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Abstract: Chronic kidney disease (CKD) is a condition characterized by progressive loss of kidney
function over time. It describes a clinical entity that causes kidney damage and affects the general
health of the human body. Improper diagnosis and treatment of the disease can eventually lead to end-
stage renal disease and ultimately lead to the patient’s death. Machine Learning (ML) techniques have
acquired an important role in disease prediction and are a useful tool in the field of medical science.
In the present research work, we aim to build efficient tools for predicting CKD occurrence, following
an approach which exploits ML techniques. More specifically, first, we apply class balancing in order
to tackle the non-uniform distribution of the instances in the two classes, then features ranking and
analysis are performed, and finally, several ML models are trained and evaluated based on various
performance metrics. The derived results highlighted the Rotation Forest (RotF), which prevailed
in relation to compared models with an Area Under the Curve (AUC) of 100%, Precision, Recall,
F-Measure and Accuracy equal to 99.2%.

Keywords: healthcare; chronic kidney disease; machine learning; prediction; data analysis

1. Introduction

The human body has two kidneys located at the back of the peritoneal cavity, which
are vital organs necessary for its proper functioning. The main function of the kidneys is to
regulate the balance of salt, water and other ions and trace elements in the human body,
such as calcium, phosphorus, magnesium, potassium, chlorine and acids. At the same
time, the kidneys secrete hormones such as erythropoietin, vitamin D and renin. More
specifically, erythropoietin stimulates the production and maturation of red blood cells in
the bone marrow, while vitamin D regulates calcium and phosphorus in the body, bone
structure and many other actions. The kidneys are also the site of the action of hormones
that are responsible for regulating blood pressure, fluid balance or bone metabolism and
vascular calcifications. Finally, the kidneys eliminate all the useless products of metabolism,
as well as drugs and other toxins that enter the body [1].

Diabetes and high blood pressure are the two main causes of chronic kidney disease.
Diabetes is characterized by high blood sugar levels, causing damage to the kidneys and
heart, blood vessels and eyes. Moreover, poor control of high blood pressure can be a major
cause of heart attack, stroke and chronic kidney disease. Other conditions that affect the
kidneys are glomerulonephritis, hereditary diseases, dysplasia, kidney stones, tumours,
recurrent urinary tract infections, metabolic diseases, obesity and age [2,3].

CKD is a silent disease, as most sufferers have no symptoms until kidney function
drops to 15–20% of normal [4]. The main symptoms in the advanced stage of CKD are the
feeling of fatigue and lack of energy, concentration problems, decreased appetite, sleep
problems, muscle cramps at night, swelling in the legs and ankles, swelling around the
eyes, dry skin with intense itching and frequent urination, especially at night [5].

The most important and effective parameter for the evaluation of renal function is
the glomerular filtration rate (GFR), which practically evaluates the ability of the kidney
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to filter blood. The glomerular filtration rate is the best measure of renal function and is
usually assessed (eGFR) by the results of a creatinine blood test. The eGFR value refers to
milliliters per minute per 1.73 m2 (mL/min/1.73 m2). Renal function can be classified into
5 stages according to eGFR, as shown in Table 1 [6].

Table 1. Five stages of chronic kidney disease.

Stage of CKD Description GFR (mL/min/1.73 m2)

Stage 1 Normal ≥90

Stage 2 Mild CKD 60–89

Stage 3 Moderate CKD 30–59

Stage 4 Severe CKD 15–29

Stage 5 End Stage CKD <15

Early diagnosis and treatment of CKD is a serious challenge for the medical community.
The treating physician (nephrologist) is called on the one hand to slow down the progression
of the disease to more advanced stages, and if possible, to suspend it, and on the other
hand, to treat the above-mentioned systemic manifestations [7].

The advances in sensor networks, communication technologies, data science and statis-
tical processing have rendered ML techniques as important tools in various health-oriented
applications, such as in the early diagnosis of several chronic conditions, the Internet of
Things (IoT)-based pervasive (assisted) living environments (smart homes) for elderly fall
detection [8], etc. Concerning the diseases, some characteristic ones are the following:
Diabetes [9–11], Hypertension [12], Cholesterol [13,14], COVID-19 [15], Chronic Obstruc-
tive Pulmonary Disease (COPD) [16], Stroke [17], Cardiovascular Diseases (CVDs) [18],
Acute Liver Failure (ALF) [19], Acute Lymphoblastic Leukemia [20], Sleep Disorders [21],
Hepatitis [22], Cancer [23], Metabolic Syndrome [24], etc.

In the current research work, a Machine Learning-based approach will be presented
for CKD disease. The main contributions of the adopted methodology are the following:

• A data preprocessing step that exploits the Synthetic Minority Oversampling Tech-
nique (SMOTE), which is essential to ensure that the dataset instances are distributed
in a balanced way and, thus, designs effective classification models to predict the risk
for CKD occurrence.

• A features analysis, which includes three specific sub-steps: (i) numerical attributes
statistical description, (ii) order of importance measurement by employing three
different methods, and (iii) capturing nominal features frequency of occurrence in
tabular form.

• A comparative evaluation of various models’ performance is presented considering
the most common metrics, such as Precision, Recall, F-Measure, Accuracy and AUC.

• A performance evaluation is demonstrated, where all models demonstrated exception-
ally high outcomes, with Rotation Forest achieving the highest results in all metrics,
thus constituting the main suggestion of this analysis.

The rest of the sections of the work are structured as follows. In Section 2, we present
related works that exploit ML under the CKD health condition. Besides, in Section 3, we
describe the dataset and analyze the adopted methodology. Furthermore, in Section 4, we
present and discuss the research outcomes. Finally, in Section 5, we conclude the paper and
set future directions.

2. Related Work

Nowadays, the development of tools and methods for monitoring and predicting
various diseases has gained researchers’ and clinicians’ interest, focusing on those which
commonly occur in human life. In this section, we will discuss recent studies that use ML
techniques for CKD risk prediction and methods for processing small datasets.
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Firstly, in [25], the authors’ research was based on clinical and blood biochemical
measurements from 551 patients who suffered from proteinuria. For their purpose, several
predictive models were compared, including random forest (RF), extreme gradient boosting
(XGBoost), logistic regression (LR), elastic net (ElasNet), lasso and ridge regression, k-
nearest neighbour (k-NN), support vector machine (SVM) and artificial neural network
(ANN). The superior predictive performance was achieved by the models ElasNet, lasso,
ridge and logistic regression, reaching a mean value of AUC and precision above 0.87 and
0.8, respectively. Moreover, LR was the first in rank, reaching an AUC of 0.873, with a recall
and specificity of 0.83 and 0.82, respectively. The highest recall was attained by ElasNet
(0.85), while the highest specificity (0.83) was performed by XGBoost.

In [26], the authors exploited SVM, AdaBoost, linear discriminant analysis (LDA),
and gradient boosting (GBoost) algorithms in order to implement highly accurate models
for CKD prediction. These models’ performance was evaluated considering a dataset
derived from the UCI machine learning repository. The gradient boosting classifier achieved
the highest accuracy of 99.80%.

The authors in [27] focused on the [28] dataset. LR, Decision Tree (DT), and k-NN
algorithms were used in order to train three different models for CKD prediction. The LR
achieved better accuracy (97%) in comparison with DT (96.25%) and k-NN (71.25%). Simi-
larly, the [28] dataset is used in [29] research work. The authors examined the performance
of the Naïve Bayes (NB), RF and LR models for the risk prediction of CKD that achieved an
accuracy of 93.9%, 98.88% and 94.76%, respectively.

Moreover, in [30], the authors used 455 patients’ data from the UCI Machine Learning
Repository and the real-time dataset from Khulna City Medical College to propose a
system for CKD risk prediction. The data were used to train and test RF and ANN using
10-fold cross-validation. The accuracy achieved by the RF and ANN is 97.12% and 94.5%,
respectively.

Besides, the research study in [31] was based on a CKD dataset taken from the UCI
repository to train and test several classifiers such as ANN, C5.0, chi-square automatic
interaction detector, LR, linear SVM with penalty L1 and L2, and random tree (RT). The lin-
ear SVM with penalty L2 reached the highest accuracy of 98.86% under SMOTE and all
features as input to the ML models. Combining SMOTE with the lasso method for feature
selection, the linear SVM achieved a similarly high accuracy of 98.46%. Finally, a deep
neural network was applied in the same dataset, attaining the highest accuracy of 99.6%.

The experiments in [32] were conducted on the CKD dataset consisting of 25 attributes
and acquired by the UCI Machine Learning Repository. Three ML models, RF, DT and
SVM, were selected for the diagnosis of CKD, reaching a prediction accuracy of 99.16%,
94.16% and 98.3%, respectively.

Moreover, in [33], the authors considered a dataset of 26 attributes relevant to CKD.
They combined the ANN classifier with four feature-based algorithms: Extra Tree, Pearson
correlation, lasso model and chi-square. The highest accuracy (99.98%) was performed by
the ANN ensemble with the lasso model.

Furthermore, the research study in [34] used the extra-trees (ExTrees) classifier, Ad-
aBoost, k-NN, GBoost and XGBoost, DT, gaussian Naïve Bayes (NB) and RF. According to
the results, k-NN and ExTrees classifiers achieved the best performance with an accuracy
of 99% and 98%, respectively.

In addition, in [35], the authors considered a crucial problem in ML that concerns
the handling of small medical datasets. They enhanced the regression analysis based on
ANNs by introducing additional elements into the formula for calculating the output
signal of the existing radial basis function-based (RBF) input-doubling method. Similarly,
in [36], the authors designed a new input doubling method based on the classical iterative
RBF neural network. The Mean Absolute Error and Root Mean Squared Error were used
to validate the highest accuracy of the proposed method by experimenting with a small
medical dataset.
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A novel approach based on generative adversarial network (GAN) for data augmenta-
tion with improved disease classification is applied in [37]. The authors performed their
experiments on the NIH chest X-ray image dataset, and the test accuracy of the convolu-
tional neural network (CNN) model is 60.3% compared to the 65.3% test accuracy of the
online GAN-augmented CNN model. Finally, in [38], a development of the non-iterative
supervised learning predictor is presented based on the Ito decomposition and neural-
like structure successive geometric transformations model (SGTM) for managing medical
insurance data.

3. Materials and Methods
3.1. Dataset Description

In this research study, we exploited the dataset on [28]. The raw dataset consists of
400 instances represented by 13 input features and 1 for the target class. The features’
description is the following:

• Diastolic Blood Pressure (Bp - mmHg) [39]: This feature shows the participator’s
diastolic blood pressure.

• Specific Gravity (Sg) [40]: This feature captures the participator’s specific gravity
value.

• Albumin (Al) [41]: This attribute captures the participator’s albumin level. It has
three categories (72.25% normal, 21.5% above normal and 6.25% well above normal).

• Glucose (Su) [42]: This attribute denotes the participator’s glucose level. It has three
categories (88% normal, 8% above normal and 4% well above normal).

• Red Blood Cell (Rbc) [43]: This attribute captures whether the participator’s Red
Blood Cell is normal or not. It has two categories (88.25% normal and 11.75% abnor-
mal).

• Blood Urea (Bu - mmol/L) [44]: This feature captures the amount of urea found in
the participant’s blood. Blood Urea is measured in millimoles per liter (mmol/L).

• Serum Creatinine (Sc - mg/dL) [45]: This feature measures the amount of serum
creatinine found in the participant’s blood. Serum creatinine is reported as milligrams
of creatinine to a deciliter of blood (mg/dL).

• Sodium (Sod - mEq/L) [46]: This feature measures the amount of sodium found in the
participant’s blood. Sodium is a type of electrolyte and is reported as milliequivalents
per liter (mEq/L).

• Potassium (Pot - mmol/L) [47]: This feature measures the amount of potassium found
in the participant’s blood and is reported as millimoles per liter (mmol/L).

• Hemoglobin (Hemo - gm/dL) [48]: This feature measures the amount of hemoglobin
found in the participant’s blood and is reported as grams per deciliter (gm/dL).

• White Blood Cell Count (Wbcc) [49]: This feature measures the number of white cells
in the participant’s blood and is reported as Wbc per microliter.

• Red Blood Cell Count (Rbcc) [43]: This feature measures the number of red blood
cells in the participant’s blood and is reported as a million red blood cells per microliter
(mcL) of blood.

• Hypertension (Htn) [50]: This attribute refers to whether the participant has hyper-
tension or not. A total of 36.75% of participants have hypertension.

• Chronic Kidney Disease (CKD): This feature denotes whether the participant suffers
from CKD or not. A total of 62.5% of participants have been diagnosed with CKD.

All features are numeric except Al, Su, Rbc, Htn and CKD, which are nominal.

3.2. Chronic Kidney Disease Risk Prediction

In this section, we will focus on class balancing and features importance evaluation in
the balanced data. We will also make a brief analysis of the nominal features concerning
the CKD class. Moreover, we will describe the models and performance metrics, which
will be considered in the experiments.
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3.2.1. Data Preprocessing

As for the current dataset, we employed SMOTE [51] to create synthetic data on
minority class, i.e., Non-CKD, using a k-NN classifier with k = 5. The instances in the Non-
CKD class are oversampled such that the number of instances in both classes is balanced
(i.e., 50–50%). After data balancing, in Table 2, we present a statistical description of the
numeric features, namely, minimum (Min), maximum (Max), mean and standard deviation.

Table 2. Statistical description of the balanced data.

Feature Min Max Mean ± std

Hemo 3.1 17.8 13.04 ± 2.68

Sg 1.005 1.025 1.019 ± 0.005

Rbcc 2.1 8 4.84 ± 0.82

Bu 1.5 391 52.59 ± 45.34

Sod 4.5 163 138.44 ± 8.64

Sc 0.4 76 2.65 ± 5.09

Bp 50 180 75.4 ± 12.6

Wbcc 2200 26,400 8310.7 ± 2394.2

Pot 2.5 47 4.56 ± 2.53

3.2.2. Features Analysis

Each record in the dataset is captured by a features vector x = (x1, x2, x3, . . . , xM)T ,
where M = 13 is the features’ size. In order to measure the contribution of a feature in
the desired class, three ranking methods were selected, i.e., Pearson correlation coefficient
(CC), Gain Ratio (GR) and Random Forest. Initially, we evaluate the strength of a feature in
predicting the CKD class via Pearson correlation coefficient [52]. Next, we measured GR of

the feature xj [53] based on the formula GR(xj) =
H(c)−H(c|xj))

H(xj)
, where H(c), H(c|xj) and

H(xj) are the entropy of the class, the conditional entropy of the class given the feature j,
xj and the entropy of the feature xj, respectively. Random Forest measures, by employing
Gini impurity, the ability of a candidate feature in the forest of trees to create the optimal
split of the two classes instances [54].

In Table 3, we demonstrate the ranking outcomes of the selected methods in the
balanced dataset. Focusing on the Pearson correlation, the highest but moderate association
of 0.763 is captured with Hemoglobin, which is a biochemical measure that relates to
anemia and CKD progression [55]. Moreover, moderate associations of rank 0.699, 0.645
and 0.621 are noted with the Blood Glucose, Hypertension, and Red blood cells count. In
addition, the low association is demonstrated with the rest features, such as Sodium, Red
blood cells level and White blood cells count. Finally, the target class records no association
of 0.092 with Potassium. The Hemoglobin feature is also first in ranking by Random Forest,
while this risk factor is third in order by Gain Ratio. Moreover, a variety in the order of
importance is captured among the methods. Since all features are important indicators for
kidney operation and thus CKD control by physicians, the models’ training and assessment
will exploit all of them.
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Table 3. Features’ importance evaluation (balanced dataset).

Pearson CC Gain Ratio Random Forest

Feature Ranking Feature Ranking Feature Ranking

Hemo 0.763 Sc 0.532 Hemo 0.449

Sg 0.699 Htn 0.441 Rbcc 0.439

Htn 0.645 Hemo 0.381 Sc 0.429

Rbcc 0.621 Sg 0.338 Sg 0.401

Al 0.506 Rbcc 0.337 Sod 0.388

Bu 0.419 Bp 0.295 Pot 0.374

Sod 0.387 Al 0.287 Bp 0.309

Sc 0.334 Bu 0.270 Bu 0.292

Rbc 0.322 Rbc 0.225 Htn 0.277

Bp 0.321 Su 0.190 Wbcc 0.232

Su 0.317 Sod 0.170 Al 0.211

Wbcc 0.207 Wbcc 0.141 Su 0.088

Pot 0.092 Pot 0.136 Rbc 0.086

In Table 4, we isolate nominal features and present the distribution of the instances in
both classes in terms of the values of the features. Healthy participants (those who belong
to Non-CKD class) have normal levels of albumin, glucose and red blood cells, and they
are not hypertensive. Of the total participants, 27.8% have been diagnosed with CKD and
have normal albumin levels, and 22.2% have above and well above normal albumin values.
Moreover, 40.4% of participants have CKD with normal glucose levels, and 29.4% of them
are CKD patients and hypertensive. Finally, the Red blood cells level is normal in 40.6%
of them.

Table 4. Nominal features’ values in terms of the CKD class (balanced dataset).

Albumin CKD = No CKD = Yes

Above normal 0.00% 17.20%

Well above normal 0.00% 5.00%

Normal 50.00% 27.80%

Glucose CKD = No CKD = Yes

Above normal 0.00% 6.40%

Normal 50.00% 40.40%

Well above normal 0.00% 3.20%

Hypertension CKD = No CKD = Yes

No 50.00% 20.60%

Yes 0.00% 29.40%

Red blood cell CKD = No CKD = Yes

Abnormal 0.00% 9.40%

Normal 50.00% 40.60%

3.3. Machine Learning Models

In this subsection, we will make a brief presentation of the models that will be con-
sidered in the risk prediction framework for CKD occurrence. To this end, a variety of
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classifiers are utilized in order to evaluate their prediction performance. More specifically,
Bayesian networks (BayesNet), Naive Bayes, SVM, LR, ANN, k-NN, J48, Logistic Model
Tree (LMT), Reduced Error Pruning Tree (RepTree) Rotation Forest, Decision Tree, Random
Forest, Random Tree, AdaBoostM1, Stochastic Gradient Descent (SGD), Stacking and Soft
Voting classification methods will be outlined.

3.3.1. Naive Bayes

Naive Bayes classifier [56], following a Bayesian probabilistic model, assigns a subject
i with attributes vector xi to that class c for which the posterior probability P

(
c|xi1, . . . , xiM

)
is maximized.

3.3.2. Bayesian Network

A Bayesian network [57] is a probabilistic graphical model that follows the structure
of a directed acyclic graph (DAG). Its nodes are captured as random variables, and the
edges demonstrate the conditional (in)dependencies among them.

3.3.3. Support Vector Machine

Support Vector Machine [58] finds the proper boundary that can optimally split
subjects into two classes. An instance with an unknown class can be optimally classified
using one of the following kernel functions, i.e., linear, polynomial, radial basis or quadratic.

3.3.4. Logistic Regression

Logistic regression [59] is a well-established supervised learning algorithm in the
medical community. Logistic regression predicts the probability of the class output (a target
categorical variable with values of Yes, No or 0, 1) using a set of independent features.
Assuming that p is the probability of a subject being a member of the CKD class, then 1− p
is the probability of a subject and is a member of the Non-CKD.

3.3.5. Artificial Neural Network

Multilayer Perceptron (MLP) is a fully connected Neural Network (NN) [60], consisting
of an input, an output and a hidden layer. The nodes in the input layer take xi and forward
it for further processing in the hidden layer that processes the data and passes it to the
output layer. Apart from the input layer nodes, every other node in the MLP uses a
nonlinear (such as sigmoid) activation function that takes real values as the input and
converts them to numbers between 0 and 1. The MLP networks update the weights via
backpropagation learning.

3.3.6. k-Nearest Neighbors

The k-Nearest Neighbors classifier measures the distance between an unlabeled in-
stance and every other training instance [61] and designates it into the class where most of
its k proximal neighbors originate.

3.3.7. J48

J48 [62] follows a top-down recursive strategy known as divide-and-conquer, and uses
information gain measure to choose the attribute at each stage.

3.3.8. Logistic Model Tree

A logistic model tree [63] follows the structure of a standard decision tree with LR
functions at the leaves. It builds a single tree consisting of binary splits on numeric
attributes, multiple-way splits on nominal ones and LR models at the leaves.
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3.3.9. Random Forest

Random Forest is an ensemble of decision trees. It considers the Information Gain or
Gini index to find the best subset of features. It classifies an instance by applying majority
voting on the outputs of several decision trees [64].

3.3.10. Random Tree

Random Tree [65] ensembles several decision trees. It partitions recursively the training
data into segments with similar output features’ values and finds the best partition assessing
the impurity index.

3.3.11. Reduced Error Pruning Tree

Reduced Error Pruning Tree [66] is a quick learner that uses information variance as
the splitting criterion to build a tree, and prunes it using reduced-error pruning.

3.3.12. Rotation Forest

The Rotation Forest [67] uses as a base classifier the decision trees. Prior to training, it
applies a rotation transformation matrix to the training data. The feature set is randomly
split into subsets, and it is applied principal component analysis (PCA) to create a new
feature set for every tree in the ensemble. In this study, RotF uses the J48 decision tree.

3.3.13. AdaBoostM1

The AdaBoostM1 is an adaptive method that combines via weighted majority vot-
ing on the predictions of a sequence of L weak classifiers denoted as Gl(xi), where
l = 1, 2, . . . , L. Assuming a training set consisting of N samples, at each boosting step
r, each sample xi is weighted, assuming that the initial weights at r = 1 are uniform,
i.e., w11 = w21 = . . . , wN1 = 1/N. The weights are determined using the error value.
The weight of an instance is increased when the previous classification is incorrect, other-
wise it is decreased [68]. The higher the error, the higher weight is assigned to the sample.
The process is repeated until the error remains constant. The final prediction is derived by

G(xi) = sign(
L

∑
l=1

αlGl(xi))({−1,+1}). (1)

In (1), the coefficients αl are estimated based on the classification error and weigh the
corresponding Gl(xi) giving a higher contribution to the classifiers that are more accurate.

3.3.14. Stochastic Gradient Descent

Stochastic gradient descent [69] is a method to efficiently fit linear classification models
such as linear SVM and LR for optimizing an objective function.

3.3.15. Ensemble Learning

Ensemble learning is utilized in machine learning to obtain more accurate predictions
than individual models by combining the outputs of several single classification models.
Voting and Stacking are the two methods which will be used in this study. In the case
of Voting, we focus on the soft method, which averages the probabilities of the single
models in each class and designates a test instance to the class with the highest prob-
ability [70]. Stacking feeds the outputs of the base models, namely the predicted class
labels, as input features to train a meta-classifier, which takes on to predict the final class
label [71]. In Figure 1, we demonstrate the above-mentioned ensemble methods, which
will be considered in the evaluation part of the study.
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Figure 1. Ensemble learners: Soft voting and stacking.

3.4. Evaluation Metrics

In order to assess the ML models’ performance, we consider the most common metrics
in the relevant literature, such as precision, recall, accuracy, F-Measure and AUC. Each
metric will help us to evaluate the models [72].

Specifically, accuracy summarizes the performance of the classification task and mea-
sures the number of correctly predicted instances out of all the data instances. Recall
captures the proportion of instances who suffered from CKD and were correctly catego-
rized as CKD, concerning all CKD instances. Precision indicates how many of those who
were diagnosed with CKD belong to this class. F-measure is the harmonic mean of the pre-
cision and recall and summarizes the predictive accuracy of a model. The aforementioned
metrics are defined as follows

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(2)

F−Measure = 2
Precision · Recall

Precision + Recall
, Accuracy =

TN + TP
TN + TP + FN + FP

(3)

where TP, TN, FP and FN stand for the true positive, true negative, false positive (FP) and
false-negative, respectively.

Finally, in order to assess the ability of a model to correctly separate the distribution of
CKD from Non-CKD subjects, the AUC is utilized. The upper optimal limit of the AUC
metric is 1 while the lowest value is 0.

4. Results and Discussion
4.1. Experiments Setup

We based the evaluation of our ML models on the Weka tool [73], and the experiments
were conducted in a computing machine, which has the following specifications: 11th
Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 2.70 GHz, 16 GB, Windows 11 Home, 64-bit
Operating System and x64-based processor. The experimental results were derived by
applying 10-fold cross-validation to measure the models’ efficiency in the balanced dataset
of 500 instances after SMOTE. Finally, in Table 5, we illustrate the optimal settings of the
ML models parameters with which we experimented.
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Table 5. Machine learning models’ settings.

Models Parameters

BayesNet
estimator: simpleEstimator

searchAlgorithm: K2
useADTree: False

NB useKernelEstimator: False
useSupervisedDiscretization: True

SVM

eps = 0.001
gamma = 0.0

kernel type: linear
loss = 0.1

LR ridge = 10−8

useConjugateGradientDescent: False

ANN

hidden layers: ’a’
learning rate: 0.3
momentum: 0.2

training time: 500

k-NN
k = 1

Search Algorithm: LinearNNSearch
with Euclidean

J48
reducedErrorPruning: False

savelnstanceData: False
subtreeRaising: True

LMT

errorOnProbabilities: False
fastRegression: True
numInstances = 15

useAIC: False

RF
maxDepth = 0

numIterations = 100
numFeatures = 0

RT
maxDepth = 0
minNum = 1.0

minVarianceProp = 0.001

DT (RepTree)
maxDepth = −1
minNum = 2.0

minVarianceProp = 0.001

RotF
classifier: J48

numberOfGroups: False
projectionFilter: PrincipalComponents

AdaBoostM1
classifier: DecisionStump

resume: False
useResampling: False

SGD

epochs = 500
epsilon = 0.001
lamda = 10−4

learningRate = 0.01
lossFunction: Hinge loss (SVM)

Stacking
classifiers: RF and RotF

metaClassifier: LR
numFolds = 10

Soft Voting
classifiers: RF and RotF

combinationRule: average
of probabilities
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4.2. Evaluation

In this subsection, we will emphasize the performance evaluation of the classifiers we
relied on. Specifically, a variety of ML models are tested in terms of Accuracy, Precision,
Recall, F-Measure and AUC. From probabilistic models, we considered BayesNet and NB.
From tree-based models, we exploited J48, LMT, RF, RT, RepTree, RotF and AdaBoostM1
(which is based on RotF). The previous models were also compared to SVM, LR, SGD,
ANN and k-NN. In addition, we applied ensemble learning, especially Stacking and Soft
Voting. In Stacking, we considered as base classifiers, the RotF and RF, and as a meta
classifier, the LR. Concerning Soft Voting, the same base classifiers were assumed, and the
final prediction was derived from the average of the probabilities.

Moreover, Table 6 illustrates the classifiers’ performance after applying SMOTE with
10-fold cross-validation. The RotF model outperforms in comparison to the other models
with an accuracy of 99.2%. In addition, we can see that our proposed models demonstrate
excellent performance in terms of Precision, Recall, F-Measure and AUC, with percentages
over 94%. Moreover, the Stacking and Soft Voting methods and RotF model achieved
an AUC of 100%. Finally, the model that presented the lowest similar performance in all
metrics was the SVM (linear) with a percentage equal to 94%.

Table 6. ML models’ performance with SMOTE and 10-Fold Cross-Validation.

Accuracy Precision Recall F-Measure AUC

NB 0.984 0.984 0.984 0.984 0.999

BayesNet 0.984 0.984 0.984 0.984 0.999

SVM (linear) 0.940 0.940 0.940 0.940 0.940

LR 0.974 0.974 0.974 0.974 0.982

ANN 0.968 0.968 0.968 0.968 0.990

k-NN 0.984 0.984 0.984 0.984 0.984

AdaBoostM1 0.978 0.978 0.978 0.978 0.998

SGD 0.974 0.975 0.974 0.974 0.974

RoF 0.992 0.992 0.992 0.992 1

J48 0.974 0.974 0.974 0.974 0.992

LMT 0.982 0.982 0.982 0.982 0.996

RF 0.989 0.989 0.989 0.989 0.999

RT 0.972 0.972 0.972 0.972 0.972

DT 0.974 0.974 0.974 0.974 0.980

Stacking 0.984 0.984 0.984 0.984 1

Soft Voting 0.990 0.990 0.990 0.990 1

The distinct accuracy of the Rotation Forest method relates to the PCA feature trans-
formation that produces rotational matrices with minimal correlations, characterized by
a reduced cumulative proportion of matrix diversity. This facilitates the formation of
diverse, mutually independent DTs within a Rotation Forest ensemble and thus improves
its accuracy [74]. As the results witness, the Rotation Forest forms more accurate individual
classifiers than AdaBoostM1 and Random Forest [75].

Also, Table 7 captures the accuracy outcomes of published studies based on the
dataset [28] utilizing the same risk factors (namely, features). Specifically, the authors
in [29] applied NB, LR and RF, achieving an accuracy of 93.90%, 94.76% and 98.88%,
respectively, after 10-fold cross-validation. Our proposed models attained better outcomes
in terms of accuracy after SMOTE and 10-fold cross-validation (98.4% NB, 97.4% LR and
98.9% RF). Similarly, the authors in [27] applied LR, k-NN and DT, achieving an accuracy
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of 97%, 71.25% and 96.25%, respectively. Our proposed models performed an accuracy of
97.4%, 98.4% and 97.4% for the LR, k-NN and DT models, respectively. We can observe
that our proposed models demonstrate slightly better accuracy rates than the comparable
research works, except for our k-NN model, which outperforms with a performance gap of
26.15% concerning the respective model of the research work [27].

Table 7. ML models’ comparison in terms of accuracy.

Accuracy

Proposed Models [29] [27]

NB 98.4% 93.90% -

LR 97.4% 94.76% 97%

RF 98.9% 98.88% -

k-NN 98.4% - 71.25%

DT 97.4% - 96.25%

Finally, we have to note the limitations of the current research. The present work con-
sidered a public dataset [28] of particular features. Moreover, we relied on data which did
not come from a medical unit that could give us diverse features for describing participants’
health status. Besides, the acquisition of such data may take considerable time and be
difficult from a privacy perspective.

In addition, the features of the dataset do not contain data related to the age and
gender of the participants, which would allow us to make the corresponding statistical
analysis and processing from a demographic viewpoint. Nevertheless, the dataset is rich in
biochemical measurements that can lead us to reliable conclusions.

5. Conclusions

Chronic kidney disease is a condition characterized by progressive loss of kidney
function over time. It is a silent disease, as most sufferers have no symptoms. Early
diagnosis and treatment of CKD is a serious task for the medical community that resorts to
ML theory to design an efficient solution to this challenge.

In the present work, a methodology based on supervised learning is described, which
aims to create efficient models for predicting the risk of CKD occurrence by mainly focusing
on probabilistic, tree-based and ensemble learning-based models. Moreover, we evaluated
SVM, LR, SGD, ANN and k-NN. The derived results highlighted the Rotation Forest,
which achieved better performance compared to the other models with an AUC of 100%,
Precision, Recall, F-Measure and Accuracy equal to 99.2%. Finally, our proposed models
outperformed the published studies based on the same dataset in terms of accuracy.

In future work, we aim to direct our research on Deep Learning methods by applying
the Long-Short-term-Memory (LSTM) and CNN and investigate the performance boost
that these models may provide. To exploit the capabilities of these models, we aim to
follow two directions. The former will apply a data augmentation method to enhance the
limited-size dataset before feeding it to the ML models, such as an SVR-based additive input
doubling method. In the latter, we will experiment from the beginning with a large-scale
non-synthetic dataset.

Author Contributions: E.D. and M.T. conceived of the idea, designed and performed the experiments,
analyzed the results, drafted the initial manuscript and revised the final manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: https://www.kaggle.com/datasets/abhia1999/chronic-kidney-disease.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.kaggle.com/datasets/abhia1999/chronic-kidney-disease


Big Data Cogn. Comput. 2022, 6, 98 13 of 15

References
1. Mahadevan, V. Anatomy of the kidney and ureter. Surgery 2019, 37, 359–364. [CrossRef]
2. Levey, A.S.; Coresh, J. Chronic kidney disease. Lancet 2012, 379, 165–180. [CrossRef]
3. Koye, D.N.; Magliano, D.J.; Nelson, R.G.; Pavkov, M.E. The global epidemiology of diabetes and kidney disease. Adv. Chronic

Kidney Dis. 2018, 25, 121–132. [CrossRef] [PubMed]
4. CKD. Available online: https://www.urologyhealth.org/urology-a-z/k/kidney-(renal)-failure (accessed on 27 June 2022).
5. Abdel-Kader, K. Symptoms with or because of Kidney Failure? Clin. J. Am. Soc. Nephrol. 2022, 17, 475–477 [CrossRef]
6. Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic kidney disease. Lancet 2017, 389, 1238–1252. [CrossRef]
7. Wang, Y.N.; Ma, S.X.; Chen, Y.Y.; Chen, L.; Liu, B.L.; Liu, Q.Q.; Zhao, Y.Y. Chronic kidney disease: Biomarker diagnosis to

therapeutic targets. Clin. Chim. Acta 2019, 499, 54–63. [CrossRef]
8. Thakur, N.; Han, C.Y. A study of fall detection in assisted living: Identifying and improving the optimal machine learning

method. J. Sens. Actuator Netw. 2021, 10, 39. [CrossRef]
9. Alexiou, S.; Dritsas, E.; Kocsis, O.; Moustakas, K.; Fakotakis, N. An approach for Personalized Continuous Glucose Prediction

with Regression Trees. In Proceedings of the 2021 6th South-East Europe Design Automation, Computer Engineering, Computer
Networks and Social Media Conference (SEEDA-CECNSM), Preveza, Greece, 24–26 September 2021; pp. 1–6.

10. Dritsas, E.; Alexiou, S.; Konstantoulas, I.; Moustakas, K. Short-term Glucose Prediction based on Oral Glucose Tolerance Test
Values. In Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies-HEALTHINF,
Online, 9–11 February 2022; Volume 5, pp. 249–255.

11. Dritsas, E.; Trigka, M. Data-Driven Machine-Learning Methods for Diabetes Risk Prediction. Sensors 2022, 22, 5304. [CrossRef]
12. Dritsas, E.; Fazakis, N.; Kocsis, O.; Fakotakis, N.; Moustakas, K. Long-Term Hypertension Risk Prediction with ML Techniques

in ELSA Database. In Proceedings of the International Conference on Learning and Intelligent Optimization, Athens, Greece,
20–25 June 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 113–120.

13. Fazakis, N.; Dritsas, E.; Kocsis, O.; Fakotakis, N.; Moustakas, K. Long-Term Cholesterol Risk Prediction with Machine Learning
Techniques in ELSA Database. In Proceedings of the 13th International Joint Conference on Computational Intelligence (IJCCI),
SCIPTRESS, Valletta, Malta, 25–27 October 2021; pp. 445–450.

14. Dritsas, E.; Trigka, M. Machine Learning Methods for Hypercholesterolemia Long-Term Risk Prediction. Sensors 2022, 22, 5365.
[CrossRef]

15. Alballa, N.; Al-Turaiki, I. Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: A review.
Inform. Med. Unlocked 2021, 24, 100564. [CrossRef]

16. Dritsas, E.; Alexiou, S.; Moustakas, K. COPD Severity Prediction in Elderly with ML Techniques. In Proceedings of the 15th
International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 29 June–1 July 2022;
pp. 185–189.

17. Dritsas, E.; Trigka, M. Stroke Risk Prediction with Machine Learning Techniques. Sensors 2022, 22, 4670. [CrossRef] [PubMed]
18. Dritsas, E.; Alexiou, S.; Moustakas, K. Cardiovascular Disease Risk Prediction with Supervised Machine Learning Techniques. In

Proceedings of the ICT4AWE, Prague, Czech Republic, 23–25 April 2022; pp. 315–321.
19. Zhang, D.; Gong, Y. The comparison of LightGBM and XGBoost coupling factor analysis and prediagnosis of acute liver failure.

IEEE Access 2020, 8, 220990–221003. [CrossRef]
20. Das, P.K.; Pradhan, A.; Meher, S. Detection of acute lymphoblastic leukemia using machine learning techniques. In Machine

Learning, Deep Learning and Computational Intelligence for Wireless Communication; Springer: Berlin/Heidelberg, Germany, 2021;
pp. 425–437.

21. Konstantoulas, I.; Kocsis, O.; Dritsas, E.; Fakotakis, N.; Moustakas, K. Sleep Quality Monitoring with Human Assisted
Corrections. In Proceedings of the International Joint Conference on Computational Intelligence (IJCCI). SCIPTRESS, Virtual,
19–26 August 2021; pp. 435–444.

22. Yarasuri, V.K.; Indukuri, G.K.; Nair, A.K. Prediction of hepatitis disease using machine learning technique. In Proceedings of
the 2019 Third International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), Palladam, India,
12–14 December 2019; pp. 265–269.

23. Saba, T. Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and
challenges. J. Infect. Public Health 2020, 13, 1274–1289. [CrossRef]

24. Yu, C.S.; Lin, Y.J.; Lin, C.H.; Wang, S.T.; Lin, S.Y.; Lin, S.H.; Wu, J.L.; Chang, S.S. Predicting metabolic syndrome with machine
learning models using a decision tree algorithm: Retrospective cohort study. JMIR Med. Inform. 2020, 8, e17110. [CrossRef]
[PubMed]

25. Xiao, J.; Ding, R.; Xu, X.; Guan, H.; Feng, X.; Sun, T.; Zhu, S.; Ye, Z. Comparison and development of machine learning tools in the
prediction of chronic kidney disease progression. J. Transl. Med. 2019, 17, 119. [CrossRef]

26. Ghosh, P.; Shamrat, F.J.M.; Shultana, S.; Afrin, S.; Anjum, A.A.; Khan, A.A. Optimization of prediction method of chronic
kidney disease using machine learning algorithm. In Proceedings of the 2020 15th International Joint Symposium on Artificial
Intelligence and Natural Language Processing (iSAI-NLP), Bangkok, Thailand, 18–20 November 2020; pp. 1–6.

27. Ifraz, G.M.; Rashid, M.H.; Tazin, T.; Bourouis, S.; Khan, M.M. Comparative Analysis for Prediction of Kidney Disease Using
Intelligent Machine Learning Methods. Comput. Math. Methods Med. 2021, 2021, 6141470 . [CrossRef]

http://doi.org/10.1016/j.mpsur.2019.04.005
http://dx.doi.org/10.1016/S0140-6736(11)60178-5
http://dx.doi.org/10.1053/j.ackd.2017.10.011
http://www.ncbi.nlm.nih.gov/pubmed/29580576
https://www.urologyhealth.org/urology-a-z/k/kidney-(renal)-failure
http://dx.doi.org/10.2215/CJN.02050222
http://dx.doi.org/10.1016/S0140-6736(16)32064-5
http://dx.doi.org/10.1016/j.cca.2019.08.030
http://dx.doi.org/10.3390/jsan10030039
http://dx.doi.org/10.3390/s22145304
http://dx.doi.org/10.3390/s22145365
http://dx.doi.org/10.1016/j.imu.2021.100564
http://dx.doi.org/10.3390/s22134670
http://www.ncbi.nlm.nih.gov/pubmed/35808172
http://dx.doi.org/10.1109/ACCESS.2020.3042848
http://dx.doi.org/10.1016/j.jiph.2020.06.033
http://dx.doi.org/10.2196/17110
http://www.ncbi.nlm.nih.gov/pubmed/32202504
http://dx.doi.org/10.1186/s12967-019-1860-0
http://dx.doi.org/10.1155/2021/6141470


Big Data Cogn. Comput. 2022, 6, 98 14 of 15

28. CKD Prediction Dataset. Available online: https://www.kaggle.com/datasets/abhia1999/chronic-kidney-disease (accessed on
27 June 2022).

29. Islam, M.A.; Akter, S.; Hossen, M.S.; Keya, S.A.; Tisha, S.A.; Hossain, S. Risk factor prediction of chronic kidney disease based on
machine learning algorithms. In Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS),
Palladam, India, 3–5 December 2020; pp. 952–957.

30. Yashfi, S.Y.; Islam, M.A.; Sakib, N.; Islam, T.; Shahbaaz, M.; Pantho, S.S. Risk prediction of chronic kidney disease using machine
learning algorithms. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–5.

31. Chittora, P.; Chaurasia, S.; Chakrabarti, P.; Kumawat, G.; Chakrabarti, T.; Leonowicz, Z.; Jasiński, M.; Jasiński, Ł.; Gono, R.;
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