information Systems Engineering Workshops (CAISE
2019), Lecture Notes in Business Information Processing, vol 349,
pp 83–94

71. Bukkapatnam STS, Afrin K, Dave D, Kumara SRT (2019)
Machine learning and AI for long-term fault prognosis in complex
manufacturing systems. CIRP Ann-Manuf Technol 68(1):459–
462. https://doi.org/10.1016/j.cirp.2019.04.104
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