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Abstract—The trade-off between more user bandwidth and
quality of service requirements introduces unprecedented chal-
lenges to the next generation smart optical networks. In this
regard, the use of optical performance monitoring (OPM) and
modulation format identification (MFI) techniques becomes a
common need to enable the development of next-generation
autonomous optical networks, with ultra-low latency and self-
adaptability. Recently, machine learning (ML)-based techniques
have emerged as a vital solution to many challenging aspects
of OPM and MFI in terms of reliability, quality, and imple-
mentation efficiency. This article surveys ML-based OPM and
MFI techniques proposed in the literature. First, we address the
key advantages of employing ML algorithms in optical networks.
Then, we review the main optical impairments and modulation
formats being monitored and classified, respectively, using ML
algorithms. Additionally, we discuss the current status of optical
networks in terms of MFI and OPM. This includes standards,
monitoring parameters, and the available commercial products
with their limitations. Second, we provide a comprehensive review
of the available ML-based techniques for MFI, OPM, and joint
MFI/OPM, describing their performance, advantages, and lim-
itations. Third, we give an overview of the exiting ML-based
OPM and MFI techniques for the emerging optical networks
such as the new fiber-based networks that use future space divi-
sion multiplexing techniques (e.g., few-mode fiber), the hybrid
radio-over-fiber networks, and the free space optical networks.
Finally, we discuss the open issues, potential future research
directions, and recommendations for the potential implemen-
tation of ML-based OPM and MFI techniques. Some lessons
learned are presented after each section throughout the paper to
help the reader identifying the gaps, weaknesses, and strengths
in this field.
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I. INTRODUCTION

O
PTICAL networks are evolving to provide candidate

solutions that can cope with the required data traf-

fic. The capacity of such networks outperforms the radio

frequency (RF) and copper cable networks. Therefore, fiber

optics are key drivers for future emerging technologies and

networks such as smart cities, Internet of Things (IoT), data

centers, and 5G [1], [2]. However, the rapid advances in

information technology and large data usage creat new chal-

lenges and limitations on optical networks in terms of band-

width, latency, and reliability. To deal with such challenges,

there has been an evolution/revolution in network transmission

systems and architectures such as the utilization of advanced

modulation formats, new multiplexing techniques, flex-grid

transmission, and reconfigurable optical add-drop multiplexer

(OADM). Nonetheless, these advances come at the cost of

increased network complexity and create more challenges to

the operation and management of optical networks.

On the other side, the current optical networks are static,

where the physical channel path from the transmitter to

the receiver is fixed. This network architecture reduces the

complexity and requirements of the network nodes and ter-

minals. However, the future optical networks, such as the

elastic [3] and cognitive networks [4]–[6] are expected to

be dynamic, spectrum grid-free, modulation format-free, and

reconfigurable [3], [7], [8]. These features improve the over-

all network performance, flexibility, and efficiency, requiring

the upgrade of the current optical nodes to be intelligent. Part

of this intelligence is monitoring the signal performance and

identifying its type to enable the network to determine the

degradation source and initiate precautionary procedures to

improve network reliability. Moreover, the ability of signal

receivers to identify the signal type known as modulation for-

mat identification (MFI) enables building adaptive, efficient,

and flexible networks where the signal type and bandwidth is

determined based on the network conditions. Additionally, the

ability to monitor the signal quality, i.e., optical performance

monitoring (OPM), at network nodes enables the network
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operator to make a tradeoff between spectral efficiency, signal

quality, and reach distance. In such a case, higher-order modu-

lation formats will be transmitted over good condition optical

channels while lower-order modulation formats will be used

in bad condition optical channels.

Machine learning (ML) techniques are promising solutions to

add intelligence to nodes in the optical network. ML techniques

can help the network nodes to learn from the conditions of

the network and use this knowledge in future to optimize

the network resources. Recently, there has been extensive

research on the use of ML in optical networks such as fiber

nonlinearity compensation [9], [10], nonlinear phase noise com-

pensation [11], [12], and nonlinear equalizers design [13]–[15],

and that by learning the behavior of the impairment or channel

from the observed data. Then, a model can be built to mitigate

the channel or the impairment effect. In addition, ML can be

utilized for optical channel modeling [16], [17], especially for

cases where theoretical modeling is not feasible. Recently, ML

is proposed in the literature for performing OPM and MFI.

This enables the use of adaptive modulation formats according

to the transmission conditions, which in turn requires the uti-

lization of suitable MFI techniques to identify the modulation

format type at the receiver. Table I presents the definitions of

the used acronyms in this article.

Figure 1 illustrates the architecture of future optical

networks that include access, metro, and core networks. Over

the past two decades, new technologies have been introduced

to improve the network capacity, such as free space opti-

cal (FSO) communication in data centers and mobile access

networks, in addition to the integration between space and

wavelength division multiplexing (SDM and WDM) fiber

networks in the metro segment. These new advances in fiber

networks introduce tremendous challenges, in terms of latency,

reliability, availability, adaptability, and heterogeneity. ML

technologies can play an important role in network man-

agement, organization, and optimization. However, to achieve

these benefits, a suitable training dataset, collected from the

network elements, is required to reach an acceptable level of

generalization that will perform well when deployed. Then,

the resultant model can be used to control and optimize the

network resources by performing remote OPM, MFI, and

routing.

A. Advantages of Using ML in OPM and MFI for Optical

Networks

MFI and OPM can be performed using two main

approaches: classical and ML approaches. In classical

approaches, we mainly have the Likelihood-based (LB) and

features-based (FB) methods. The LB methods are optimum

with respect to parameters estimation and classification accu-

racy. However, this optimality comes at the cost of requiring

a prior knowledge of channel parameters and/or a compre-

hensible mathematical model describing the channel under

consideration [18], [19]. In FB methods, MFI and OPM are

performed by making use of hand-crafted features. These

features are selected in an ad-hoc manner involving a long

trial and error process to decide which features best describe

TABLE I
MAIN ACRONYMS

different channel impairments and/or modulation formats.

Furthermore, the actual implementation of a FB classifier often

requires manual construction of a decision tree with a set of

pre-determined thresholds. These thresholds are often com-

puted using a theoretical noise-free signal or optimized with

given channel conditions.
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TABLE I
MAIN ACRONYMS (CONTINUED)

ML algorithms, on the other hand, can build predictive and

classification models in an automated manner and without

a prior knowledge of channel model or channel parameters.

Indeed, ML algorithms based on the concept of end-to-end

learning replace extracting hand-crafted features by iterating

through deep learning architectures to automatically learn rich

features directly from raw data; see Section II. For this rea-

son, recently, ML-based algorithms have been used extensively

in diverse fields of optical communication systems [20]–[24].

The use of ML techniques to perform OPM and MFI can

provide many benefits either to the current optical networks

or for the future adaptive and autonomous optical networks.

Here, we discuss the main benefits of using ML for OPM

and MFI.

1) Real-Time Adaptability Using Online Learning

Procedures: Using ML in OPM of optical networks

helps in utilizing information about the network status in

real time [25]–[27]. OPM based on ML helps in building

proactive networks by relying on constantly-adapting models.

These models can predict the possibility of fault occurrence

and recommend suitable solutions even when operation

parameters are changing, thereby guaranteeing stable and

reliable network operation. Hence, the optical network

becomes able to monitor its functions, detect performance

changes, and provide feedback to the network management

to improve the operational performance. Improving network

performance in an automatic manner requires ML-based

MFI techniques to adapt the transmission speed based on

OPM feedback. ML-based OPM and MFI techniques ensure

reducing downtime and increase network availability [26].

Note that network reliability is very important for some

applications as in medicine, where short diagnosis and

treatment times are highly required.

2) Superior Flexibility and Reconfigurability: Future opti-

cal networks will be dynamic, flexible, and adaptive, where

data rate and modulation formats can change according to

the customer needs and physical link status. Leaning-based

models can help in this regard by building OPM and MFI

techniques that are data-driven and adaptable to the variety of

operation conditions [25], [28]. This can be achieved using

unified learning algorithm that works across the spectrum.

3) Improved Network Security: Similar to other data trans-

mission networks, optical networks are vulnerable to unpre-

dictable and detrimental attacks targeting service disruption,

or unauthorized acquiring of transmitted data. As OPM

provides continuous information about the optical parame-

ters, any attack causes changes in the relationship between

these parameters [29]. Since accurate models of physical-

layer impairments under attacks do not exist, ML greatly

helps for recognizing and detecting these security breaches.

Furthermore, ML for OPM and MFI helps in securing the

network by utilizing techniques such as incremental learn-

ing [30], [31]. This technique improves in-use models or

reinforce their ability, by continually adapting the models

based on a constantly arriving data stream, to detect the

presence of an unauthorized data acquirement.

4) Advanced Network Operation Features at Reduced Cost:

OPM and MFI techniques introduce some cost when built and

integrated in the network. However, their ability to re-learning

OPM and MFI models improves their cost-effectiveness com-

pared to non-ML learning techniques. Additionally, an ML-

based technique can be adapted to a variety of conditions to
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Fig. 1. Next generation heterogeneous optical network.

satisfy multi-tasks objectives leading to more efficient usage,

as non-ML-based techniques are typically designed to tackle

each task objective separately [32]. Therefore, ML adds to the

reduction of the overall network operational costs by provid-

ing proactive monitoring of the network impairments. This,

in turn, improves the quality of service (QoS) to respect the

service level agreement (SLA) of customers.

5) Improved Network Efficiency: Building intelligent nodes

with OPM and MFI functions helps the usage of network

resources in an efficient way [25]. However, unless the moni-

toring functions can improve their performance and efficiency

over time, as in ML-based OPM and MFI, there will be

a gap between maximum efficiency of network resources

and deployed solutions to achieve said efficiency. ML-based

OPM and MFI functions can minimize waste in the network

resources especially in the next generation optical networks;

e.g., elastic optical networks. These networks are expected to

handle large number of tunable parameters such as modula-

tion format, signal power, symbol rate, adaptive coding rate,

and adaptive channel bandwidth, etc. In such situations, it

is very difficult to model a system through non-ML closed-

form formulas that relies on approximations and sacrifices

resource utilization. In contrast, ML algorithms can easily

handle complex non-linear behavior, which leads to better

resources utilization [33].

B. Review of Relevant Survey Articles

For many decades, MFI has been a hot topic of research in

RF digital communication systems, where many approaches

have been proposed in literature [18]. Similarly, optical

networks are gaining more attention owing to the advances

in photonics technologies and the interest in MFI and OPM

for these networks is increasing dramatically. In the litera-

ture, few technical reviews have discussed the importance

of MFI and OPM for current and future optical networks.

The work in [34]–[36] addressed the development of differ-

ent OPM techniques in optical communication networks such

as the optical filtering, interpolation, and polarization nulling.

Although many of these techniques are proposed to monitor

different performance and impairment parameters, they did not

address ML techniques that are considered effective solutions

for OPM. In [37], the authors discussed the application of ML

techniques in software defined network (SDN). Their contribu-

tion is focused on traffic classification, routing optimization,

resource management, QoS and security. However, ML for

OPM and MFI of optical networks is not covered. Recently, a

review work pertaining to ML and its applications in optical

communication networks is reported in [25]. In this work, the

authors mainly focused on the issues related to the physical

layer. Specifically, the aim was to describe the mathemati-

cal foundations of basic ML techniques and the benefits of

using ML for optical networks. In that context, this work

reviewed briefly ML-based OPM techniques proposed for opti-

cal networks. Similarly, the authors in [33], [38] reviewed ML

techniques when applied to different areas in optical networks.

One of these areas is the utilization of ML in OPM and MFI,

which was covered briefly.

C. Summary of Paper’s Contributions

In this work, our goal is to conduct an extensive review

that covers ML-based OPM and MFI techniques in optical

networks. Our contributions are summarized as follows:

• Review and discuss the current situation of optical

networks in terms of MFI and OPM: standards, monitor-

ing parameters, availability of commercial products and

their limitations.

• Review, extensively the proposed ML techniques for MFI,

OPM, and joint MFI/OPM for direct and coherent optical

networks during the last two decades.
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Fig. 2. Paper organization.

• Evaluate and compare the different proposed techniques

in a tabular manner according to different algorithmic

aspects.

• Review the available ML-based OPM and MFI tech-

niques for other types of optical networks such as the

hybrid radio-over-fiber (RoF) networks, the orbital angu-

lar momentum (OAM), or other fiber-based networks that

use future SDM multiplexing techniques such as the few

mode fiber (FMF).

D. Paper Organization

The rest of this survey is organized as illustrated in Fig. 2.

In Section II, we describe the different ML algorithms used to

build OPM and MFI functions, which include supervised ML,

un-supervised ML, and reinforcement learning. Section III dis-

cusses the different types of modulation formats and optical

impairments that are classified and monitored, respectively, in

the proposed MFI and OPM techniques for optical networks.

Moreover, it discusses the available OPM commercial prod-

ucts and their limitations. In Section IV, we first address

some conventional techniques for OPM and MFI that are not

ML-based. Then, we comprehensively discuss the ML-based

techniques for OPM, MFI, and joint OPM/MFI in traditional

fiber-based optical network. OPM and MFI for multiplexed

signals are presented in Section V. In Section VI, we discuss

the OPM and MFI for RoF and FSO networks. Further dis-

cussions and guidelines are presented in Section VII. Open

issues in current proposed OPM and MFI techniques and rec-

ommended research directions are discussed in Section VIII.

Finally, concluding remarks are shown in Section IX. For each

section in the paper, some lessons learned are given in order

to deepen the readers’ understanding of the discussed topics

in this survey.

II. MACHINE LEARNING ALGORITHMS

ML is a branch of artificial intelligence that focuses on

developing algorithms that, when given access to adequate

amount of training data, can learn the relationship between

inputs and outputs, without explicitly articulating the rela-

tionship. ML has been used extensively in image processing,

medical applications and recently exploited in optical networks

for MFI and OPM.

In general, ML algorithms aim to estimate an unknown

function that maps inputs, representing the parameters of

a given problem, to outputs representing solutions to said

problem. When both input-output pairs are available for the

learning algorithm, such a learning task is called “Supervised

Learning.” However, when only the inputs (or outputs) are

available for the learning algorithm, the learning process is

called “Unsupervised Learning.” A special class of prob-

lems that requires a series of decisions or functions, to reach

the final solution, can be learned using methods fall under

“Reinforcement Learning (RL).” Additionally, the output type

can affect the learning process. For instance, when the out-

puts represent a generic description of the class of data, e.g.,

“tree” versus “bird,” the problem is known to be a classifi-

cation problem. MFI in optical networks is a classification

problem where supervised and unsupervised learning are uti-

lized to identify the different modulation formats. On the

other hand, when the outputs represent a precise numeri-

cal value for each given input, the problem is known as a

regression problem. It is worth noting that the majority of the

reported learning-based OPM techniques fall under supervised

learning because OPM estimation problems typically require

some form of regression. Furthermore, joint OPM and MFI is

proposed but with individual training [39]. This kind of learn-

ing is called single task learning. Recently multi-task learning

(MTL) [40], [41] is proposed to perform classification and

regression simultaneously with joint training.

In this section, we review the commonly used learning-

based algorithms and focus exclusively on the ones used for

OPM and MFI in optical networks. The different types of ML

algorithms are illustrated in Fig. 3.

A. Supervised Learning

Supervised learning is achieved by analyzing input-output

pairs of examples (instances) of an unknown function that
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Fig. 3. Different types of ML algorithms used for MFI and OPM in optical
networks.

Fig. 4. A typical pipeline for learning a supervised model.

maps inputs to outputs. The learned model will approximate

the function based on few assumptions, which gives rise to

multiple supervised learning algorithms each is suited for a

specific set of assumptions. To learn a model, supervised learn-

ing algorithms are fed a large number of training examples

containing the input data and their corresponding labeled out-

puts (ground truth) to estimate the parameters of the learned

model. The output during training phase is iteratively com-

pared with the ground truth to minimize the error, known as the

training error. Once a model is found, the model is tested using

unknown examples during the training phase, typically called

testing instances. The performance of the model is estimated

by calculating the accuracy precision of the model when esti-

mating the output of testing instances. A typical pipeline for

learning a supervised model is illustrated in Fig. 4. Supervised

ML algorithms can provide accurate results because the out-

puts are known during training phase and the parameters of

the learning model are tweaked to minimize the error in esti-

mating (predicting) such outputs. In the following discussion

we list a few supervised learning algorithms that are widely

used in learning-based OPM and MFI techniques.

1) K-Nearest Neighbor (K-NN): k-nearest neighbor (k-NN)

is one of the simplest supervised ML algorithm that belongs

to a subclass called nonparametric models. The idea behind

k-NN is to estimate (predict) an unknown output from a given

input by using “close; input-output pairs that are known dur-

ing training. The closeness notion is dictated by the problem

Fig. 5. Illustration of ML classification using k-NN algorithm with k = 5.

settings and the characteristics of the input data, neverthe-

less, Euclidean, Manhattan, and Hamming distance metrics

are commonly used [42]. In the training phase, the dataset

is sorted and indexed for easy and fast future retrieval. During

testing, a majority vote of the k-nearest neighbors is used

to estimate (predict) the unknown output of a given input.

Figure 5 illustrates an example of classification problem using

k-NN algorithm. The dashed-green and solid-blue circles rep-

resent class 1 and 2, respectively, while the filled-black circle

represents the unknown (unlabeled) point. For k = 5, among

the five closest neighbors shown in Fig. 5, three belong to

class 1 and two belong to class 2. Thus, the unknown circle

belongs to class 1. k-NN algorithm can also be used to solve

regression problems by calculating the average of numerical

target of the k-nearest neighbor. There are numerous propos-

als to estimate the optimum value of k, where cross validation

is commonly used. The cross validation is performed by test-

ing independent data at different values of k and select the

value that provides the best accuracy. The k-NN algorithm

is easy to implement and well suited for large datasets and

highly non-linear mapping functions, however, storage require-

ments and retrieval time can limit its applications in real-time

systems [43].

2) Support Vector Machine (SVM): This is a widely used

supervised learning algorithm, which can be interpreted in

the so-called kernel methods framework. This framework is

based on mapping a low dimensional input feature space into

a higher dimensional kernel feature space, and then solving

a linear problem in that kernel feature space [44]. SVM is

an extension of support vector classifier; however, its fam-

ily of algorithms can tackle both classification and regression

problems. The SVM algorithm seeks finding a hyperplane (a

plane in the n-dimensional kernel feature space) that maxi-

mizes the margin, i.e., the separation distance between two

classes within a dataset, as shown in Fig. 6; thus, SVM is

a maximal margin classifier. Therefore, when data points of

two classes are non-linearly intertwined, the data points are,

first, linearized by projecting them into a high dimensional

space using kernel functions such as the sigmoid, polynomial,

and radial basis functions. In Fig. 6, the support vectors are

simply the vectors defined in terms of the co-ordinates of indi-

vidual observations (mapped data points), which are closest to

the boundary between the classes. These vectors are used to

estimate the parameters of the hyperplane. Their importance
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Fig. 6. Classification of a dataset consists of two classes using SVM.

comes from their influence on the cost minimization procedure

to identify the hyperplane parameters.

The SVM algorithms can be extended to classify between

more than two classes by utilizing either “1-against-1” or

“1-against the rest” methods. In 1-against-1 technique, multiple

SVMs are used on parallel where each classifies between two

classes and the final decision is based on majority vote. On the

other hand, 1-against the rest technique redefines the problem as

multiple independent problems where each classifies between

a class and the rest of the classes combined in a “Super” class,

and the final decision is taken based on majority vote [45]. The

SVM algorithm can be modified to solve regression problems

by utilizing the hyperplane as the estimated function with the

addition of tolerance range. This ensures the existence of global

minima in the optimization of loss function [43]. In practice,

SVM can provide superior performance compared to k-NN and

artificial neural networks (ANN) algorithms both in accuracy

and training speed, however, its meta-parameters such as the

kernel function, tolerance margin, soft margin, etc. can be

difficult to optimize and depend on the data topology as well

as domain knowledge [46].

3) Artificial Neural Networks (ANNs): Inspired by the bio-

logical structure of the neural cells in human brains, artificial

neural networks present a computational model for the learn-

ing and decision making in biological entities [47]. However,

state-of-the-art neural networks have diverged significantly

from biological models. The most basic building block of

an ANN is called a neuron [47]. In ANN, layers of neurons

are connected in cascade and information propagates through

the network where it goes under various transformation until

it reaches the end and produces outputs. The goal of ANN

algorithm is to change the parameters of each neuron in the

network so that the output yields the desired values. Each neu-

ron is modeled as a non-linear activation function whose inputs

(coming from proceeding layers) are multiplied by weights

(wk ) and shifted by bias coefficients (bk ) giving the overall

ANN algorithm non-linear properties and making it possible to

learn virtually any function. The basic ANN algorithm archi-

tecture contains three layers of neurons; an input layer (x),

one hidden layer (z) and an output layer (y); this architec-

ture is called multi-layer perceptron 3 (MLP3), as shown in

Fig. 7. The input layer accepts an input vector, then trans-

fers the vector samples to all neurons of the hidden layer.

Fig. 7. ANN algorithm architecture (MLP3).

The connection between the layers is done by the network

weights. In the training phase, the weight and bias coefficients

are optimized. The training phase stops when it reaches its

specified margin, i.e., the error between the output and the

target [48]. The advantage of the ANN algorithm is that the

testing phase is fast once training is completed. However, it is

hard to interpret the trained ANN model. Additionally, during

training, the optimization process may fail to reach a global

minimum especially when the number of layers and/or neurons

cannot model the complexity of the learning task.

There are many types of ANN, which have the same concept

but differ in the architecture. For example, Probabilistic Neural

Network (PNN) is a kind of feed-forward artificial neural

network, which can approach a Bayes-optimal solution [49].

This solution chooses the class that has the maximum a pos-

teriori probability of occurrence. PNN consists of input layer,

pattern layer, summation layer, and output layer. Similar to

ANN, the input layer accepts an input vector, which gets trans-

ferred to the pattern layer. This second layer calculates the

Euclidean distance between the input vector and the vectors

of all classes in a reference dataset. Therefore, the number of

nodes in this layer is equal to the number of patterns in the

reference dataset, with each node has a radial basis activa-

tion function. This nonlinear function accepts at its input the

measured distance between the input vector and a reference

pattern, and produces at its output a probability value. The

reference dataset contains certain number of patterns for each

class. Therefore, the summation layer performs an averaging

over the outputs of the pattern layer. The averaging is per-

formed for each class alone to produce a vector whose entries

are of values ≤ 1, representing the probabilities of classes.

Finally, the class with the maximum probability is identified

as the true class.

When ANN algorithm contains a large number of hidden

layers (typically 2 or more hidden layers), it is called deep

neural network (DNN). DNN helps in complex non-linear

modeling problems. However, it requires a large dataset for

training, which is more time consuming than training an ANN.

4) Convolutional Neural Networks (CNN): Similar to

multi-layer ANN, convolutional neural network (CNN) algo-

rithm is a kind of DNN algorithms where multi-hidden

layers are used, however, in CNN inputs are typically
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Fig. 8. Schematic diagram of CNN algorithm, where n × n is kernel filter
size and m × m is down-sampling ratio.

Fig. 9. RNN algorithm’s schematic diagram. xt : input at time step t. ht :
hidden state at time step t, yt : output at time step t , Wxh : weights between
input layer and hidden layer, Whh : weights between hidden layers, Why :
weights between hidden layer and output layer.

multidimensional such as images, i.e., inputs are highly corre-

lated. Architecturally, CNN consists of three types of layers;

convolutional layer, pooling layer, and fully connected layer,

as shown in Fig. 8. In the convolutional layer, each point in

the original multidimensional input is convolved with kernel

filters that are initialized randomly to produce some feature

maps. Then, the pooling layer reduces the dimension of each

feature map using a filter such as average and max filters.

The output of the previous layers is flattened and feeds into

a fully connected neural network which perform the classi-

fication or regression tasks [50]. CNN algorithms are useful

for both classification and regression problems, however, its

training computational time and cost are high compared with

other ML algorithms.

5) Recurrent Neural Network (RNN): Recurrent neural

networks (RNNs) are a special class of DNNs, where the

output of the network is fed back to the input making it espe-

cially useful when handling sequential input data, i.e., data

with time-dependency, by utilizing internal state (memory).

A commonly-used simple structure of RNN is an MLP with

hidden layers that contain feedback loop to provide some

information about the previous states, as shown in Fig. 9. The

hidden layer is sharing the same weights (i.e., Wxh , Whh

and Why , which has the advantage of reducing the training

parameters compared to other NNs [51]. RNN algorithm pro-

vides better performance by taking advantage of ability to

Fig. 10. Random forest schematic diagram.

memorize information and build complexity through recur-

sive processing. However, their advantage can be limitation

at the same time since optimization algorithms can be vul-

nerable to exploding or vanishing gradients in training phase,

consequently, training might fail for long term sequential data.

This problem is tackled in long-short term memory (LSTM)

RNN, where the hidden layers are controlled using gates that

pass information to the hidden layers and maintain extracted

features from previous time steps [52].

6) Decision Tree (DT): This algorithm uses a tree-like

graph to adopt both classification and regression. The tree

structure includes a root node (the root of a tree) that connects

to internal nodes, through links (branches), which in turn con-

nect to leaf nodes (leaves of a tree). Each node represents a

feature (attribute) and each leaf represents an outcome (target

value). A DT model consists of an ensemble of (binary) deci-

sions arranged in a hierarchical manner [53]. Each pathway

from the root node through internal nodes to a leaf node

represents a decision rule. Decision rules can be constructed

from a training dataset using different algorithms such as the

iterative dichotomiser 3 (ID3) and classification and regression

tree (CART). The collection of all such rules is the correspond-

ing DT model. Once a decision tree model is constructed, it

can be utilized for classification or prediction of a new case.

This algorithm is simple and fast, however, it is also critically

sensitive to the features and thresholds used in making rout-

ing decisions. To combat such a disadvantage, multiple trees

are trained and processed on parallel in what is known as the

random forest algorithm.

7) Random Forest: This algorithm consists of multiple DTs

which provide diversity across feature space. Each DT is con-

structed randomly from the original dataset during the training

phase giving rise to a different subset of features for each tree.

The output of random forest is determined by plurality voting

for classification problems. In regression problems, the out-

put will be the mean for all the decision tree’s results [54].

Figure 10 shows an illustration of using a decision forest in

classification problems. In comparison with single decision

tree, random forest provides accurate results because it relies

on majority voting of multiple decision trees. Additionally,
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Fig. 11. Flow chart of k-means clustering algorithm.

they are less prone to overfitting that plagues most other ML

algorithms.

B. Unsupervised Learning

Unlike supervised learning, unsupervised learning can pro-

cess and extract information from data without a clear input-

output pairs. Unsupervised models are developed by analyzing

patterns common between dataset points in order to recog-

nize (cluster) similar data points into classes, as the case in

clustering and dimensionality reduction (DR) algorithms.

1) Clustering Algorithms: Dataset clustering aims to parti-

tion a dataset points into several groups or clusters according

to their similarity. Clustering algorithms are divided into three

types based on partition, distribution, and density.

a) Clustering algorithm based on partition: In parti-

tioned clustering, the dataset points are initially partitioned

into a set of clusters. Then, the cluster algorithm uses iterative

procedures to update the partitioning by moving objects from

one cluster to another. k-means [55] and k-medoids [56] are

the two most prominent examples of partitioning algorithms.

The principle of k-means algorithm is relying on selecting

randomly k points as initial centroids (a center of a clus-

ter). Then, each data point is assigned to the nearest centroid

based on a distance metric. By iteratively updating centroids

and moving points from one cluster to another, the clustering

algorithm can reach equilibrium. The flow chart in Fig. 11

illustrates the procedure followed by the k-means clustering

algorithm to perform dataset partitioning. k-means algorithm

is easy to implement and fast, however, choosing the distance

metric and the number of clusters k can be tricky. Additionally,

equilibrium is not guaranteed for all partitioning problems.

b) Clustering algorithm based on distribution: Distri-

bution-based clustering, such as Gaussian mixture model

(GMM), is based on the assumption that points within a clus-

ter are likely to be drawn from the same distribution [57].

GMM algorithm groups observations into k multi-dimensional

Gaussian distribution and compute an initial estimate of dis-

tribution parameters such as the mean, or the covariance,

and mixing coefficient (mixture weights) for each distribu-

tion. These parameters are then updated for each iteration.

The limitation of GMM algorithm is its sensitivity to the ini-

tial estimates which sometimes leads to solution divergence.

To overcome this problem, expectation-maximization (EM)

techniques [58] are used, which iteratively find the maximum-

likelihood estimates for model parameters. Because EM algo-

rithm is complex and cannot be implemented directly, an

approximation is often invoked by using, e.g., the variational

Bayesian expectation maximization (VBEM) algorithm [59] to

estimate the model parameters.

c) Clustering algorithm based on density: Density-based

spatial clustering establishes a cluster of data points, in a high-

density region, and regards neighbors that belong to a lower

density region as outliers. By differentiating between core data

points in a cluster and its outliers, density-based clustering can

successfully partition challenging datasets where other cluster-

ing algorithms cannot achieve. Density-based spatial clustering

of applications with noise (DBSCAN) algorithm [60] and

ordering points to identify the clustering structure (OPTICS)

algorithm [61] are examples of this type of clustering.

DBSCAN applies threshold to decide on noisy points (out-

liers), which makes the algorithm sensitive to threshold setting.

This is overcome using OPTICS algorithm which takes into

consideration both the density and spatial closeness of data

points within a cluster. More recently, clustering by fast search

and find of density peaks (CFSFDP) algorithm, which is an

updated version of DBSCAN algorithm, clusters data points

by detecting 1) density peaks (representing cluster centroids),

and 2) nearest neighbor for each cluster [62].

2) Dimensionality Reduction (DR): DR aims to transform a

high dimensional dataset into a lower dimensional space while

trying to preserve the overall structure and properties of the

original dataset. There is a lot of research related to this area

in literature. Some are concerned with preserving the global

structure, i.e., the distance between the dataset points in higher

and lower dimensions [63]. Other algorithms are concerned

with preserving the local structure, i.e., dataset topology and

continuity [64]. Recently, researchers showed interest in devel-

oping algorithms that preserve the global and local structures

at the same time [65]. In general, DR algorithms can be cate-

gorized into linear and nonlinear. In this subsection, we discuss

some algorithms that were used in OPM and MFI of optical

networks.

a) Linear dimensionality reduction: In linear DR, the

transformation from a higher dimension into a lower dimen-

sion is performed as linear mapping. This means the lower

dimension data can be obtained by a linear combination of the

original dataset points, for instance, by applying some weights

or finding the projections of the original dataset points. Several

algorithms that depend on linear transformation have been

studied in literature such as the principal component analysis

(PCA) [66]. PCA transforms a high dimensional correlated

data into a lower dimensional uncorrelated data, which can

be obtained by finding the orthogonal linear combination of

the dataset points (PCA space). To find the PCA space, we
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Fig. 12. Illustration of DR using PCA.

evaluate the direction of the largest variance, i.e., the largest

eigenvalue of a covariance matrix. Figure 12 illustrates how

PCA can transform a dataset from 3D to 2D. Since the PCA

is based on finding the maximum deviation, it eliminates the

noise effect. However, it is hard to evaluate the covariance

matrix accurately [67].

Another linear DR technique, closely related to PCA, is the

independent component analysis (ICA) [68]. It is based on

extracting the linear independent components of high dimen-

sional data. Both PCA and ICA techniques preserve the global

structure. These techniques are simple in implementation but

their performance degrades when used on nonlinear datasets.

b) Non-linear dimensionality reduction: The nonlinear

algorithms accomplish the reduction by applying a kernel

function to the original data, where some can maintain the

global structure such as the multidimensional scaling (MDS)

algorithm [69] and stochastic proximity embedding (SPE)

algorithm [70], while others attempt to preserve local struc-

ture such as the auto-encoder [71]. MDS performs a nonlinear

transformation while maintaining the pairwise distance. The

quality of transformation is evaluated by stress function, such

as Kruskal’s stress function, which calculates the error between

the data in high and low dimensions. Similar to MDS, SPE

maintains pairwise distances but it utilizes an iterative pro-

cess to minimize the stress function which improves the

performance. On the other hand, an auto-encoder is similar to

an ANN algorithm, with the number of input and output layers

are equal, as shown in Fig. 13. The auto-encoder is trained in a

way such that its output matches the input. Hence, the hidden

layers represent the input and are used as features extractor or

data compressor.

Preserving both global and local structure can be achieved

using the t-distribution stochastic neighbor embedding (t-SNE)

algorithm [65]. In an SNE algorithm, the similarities of pair-

wise Euclidean distances in high and low dimensional spaces

are expressed as joint probabilities. The initial values of lower

dimensional space are chosen randomly, from a Gaussian dis-

tribution. Figure 14 illustrates reducing a dataset from 2D to

1D using SNE algorithm. Both data in lower and higher dimen-

sions are projected into a Gaussian distribution. The similarity

between high and low dimensional spaces is optimized using

Fig. 13. Schematic diagram of auto-encoder.

Fig. 14. Illustration of DR using SNE algorithm.

an optimization algorithm such as the gradient descent. In

SNE, dataset points in the lower dimension are crowded.

This makes it difficult to maintain the overall structure. An

improved SNE algorithm (t-SNE) has solved this problem by

projecting the data in lower dimensional onto t-distribution.

C. Reinforcement Learning (RL)

RL is a part of ML that is concerned with a sequence of

actions. In applications where it is not feasible to obtain an

accurate model or the complexity of the problem is signifi-

cant, RL, also known as approximate dynamic programming,

can produce an autonomous agent that can navigate the search

space and provide solutions. This is achieved by iteratively

taking actions, assessing state, and computing reward func-

tion whose value increases as it gets closer to the desired

solution. While such a learning approach has produced impres-

sive results [72], RL is critically sensitive to all three aspects

of the algorithm (action, state, reward) making its training a

challenging task. Recently, RL is applied in some applications

in optical networks such as solving decision making prob-

lems where RL provides potential solutions regarding routing

tables optimization. Moreover, it can be used for dynamic

resources allocation [73], [74]. To the best or our knowledge,
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TABLE II
HIGHLIGHTS ON MACHINE LEARNING TECHNIQUES

RL has not been applied to OPM and MFI problems in opti-

cal networks. Nevertheless, it has been suggested that RL can

be applied to real and complex optical networks because it

can achieve fast convergence, meanwhile minimize the influ-

ence of non-optimal actions taken during the pre-trained-based

algorithms [25].

Table II summarizes the different types of ML techniques

that are used for OPM and MFI in optical networks. Also,

it provides highlights on their advantages and disadvantages,

which may help facilitating the selection of appropriate ML

algorithm for a particular application.

D. Lessons Learned

In this section, we discussed several common ML tech-

niques used in OPM and MFI for optical networks. Few

lessons are to follow.

• The ML techniques that are proposed for OPM and MFI

in optical networks are mainly of two types: supervised

and un-supervised ML algorithms. In OPM, ML regres-

sors are used because the impairment is a continuous

parameter that has infinite number of values within a

range. On the other hand, for MFI, classifiers are used

to select one among different modulation formats. DR

techniques are also of value in both OPM/MFI as they

provide the tools to obtain features of reduced dimen-

sionality and facilitate dataset visualization by reducing

dataset dimensionality into order 2 or 3.

• Each ML technique has its own benefits and drawbacks.

Some have high accuracy while others have lower com-

putational complexity. Therefore, ML algorithm selection

is subject to the problem at hand. For example, the k-

NN algorithm is the simplest algorithm in the supervised

category and few parameters are required for its imple-

mentation. However, it is not recommended for high

dimensional data. The SVM is more appropriate for high

dimensional space and linear separable problems. It is

worth noting that the usage of kernel in SVMs made

them non-linear learning algorithms but selecting the suit-

able kernel function is not a trivial task. DT algorithm is

preferred when the examined dataset is small. However,

it is susceptible to overfitting, especially when the tree

is particularly deep. On the other side, the random for-

est algorithm aggregates many DTs to limit overfitting at

the expense of its computational complexity. Deep learn-

ing algorithms are performing outstanding capabilities in
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complex and nonlinear models. In addition, they deal

directly with raw data; that is, there is no need for hand-

crafted features extraction. However, they require a large

dataset for training which may not be always available.

Also, the training phase is often time-consuming. CNN is

well-suited for two-dimensional input data. For sequential

(i.e., time dependent) datasets, RNN is more appropriate

than other supervised algorithms. Moreover, MTL algo-

rithms are recommended in simultaneous classification

and regression problems.

• Unsupervised ML-based algorithms are preferably used

for clustering and DR purposes. For clustering, the k-

means algorithm is fast and easy to implement. However,

it employs hard-decision clustering with the requirement

of a pre-selection of the number of clusters. The GMM-

EM technique performs a more flexible (soft-decision)

clustering, where it relies on the posterior probabilities.

However, the requirement of optimizing many parame-

ters makes its implementation costly. Other clustering

algorithms such as OPTICS, DBSCAN, and CFSFDP

are recommended for noisy datasets, as the clustering is

established based on local densities. On the other hand,

DR techniques are commonly used as a preprocessing

step to improve learning and avoid curse of dimen-

sionality. PCA and auto-encoders are examples of DR

techniques. PCA finds the main components of the dataset

that corresponds to the direction of maximum variance,

while the auto-encoder is trained in a way such that its

output matches the input. It is worth noting that some DR

techniques can be used within the context of learning a

model in a supervised manner, but their main original

formulation is to be unsupervised.

III. OPTICAL MODULATION FORMATS GENERATION

AND OPTICAL IMPAIRMENTS

In this section, we review different types of modulation

formats where ML-based MFI techniques are proposed for

their classification. This includes common modulation formats

used in direct and coherent detection optical systems. Also,

we show the representations of optical modulation schemes in

different domains so that the readers can have better under-

standing of features extracted from each domain. Additionally,

we discuss the general types of linear and nonlinear impair-

ments that affect the OPM and MFI algorithms. Then, we

address the current OPM and MFI in the deployed opti-

cal networks where international standards and commercial

products are discussed.

A. Optical Modulation Formats

Many techniques have been proposed to classify differ-

ent types of modulation formats [75]–[77]. In particular,

some modulation formats are sensitive to specific impair-

ments while others are more tolerant to the same impairments.

Understanding the properties and techniques of the generation

and detection of various modulation formats helps in identi-

fying the challenges and selecting the appropriate algorithms

for MFI and OPM. In this subsection, we review the various

modulation formats where ML-based MFI techniques play an

important role in their classification.

1) Intensity Modulation–Direct Detection (IM-DD):

a) On-off keying (OOK): On-Off keying (OOK) modu-

lation format has dominated optical communication field for

long period due to its simple transmitter and receiver struc-

tures. However, the advances in communication technology

and the requirement for high spectral efficiency (SE) networks

make OOK not a favored option for ultra-high data transmis-

sion. It provides acceptable performance for data rates up to 10

Gbps. However, it becomes more susceptible to noise distor-

tions and channel impairments at higher network speeds. OOK

can be generated as non-return-to-zero (NRZ) and return-to-

zero (RZ) formats. In NRZ-OOK, the bit “1” is represented by

a light pulse and no light for a bit “0.” The RZ-OOK scheme is

similar to the NRZ-OOK with a difference in the optical pulse

width. The “1” bit has a different pulse width, compared to

the NRZ-OOK, according to the required optical pulse duty

cycle (defined as the ratio of the optical pulse width to the

total signal period), such as 33% RZ, 50% RZ, and 67% RZ.

Either direct modulated lasers (DMLs) or external modula-

tors, such as Mach-Zehnder modulators (MZMs), are exploited

to generate NRZ-OOK and RZ-OOK formats, while the later

requires an additional modulator called pulse carver (PC) to

control the laser pulse width. At the receiver side, a photodi-

ode (PD) is used to convert the optical power into an electrical

current. In general, RZ formats require more transmitter com-

plexity and wider transmission bandwidth (i.e., less tolerant

to channel dispersion) than NRZ formats. However, they are

more tolerant to optical noise (i.e., require less optical signal to

noise ratio (OSNR) for a given bit error rate (BER)) than NRZ

schemes owing to the less impact of inter-symbol-interference

(ISI) on RZ formats. Figure 15 (a) and (b) show simulated

optical intensity time domain, optical intensity eye diagram,

phase constellation, and optical spectrum at 10 Gbps NRZ-

OOK and RZ-OOK, respectively. Besides, Table III shows and

compares the transmitter and receiver hardware complexity of

various modulation formats.

b) Optical duobinary (ODB): This modulation is similar

to OOK in varying the light source amplitude based on the

data, and using a simple direct detection at the receiver (i.e.,

similar hardware complexity as NRZ-OOK, see Table III).

However, it requires a pre-defined phase relation between suc-

cessive bits to reduce the effect of fiber channel dispersion. A

pre-encoder generates three signal levels (i.e., “−1,” “0” and

“1”) to represent data bits. Bit “1” is represented by either

“1” or “−1” level while bit “0” is represented by “0” level.

If two successive “1” bits are separated by an odd number of

zeros, then the corresponding pre-coded signals will be 180◦

out of phase. This has the effect of reducing transmitted sig-

nal bandwidth and increasing the tolerance to fiber channel

dispersion compared to OOK schemes. Figure 15 (c) shows

the Optical duobinary (ODB) simulated optical intensity time

domain, optical intensity eye diagram, phase constellation, and

optical spectrum at 10 Gbps data rate.

2) Phase Modulation–Direct Detection (PM-DD):

a) Differential binary phase shift keying (DBPSK):

Differential binary phase shift keying (DBPSK) or simply
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Fig. 15. Intensity time domain, intensity eye diagram, phase constellation, and optical spectrum of different modulation formats. The code word “11101100” is
used to generate the intensity time domain signal for NRZ-OOK, RZ-OOK, Duobinary, NRZ-DPSK, RZ-DPSK, NRZ-DQPSK, and RZ-DQPSK modulations.
For DP-BPSK modulation, the code words “11101100” and “00110111” are used for Pol. X and Pol. Y, respectively.

TABLE III
HARDWARE COMPLEXITY OF VARIOUS MODULATION FORMATS

DPSK systems that employing delay-demodulation or differ-

ential detection, at the receiver side, are known as DPSK

systems. DPSK formats encode the data using the difference

in optical carrier phase between adjacent bits, such that a π
phase change in the carrier’s phase, between the successive

bits, represents the bit “1” and absence of phase change repre-

sents the bit “0.” Hence, signal power is almost constant over

the transmitted data. This makes DPSK less prone to non-

linear and dispersion effects [78]. Besides, the π phase shift

between transmitted symbols improves the receiver sensitivity

with respect to OOK formats; see DPSK constellation diagram

in Fig. 15 (d) and (e). DPSK can be generated as NRZ or RZ

formats with the later requires more hardware complexity in

signal generation, see Table III. Figure 15 (d) and (e) show the

NRZ- and RZ-DPSK simulated optical intensity time domain,

optical intensity eye diagram, phase constellation, and optical

spectrum at 10 Gbps data rate.

b) Differential quadrature phase shift keying (DQPSK):

In differential quadrature phase shift keying (DQPSK), each

transmitted symbol carries two bits where the phase of the

optical carrier hops between 0, +π/2, −π/2, and π. Hence,

for the same data rate, information can be transmitted over

less signal bandwidth (i.e., more SE) than single bit per sym-

bol formats (i.e., OOK and PSK). This increases the tolerance

to channel dispersion. The DQPSK spectrum shape is similar

to DPSK scheme, however, its transmitter is more complex

than DPSK, as it is implemented using two parallel MZMs

and a phase modulator to generate the quadrature signals; see

Table III. Figure 15 (f) and (g) shows the optical intensity

time domain, optical intensity eye diagram, phase constella-

tion, and optical spectrum for NRZ-DQPSK and RZ-DQPSK,

respectively, at 10 Gbps data rate.

3) Advanced Modulation Formats With Coherent Optical

Detection: Unlike the previously discussed modulation for-

mats which use the direct detection techniques to recover the

transmitted information, coherent-based modulation formats

use the so-called coherent detectors for data recovery. Starting

from 1980s, coherent optical communication has gained much

attention owing to its advantages over traditional direct detec-

tion systems. Modulation formats that implement phase and

amplitude modulation reduce the system cost and devices
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Fig. 16. Recovered DP-QPSK signal using (a) direct and (b) coherent
detection.

requirements in high-speed applications. The generated sym-

bols may differ in phase only such as M-ary phase shift keying

(M-PSK) or in combinations of amplitude and phase as in

M-QAM. In this technique, a local oscillator laser is beaten

with the modulated signal to improve the receiver sensitivity

and allow the detection of both signal’s intensity and phase.

Besides, two orthogonal polarizations of the optical signal can

be generated and detected in a dual polarization (DP) system

to duplicate the SE. Moreover, the progress in digital sig-

nal processing (DSP) algorithms opens the door to build a

digital coherent receiver where channel impairments can be

digitally mitigated using post and pre-processing algorithms.

On the other hand, coherent detection suffers from the high

receiver cost that is at least 10 times that of direct detection

system, for the same bandwidth. In Table III, we show the

complexity of single polarization (SP) and DP coherent opti-

cal systems. Also, the simulated optical intensity time domain,

optical intensity eye diagram, phase constellation, and opti-

cal spectrum for DP-BPSK signal at 10 Gbps data rate are

illustrated in Fig. 15 (h).

So far, we show the various optical signatures, of common

modulation formats, at different domains (i.e., time, eye, spec-

trum, and constellation). However, for the purpose of MFI, the

optical signals are converted to the electrical domain with new

signatures according to the type of optical receiver (i.e., simple

PD or complex coherent detector). In Fig. 16 (a) and (b), we

show the recovered DP-QPSK signal using direct detection and

the coherent detection (for the real part of one polarization),

respectively. It is clear that each detection method produces its

own signature which affects the corresponding MFI process.

Hence, an adaptive modulation format identifier will be of a

potential value in heterogeneous optical networks.

B. Optical Impairments

As any communication medium, fiber cable introduces

impairments that affect either the amplitude, phase, and/or the

Fig. 17. Optical impairments classification. The blue shaded boxes indi-
cate the optical signal parameter affected by the impairment. The yellow
shaded boxes show the dependence of impairment’s mitigation algorithm on
the modulation format.

polarization of the optical signal. These propagation impair-

ments can be divided into linear and nonlinear types. Such

impairments degrade the system capacity to a limit that no

useful data can be obtained at the receiver. In this subsec-

tion, among many impairments that affect the optical signal,

we focus on the common impairments where ML-based tech-

niques are reported in literature either to predict their levels

or to identify the modulation format type in their presence.

In specific, our focus here is on the linear impairments which

are more dominant in current optical networks. The different

types of optical impairments (gray shaded boxes), the effect

on optical signal parameters (blue shaded boxes), and the

dependency of impairment’s mitigation algorithm on modu-

lation type (yellow shaded boxes) are summarized in Fig. 17.

Moreover, Fig. 18 illustrates the individual effect of the com-

mon impairments using different signal representations. The

illustrated diagrams (ideal in red and impaired in blue) are

generated using a 10 Gbps DP-QPSK optical system with a

roll-off factor of 0.18.

1) Linear Impairments:

a) Signal attenuation: Attenuation causes decay in the

power of light signal as it propagates through fiber chan-

nel. Thus, it affects the amplitude of the optical signal. The

loss in optical power is owing to fiber-based intrinsic factors

including scattering and absorption or extrinsic factors includ-

ing environment, physical bending, and installation process

stress. It has been shown that the light’s power is decreas-

ing exponentially with distance. Current standard single mode

fiber (SSMF) cable introduces ∼ 0.2 dB/km attenuation factor

at 1550 nm window, according to ITU-T G.652.B standard-

ization [79]. It is worth to note that fiber attenuation can be

mitigated using inline optical amplifiers (OAs).

b) Amplified spontaneous emission (ASE) noise: To

extend the reach distance of a transmitted signal in fiber,

optical amplifiers (OAs) are widely used. These amplifiers

enhance the optical signal power at the expense of introducing

some undesirable signal called amplified spontaneous emission

(ASE) noise. The amount of ASE noise in the optical signal

is defined by the OSNR parameter, which is the ratio of the
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Fig. 18. The effect of the different impairments on the phase constellation, eye diagram, and time-domain for 10 Gbps DP-QPSK signal (ideal in red and
impaired in blue). Note that the subfigures are only for Pol. X to avoid redundancy, where the eye-diagrams and time-domain pulses are plotted for the
real-part of the signal.

optical signal power to noise power. OSNR is an important

quality metric in optical networks, similar to SNR in wireless

communications. In Fig. 18 (a), we show the effect of ASE

with OSNR of value 14 dB on the phase constellation, eye dia-

gram, and time-domain of 10 Gbps QPSK signal. This effect

degrades the recognition accuracy of different classifiers and

calls for the implementation of robust monitoring algorithms.

c) Chromatic dispersion (CD): Chromatic dispersion

(CD) is a linear impairment that affects the optical signal

phase. CD results from both waveguide and material dis-

persions which cause optical pulse broadening. Waveguide

dispersion depends on the fabrication process; however, mate-

rial dispersion arises from the frequency dependent of the

propagated signal on the refractive index of the fiber. In

high-speed transmission systems, this causes different spectral

components of optical signal to travel through fiber channel

with different speeds which leads to broadening the transmit-

ted pulses. Hence, it introduces ISI between adjacent pulses

and its severity depends on the fiber channel length and system

bitrate. This phenomenon is commonly referred to as group

velocity dispersion (GVD) or simply fiber dispersion. CD is a

static dispersion as it changes very slowly with time and with

small amount due to variation in fiber temperature. CD can be

mitigated either optically using dispersion compensating fiber

(DCF) modules or electronically using digital filters [80]. Note

that the mitigation techniques of CD do not depend on the

modulation format. Hence, the MFI algorithms can be applied

after removing this effect from the received data. In Fig. 18 (b),

we show the effect of CD with fiber dispersion of 600 ps/nm

on the phase constellation, eye diagram, and time-domain

for 10Gbps QPSK signal. This impairment affirms the need

for building intelligent nodes in the future self-reconfigurable

heterogeneous optical networks, where signal routing depends

on network conditions. This stimulates the development of fast

and reliable OPM algorithms that can cope with the dramatic

changes in CD amount.

d) Polarization mode dispersion (PMD): Polarization

mode dispersion (PMD) affects both the phase and polar-

ization of optical signals. PMD has its origin from optical

birefringence. In ideal cases, fiber has cylindrical geometry,

so the two orthogonal polarizations of the optical signal travel

with the same group delay. However, in real systems, the

two-polarization components travel through the fiber with dif-

ferent group delays, due to manufacturing imperfection or

fiber tension. The fiber asymmetry breaks the degeneracy of

the orthogonal polarized modes resulting in birefringence, in

addition to a difference in the group velocity of the two orthog-

onal modes, known as the differential group delay (DGD). The

instantaneous value of DGD varies along the fiber and follows

Maxwellian distribution [80]. The mean DGD value is known

as the fiber PMD and measured in ps/
√
km. In modern optical

systems, the mean DGD value is in the range of 0.2 ps/
√
km.

This value has a major effect on optical systems operating at

data rates greater than 40 Gbps because it can be a significant

fraction from the symbol period. Associated with fiber’s DGD,

fiber’s principle state of polarization (PSP) rotates along fiber

channel [81]. These two phenomena together form the 1st

order PMD effect. Note that PMD is a dynamic dispersion

since it changes on a time scale of milliseconds. The effect

of PMD can be mitigated using an adaptive multi-input-multi-

output (MIMO) equalizer [80]. Figure 18 (c), (d), and (e) show

the effect of DGD (50 ps), PSP rotation (25 deg.), and 1st

order PMD (DGD = 50 ps, PSP = 25 deg.) on the phase

constellation for 10 Gbps DP-QPSK signal (Pol. X). The eye
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diagram and time-domain representations are also plotted for

the same signal but only for the real part of Pol. X to avoid

redundancy.

e) Polarization dependent loss (PDL): Polarization

dependent loss (PDL) is another impairment that affects polar-

ization multiplexed systems. It results from the polarization

dependence of optical components which causes the two polar-

ization components of an optical signal to reach the destination

with different OSNR values. The most common sources of

PDL include passive couplers, multiplexers, and photode-

tectors. The PDL can be expressed as the loss difference

peak-to-peak of various states of polarization.

f) Phase noise (PN): Phase noise (PN) originates from

the laser at the transmitter side or the local oscillator (LO) at

the receiver side. This impairment can be modeled by a Wiener

process and it depends proportionally on the laser (transmitter

laser and LO) linewidth and symbol duration. PN has no effect

on the performance of non-coherent optical systems since the

decision on those receivers depends on the signal intensity.

However, it has a sever effect on coherent optical systems

because the data is modulated in the optical signal phase. The

optical carrier’s phase recovery, due to PN, depends on the

modulation type [82], [83]. Thus, the MFI will be applied

before the phase recovery algorithms. Figure 18 (f) shows the

effect of laser PN for linewidth of 1000 KHz on the phase con-

stellation, eye diagram, and time-domain for 10 Gbps QPSK

signal.

2) Non-Linear Impairments: Since optical fiber is a non-

linear medium, several nonlinear effects start to appear as

the optical power level increases. These nonlinearities result

from the coexistence of high strength optical fields simulta-

neously in optical channel or the interaction of high intensity

optical fields with the acoustic waves and/or molecular vibra-

tions. This causes power gain or loss at different wavelengths,

wavelength conversion, and crosstalk between wavelength

channels. Optical nonlinearities can be classified into two gen-

eral categories: nonlinear inelastic scattering process which

includes the stimulated Raman scattering (SRS) and stimulated

Brillouin scattering (SBS) and Kerr effect (i.e., the depen-

dence of refractive index on light intensity) which includes the

self-phase modulation (SPM), cross-phase modulation (XPM),

and four-wave mixing (FWM). SBS, SRS, and FWM result in

power gain or loss in wavelength channels by adding gain to

some channels or depleting power from others. SPM and XPM

affect only the phase of the signals which causes frequency

chirping in digital pulses. Frequency chirping worsens the

pulse broadening due to dispersion. It worths to note that in

other contexts, some nonlinear effects can be very useful to

perform important functions. This includes wavelength con-

version, in WDM networks, using FWM and optical wave

amplification using SRS and SBS.

C. Current Available Commercial Solutions and

Standards/Recommendations for OPM and MFI in Optical

Networks

Owing to the need of OPM for signals in the cur-

rent optical networks, different commercial products and

standards/recommendations have been released. However, to

the best of the authors’ knowledge, there are no commercial

solutions that use ML for OPM. Moreover, there are no com-

mercial solutions to MFI for the existing optical networks,

regardless built using ML or not. This is because of to the fact

that MFI application will be employed in the next generation

of optical networks. These networks are going to be adaptive,

where nodes and receivers will be capable of identifying the

modulation type to facilitate signal demodulation. Therefore,

in this subsection, we will discuss the commercial products

and standards/recommendations currently available for OPM.

OPM can be achieved electrically by end-to-end monitoring

of some digital parameters such as the BER [84]; here BER

provides accurate measurements of signal quality. However,

it requires complete demodulation at higher network layers

instead of performing this task at the physical layer. This

reduces impairments monitoring speed. In addition, it is diffi-

cult to determine the root causes of signal degradation because

BER value involves the accumulated effects of all impairments

in the network. Furthermore, the technology is replacing elec-

tronic devices in optical nodes with optical devices to improve

the speed. Hence, monitoring BER electrically at higher layers

is not possible in all network nodes.

The first optical based commercial approaches for monitor-

ing optical networks include optical power meter and optical

spectrum analyzer (OSA) [85]. Optical power meter can be

utilized to monitor the aggregate power transmitted through

a fiber. It is a simple and low-cost widely used device.

However, it does not work with multichannel networks such as

WDM. To measure the power of a specific channel in WDM

networks, OSA-based device is used which, in addition to

power measurement, provides information about the channel’s

wavelength drift.

The noise power in optical networks is one of the main

limiting impairments. OSNR is an important parameter in ana-

lyzing the signal quality in the optical domain. It defines the

signal quality by measuring the signal power to the noise

power. The available solutions in the market include those

for in-service monitoring of wavelength, optical power, and

OSNR of each channel in dense WDM (DWDM) networks in

C and L bands; examples of which are provided by Optoplex

and Lightwave2020 Companies [45], [47].

In addition to the noise power impairment, two other

important impairments that affect optical signals are fiber

CD and PMD. Recommended test and measurement meth-

ods of CD and PMD impairments are reported in the

International Telecommunication Union-Telecommunications

(ITU-T) G.650.1 [86] and ITU-T G.650.2 [87] recommenda-

tions, respectively. For CD measurement, pulse delay tech-

nique and phase shift technique can be used among other

techniques [86]. For PMD measurements, Stokes parameters

evaluation method, state of polarization method, and inter-

ferometric method are recommended [87]. Some commercial

devices are available for CD and PMD impairments moni-

toring [88]–[91]. For instance, PE.fiberoptics Company has

developed a product to measure out-of-service CD and PMD

in DWDM networks supporting up to 40 Gbps data speed [89].

For high speed DWDM networks, VIVA Company provided



SAIF et al.: ML TECHNIQUES FOR OPM AND MFI: A SURVEY 2855

out-of-service solution for CD and PMD monitoring with

speeds up to 100 Gbps [91].

Field trials for in-service monitoring of CD and PMD for

WDM networks have been reported in literature [92], [93].

In [92], Stokes parameters based technique is used for

predicting the CD and PMD values. The trial was performed

for 820 km fiber link between Stockholm to Hudiksvall in

Sweden. However, this technique introduces modifications to

the transmitter, which is not appropriate as it increases the

overall cost of the network. Another field trail was conducted

in [93] for monitoring CD and PMD for a WDM network over

140 km fiber cable length and 10 Gbps data rate speed. In

this work, part of the signal is taped, sampled asynchronously

using two samplers at rate lower than the data rate. The two

sampled signals are plotted in a 2D histogram, which is used

to monitor the CD and PMD impairments.

The utilization of ML for monitoring purposes in current

optical networks is reported in [94], where a field trial was con-

ducted for monitoring OSNR in SDN-based optical network

of 436.4 km fiber length in U.K. The obtained measured val-

ues of OSNR are used to improve the spectral efficiency by

utilizing probabilistic-shaping based bandwidth-variable trans-

mitter (BVT). To the best of authors knowledge, this is the first

time ML is being used in real optical networks for monitoring

signal impairments.

D. Lessons Learned

In this section, we reviewed the widely used types of optical

modulation formats and impairments that have been consid-

ered in the optical communication field. Few lessons can be

drawn as follows.

• The traditional optical modulation formats (i.e., intensity,

phase, and intensity and phase schemes) enjoy differ-

ent signatures in different signal representation domains,

which could be exploited for automatic MFI and/or OPM.

However, the presence of impairments may cause consid-

erable distortions for these signatures, which make the

task of MFI and OPM difficult, especially when multiple

types of distortions are present.

• The choice of the optical receiver type (i.e., direct or

coherent receiver) is a key factor in building optical

systems. The former requires low-cost devices, at the

expense of having low SE. The later doubles the system

SE, but mainly suffers from the ultra-high cost of its com-

ponents. These components are required to increase the

receiver sensitivity and allow real-time implementation of

advanced digital processing of received samples.

• The presence of optical impairments harden the recon-

struction process of information bits; therefore, optical

impairments need to be mitigated for proper demodula-

tion. Fortunately, the majority of impairment mitigation

algorithms are modulation independent. However, the

mitigation techniques for carrier phase and frequency

offsets are often modulation dependent, which require

a prior knowledge of the modulation format [95].

Additionally, SBS and SRS impairments can be neglected

in optical communications, as these impairments are

stimulated by the presence of high power requirement

(>& 20 dBm), which is not applicable in fiber-based

communications [96].

• There are no commercial products or stan-

dards/recommendations for MFI. However, the

commercial OPM devices are only available to

monitor signal noise, CD, and PMD. The currently

available monitoring devices require service-cut to

monitor specific impairments. Therefore, a non-intrusive

solution that can simultaneously monitor all these types

of impairments is mandatory for future optical networks.

IV. OPTICAL PERFORMANCE MONITORING AND

MODULATION FORMAT IDENTIFICATION

The advances in optical networks have established an

increase in the data rate using advanced modulation formats

and introduced different access techniques in the physical

layer. This, in turn, has increased the network complexity

and effect of channel impairments. Moreover, future optical

networks will be adaptive where the network resources are

allocated based on the link condition and customer require-

ments. Therefore, the need for OPM in the optical network is

becoming mandatory. The task of OPM is to estimate optical

signal impairments such as ASE noise (defined in terms of

OSNR parameter), CD, PMD, and PN at the network nodes

without disturbing the traffic. OPM reduces the network down-

time and increases its availability and reliability. The predicted

values enable the network elements to compensate for these

impairments and optimize the adaptive network resources.

In addition, development of optical nodes with built-in sig-

nal format classification and baud rate estimation will pave

the road to the development of autonomous optical networks.

Such networks have the capability to identify the signal type

and perform signal processing tasks such as de-modulation,

equalization, filtering, etc. without the need for prior signal

information.

In this section, we first discuss briefly some conventional

OPM and MFI techniques for optical networks. Then, we com-

prehensively discuss the proposed ML-based techniques for

OPM and MFI.

A. Conventional OPM and MFI Techniques

1) Conventional OPM Techniques: Over the last two

decades, many OPM techniques have been proposed. The

early approaches to perform OSNR monitoring were relying

on out-of-signal band noise power measurement [43]. This

technique was not effective in WDM networks due to the exis-

tence of the OADMs, which remove major part of ASE out

of band noise. Thus, the in-band monitoring provides best

and effective solution especially in WDM networks. Some

techniques for measuring the in-band noise include wave-

length down-converters [97], polarization nulling [98]–[105],

delay interferometer (DI) [106]–[113], and electrical sam-

pling [114], [115] which have some limitations. Wavelength

down-converters based solutions require additional hardware

to select the single sideband (SSB) signal and down-convert

it to an intermediate frequency (IF). In polarization nulling
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based solutions, two polarizations are used where only one

polarization carries the signal and the other is used for noise

measurement. Then, the received signal is split into two

orthogonal polarization components to measure the OSNR.

If depolarization such as PMD occurs, the polarization that

carries the noise will be mixed with the signal which leads to

inaccurate OSNR measurement. The use of DI for OSNR mon-

itoring does not depend on either PMD or CD. Specifically, the

received optical signal (signal and ASE noise) is measured by

constructive interference, while the ASE noise is measured by

excluding the optical signal using destructive interference. This

method is insensitive to CD or polarization effects. However,

it needs precise wavelength control. In the electrical sampling

technique, the received signal is sampled using two samplers

with a short delay between them. The obtained sampled sig-

nals are displayed in a 2D plot. Then, OSNR can be measured

by analyzing the statistical mean and variance of the 2-D phase

portrait. This technique can monitor a wide dynamic range of

OSNR. However, the phase portrait is sensitive to PMD and

CD impairments, which results in inaccurate OSNR measure-

ment. In addition to the previously reported techniques, the

authors in [116]–[118] proposed to analyze the noise produced

by beating the optical signal with ASE noise at the square-

law receiver (i.e., direct detection receiver). This approach,

however, requires expensive RF components.

In [119]–[123], OSNR monitoring is proposed to be inte-

grated in coherent digital receivers. In [119]–[121], the second-

and fourth-order moments of the received signal are used

for OSNR monitoring. Although this technique is insensi-

tive to frequency offset and PN, its performance is limited

by the performance of the used equalizer [124]. Exploiting

the signal’s cumulative distribution function (CDF) for OSNR

monitoring is reported in [122], [123]. In [123], a reference

CDF of a candidate OSNR is compared with the CDF of

the normalized amplitude of the received signal, where the

candidate OSNR that has the closest average distance to the

signal CDF is selected. To reduce the computational complex-

ity of this technique, the authors in [122] proposed a non-aided

OSNR estimation technique that exploits the empirical CDF

to extract the information of noise variance.

For CD impairment monitoring, the early approaches were

based on detecting the phase of the optical signal [125]. This

is achieved by inserting subcarriers in the transmitter side and

observing the RF tones in the receiver. Another technique is

to apply frequency modulation (FM) on a pilot subcarrier in

the transmitter side. In the receiver, the clock phase of the sig-

nal is detected and observed to monitor any deviation [126].

All previous methods require modification in the transmitter,

which increases the system’s cost. Vestigial side band filter-

ing and clock phase detection [127] have also been used for

CD monitoring, which do not require any modification in the

transmitter side. However, it has limited monitoring range.

For PMD impairment monitoring, the usage of eye dia-

gram has been proposed in literature, but it is costly due to

its high-speed clock requirement [128]. Alternatively, meth-

ods based on RF power spectrum [129] can be used, however,

their performance is influenced by the presence of severe CD

impairment.

2) Conventional MFI Techniques: In general, MFI tech-

niques can be divided into two types: LB and FB schemes.

LB schemes are related to the probabilistic model of the mod-

ulation to be classified. They require formulating the exact

probabilistic model. Therefore, the computational complexity

increases. On the other hand, FB schemes only require extract-

ing some features from the received signal. Therefore, they

are simple and effective at the same time, and widely used in

optical communications [130]–[138].

MFI-based normalized power distribution was proposed

in [130], where the empirical probability distribution of

received signal powers is used to distinguish between the

different modulation formats. The proposed technique is inde-

pendent of PN and offset frequency. However, it is not

adequate for some modulation formats such as M-PSK sig-

nals because they have the same power distribution. Therefore,

this method is limited only for multi-level modulation formats.

Besides, it requires a high OSNR to achieve better MFI. On the

other hand, for signals suffering low OSNR values, MFI-based

compressed sensing (CS) and higher-order cyclic cumulants

were proposed in [131]. Since various modulation formats

have different cumulants (i.e., fourth-order cumulants), these

cumulants can be used for classification purposes. This tech-

nique utilizes CS before the classification stage to enable

low-cost classification. It is noise-tolerant and can be used

for both M-PSK and MQAM signals; however, only the effect

of ASE impairment is considered.

Features extracted from the signal’s amplitude deviation

were exploited in [132]. The ratio of amplitude deviation

for two modulations (i.e., ideal DP-QPSK and DP-16-QAM)

was utilized as a reference feature. Similarly, MFI based on

parameters extracted from the signal’s phase and amplitude

distributions were reported in [133]. These parameters include

the differential phase and amplitude ratio of adjacent symbols.

The product of these two parameters can be used to discrim-

inate the various modulation formats. Both techniques do not

require a large number of samples. However, they are sensitive

to decision thresholds. In [134], the entropy of the amplitude

histogram was used for MFI. The entropy of amplitude his-

togram with a different number of bins (i.e., 3, 5, 7, and 9)

was used to identify different modulation formats. This tech-

nique is tolerant to fiber nonlinearity. However, it can only

distinguish M-QAM signals. In addition, it is sensitive to pre-

defined threshold values. Exploiting the DC component of the

received signal for MFI is reported in [135]. In this technique,

the ratio of the 4th power (exponent) of the DC component to

that of the received signal without phase rotation is utilized to

distinguish the different modulation formats. This technique

can tolerate PN and fiber nonlinearity. However, it is limited

only for three modulation formats.

Using normalized received signal’s amplitude distribution

for MFI is proposed in [136]. This technique is based on find-

ing the CDF of the received signal’s amplitude and compare

it with reference CDFs of all possible candidate modulations.

The decision is taken by measuring the similarity (i.e., min-

imum average distance) between the received signal’s CDF

and reference CDFs. This technique is insensitive to PN

and frequency offset. Moreover, it requires a low number of
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Fig. 19. Different modulation formats and their FFT after nonlinear power,

(a) FFT after (I+jQ)2, (b) FFT after (I+jQ)4, and (c) FFT after (I+jQ)8.

samples and does not require carrier recovery. However, it is

not appropriate for M-PSK classification.

Instead of time-domain features, the authors in [137], [138]

proposed frequency domain features for MFI. The authors

in [137] used nonlinear power transformation for MFI. In

this method, the fast Fourier transform (FFT) was used to

extract information about the modulation type of the signal.

The different powers of the input signal (i.e., (I + jQ)2,

(I + jQ)4, and (I + jQ)8) help determining its modulation

type at the FFT output, as illustrated in Fig. 19. Peak detec-

tion is used to distinguish between the different modulation

formats. This technique is robust to ASE noise. However, it is

hard to identify modulation formats beyond 16-QAM. MFI-

based amplitude variance and the 4th order FFT (i.e., FFT

after applying power 4 for the received signal) were proposed

in [138]. In this method, the incoming signals’ amplitude

variance is used for the separation between M-PSK (M = 4

and 8) and M-QAM (M = 16 and 32) signals. The 4th order

FFT was used for sub-categories classification for M-PSK and

M-QAM signals. This technique has ASE noise and nonlinear-

ity tolerance. However, it is sensitive to pre-defined threshold

values.

B. ML-Based Techniques for OPM and MFI

The general procedure to achieve ML-based OPM and MFI

is illustrated in Fig. 20. There are three steps to develop the

model before using it for impairment estimation or modulation

classification. In the first step, the optical signal is converted

into an electrical signal and sampled to build a dataset. The

second step is to extract specific features of the signal that

contain some information about the impairments or modula-

tion formats. Examples of such features include the amplitude

histogram, CDF, and eye diagram statistics. These features are

Fig. 20. The general procedure for performing OPM and MFI using
ML techniques, where AH: amplitude histogram, IQH: in-phase quadrature
histogram.

then used in the last step to offline train a certain ML algorithm

to perform impairment estimation or modulation classification.

Once the offline training is complete, the developed model

along with the features extraction step are then used for either

online estimation of a specific impairment such as OSNR or

classification of modulation type. Note that in DNN, there is

no hand-crafted features extraction step as it is performed by

the algorithm itself [139], [140]

In the following, we first discuss the proposed ML-based

techniques for OPM and then the proposed techniques for

MFI. Finally, we discuss the joint OPM/MFI techniques.

1) ML-Based Techniques for OPM:

a) ML for OPM using direct detection: Several ML tech-

niques have been presented in the last decade for OPM. Most

of these techniques are exploiting ANN as a ML algorithm to

monitor the optical network impairments. They differ in the

type of features that are used to train the ANN algorithm, and

the way of extracting these features.

The first attempt was in [141]. In this work, the authors

proposed identifying the impairments’ types using SVM

in conjunction with features extracted from the eye dia-

gram image. These features contain 23 low-order Zernike

moments [142], which include a set of orthogonal polyno-

mials. These polynomials represent the image properties with

no redundancy for the purpose of discriminating whether the

signal is normal or contains impairments like CD, PMD,

and crosstalk. This technique has been verified experimentally

for 10 Gbps OOK signal. It provides accuracy greater than

95%. However, it is only limited for determining the type of

impairments.

The multi-impairments monitoring using ANN algorithm

that is trained with features derived from the eye diagram,

after a synchronous sampling (see Fig. 21 (a)), was proposed

in [143], [144]. The extracted features to train the ANN

algorithm include: Q-factor, closure (CL), root-mean-square

(RMS), jitter and crossing amplitude (CA) [143]. This method

can be deployed to monitor OSNR, CD and DGD. Its

performance was verified using simulation for 10-Gbps NRZ-

OOK and 40-Gbps RZ-DPSK signals at OSNR range of 18

to 30 dB, CD range of 100 to 700 ps/nm, and DGD range

of 0 and 35 ps. The correlation coefficient was 0.91 and

0.96 for NRZ-OOK and RZ-DPSK, respectively. This tech-

nique can be used to monitor multi-impairments. However, it

requires precise timing/clock recovery. Therefore, its use espe-

cially in the intermediate nodes is costly and even impossible,

especially for high-speed transmission.
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Fig. 21. Generation of eye diagrams using (a) synchronous sampling and
(b) asynchronous sampling with a synchronization algorithm.

To overcome the need for a precise timing/clock recov-

ery, the authors in [145] proposed extracting the required

features to train the ANN algorithm using asynchronous sam-

pling, and then reconstruct the eye diagram. In this method,

a 40-Gbps RZ-OOK signal is sampled asynchronously (at

a rate lower than the signal symbol rate). Then, the eye

diagram is reconstructed using chirp-z transform software-

synchronization algorithm (CZT-SS) (see Fig. 21 (b)) [146].

The extracted parameters include Q-factor, eye height (EH),

CA, and root-mean-square jitter (JRMS). This approach is ver-

ified by simulation to monitor OSNR, CD and DGD at OSNR

range of 22.5 to 37.5 dB, CD range of 4 to 28 ps/nm, and

DGD range of 1 to 7 ps. The results showed that correla-

tion coefficient of 0.97 was achieved with root mean square

error (RMSE) for OSNR, CD, and DGD of 0.69 dB, 1.05

ps/nm, and 0.38 ps, respectively. Although this method does

not necessitate timing recovery, it requires additional circuity,

i.e., software synchronization to reconstruct the eye diagram.

A multi-layer ANN (ML-ANN) algorithm, using the asyn-

chronous sampling technique, has been applied to moni-

tor a 56-Gbps 4-PAM signal in terms of OSNR, CD and

DGD [147]. The training parameters were extracted from

reconstructed eye diagrams. These parameters include eye

level values, eye heights, crossing amplitudes, and jitter values.

This method was verified by simulation at OSNR range of 26

to 42 dB, CD range of 0 to 400 ps/nm, and DGD range of 0 to

8 ps. The results showed that the RMSE for OSNR, CD, and

DGD were 0.21 dB, 6.79 ps/nm, and 0.8 ps, respectively. This

work deals with multi-level modulation formats, and does not

require timing recovery. However, it needs additional circuity,

i.e., software synchronization.

The asynchronous amplitude histograms (AAHs) method

was exploited in [148], as a feature to train ANN, and then to

monitor the impairments. In this method, the detected signal

is sampled at a rate lower than the signal symbol rate, as illus-

trated in Fig. 22 (a). The samples are divided into uniformly

spaced levels to form a histogram for OOK NRZ signal, as

illustrated in Fig. 22 (b). The performance has been verified by

simulating 40-Gbps RZ-DQPSK and NRZ-16-QAM signals at

Fig. 22. Amplitude sampled signal for AAH generation, and (b) AAH for
OOK NRZ signal.

OSNR range of 10 to 30 dB, CD range 0 to 400 ps/nm, and

DGD range of 0 to 10 ps. The results showed that the RMSE of

RZ-DQPSK(16-QAM) signals were 0.43(0.2) dB, 9.82(9.66)

ps/nm, 0.92(0.65) ps for OSNR, CD and DGD, respectively.

The AAH provides information about the statistical proper-

ties of the sampled signal. It does not require timing recovery

and additional hardware/circuits. However, when the received

signal is heavily impaired by CD and DGD, the distinction

between different impairments becomes difficult.

Features defined in terms of empirical moments have been

used in [149] to train ANN algorithm. In this work, the

detected signal was sampled asynchronously followed by

moments computation. The trained ANN was used to monitor

OSNR, CD and DGD impairments. The performance was ver-

ified by simulation for 40/56 Gbps RZ-DQPSK and 40-Gbps

RZ-DPSK systems at OSNR range of 10 to 26 dB, CD range

of −500 to 500 ps/nm, and DGD range of 0 to 14 ps. The

results showed that RMSEs of 40 (56) Gbps RZ-DQPSK were

0.1(0.1) dB, 27.3(29) ps/nm, 0.94(1.3) ps for OSNR, CD and

DGD, respectively, while RMSEs of 40 Gbps RZ-DPSK were

0.1 dB for OSNR, 17 ps/nm for CD, and 1 ps for DGD. This

technique can be utilized for monitoring both magnitude and

sign of accumulated CD. However, it is not suitable for high

dispersive channels. This is because the extracted moments

from the signal’s amplitude samples lack slope information

that is affected by some impairments like CD.

To extract more details of the statistical properties of

the monitored signal, the 2D histogram has been proposed

as a feature to train ANN algorithm instead of the 1D
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Fig. 23. (a) ADTS block diagram (left) and the amplitude sampled signal
(right), and (b) generated 2D ADTS plot.

Fig. 24. Generation of ADTS using balanced detection.

histogram [150]. The 2D histogram is achieved using asyn-

chronous delay-tap sampling (ADTS). In ADTS, the amplitude

of the signal is sampled using two clocks. A constant electrical

delay time called delay tap between these two clocks is used,

as illustrated in Fig. 23 (a) (left). The two samplers generate

two sequences x and y that are separated by this time delay, as

shown in Fig. 23(a) (right). The output is a 2D ADTS plot, as

shown in Fig. 23 (b). This technique was tested by subjecting a

10-Gbps NRZ-OOK signal to OSNR, CD and DGD, and then

the received signal is monitored in terms of these impairments.

The performance was evaluated by simulation at OSNR range

of 18 to 30 dB, CD range of 100 to 500 ps/nm, and DGD of

range 5 to 35 ps. The results showed correlation coefficient

of value 0.97. Although this technique extends the monitoring

range due to its capability of capturing information about the

slope of the detected signal, the cost of implementing ADTS

is high due to the use of pair of sampling clocks. Figure 23

(b). shows the ADTS of an NRZ-OOK signal.

In [151], the authors proposed to use an optical interfer-

ometer followed by two balanced-detectors before generating

ADTS, as shown in Fig. 24. This allows capturing the transi-

tion of phase changes which provides better results especially

for higher-order modulation formats. The validity of this

approach was confirmed by monitoring OSNR, CD and DGD

impairments in a high speed 100-Gbps QPSK signal. The

effectiveness of this method was verified experimentally at

OSNR range of 16 to 28 dB, CD range of 0 to 50 ps/nm, and

DGD range of 0 to 10 ps. The results showed RMSE values

of 1.27 dB, 2.22 ps/nm, and 0.91 ps for the three impairments

under study. This technique achieved accurate results at high

speed transmission. However, its drawback is in the require-

ment for additional hardware such as interferometer and two

balanced detectors.

Similar to the ADTS approach where the 2D histogram

is computed to act as a signal feature, the authors in [153]

proposed a different technique, called parametric asyn-

chronous eye diagram (PAED). In their work, the detected

signal is passed through two branches, the first of which has

a sampler while the second has a differentiator followed by a

sampler. The differentiator is exploited to capture information

about pulse broadening, which is affected by CD and DGD.

The output of two samplers is represented in a 2D plot. This

2D plot looks like an eye diagram. The eye is divided into

six quadrants. For each division, different parameters can be

extracted such as the signal mean and standard deviation.

The performance was verified by simulation for monitoring

multiple impairments of different modulation formats includ-

ing RZ/NRZ-OOK and QPSK, and monitoring different bit

rates including 10 Gbps, 20 Gbps, and 40 Gbps. Although

shown good performance, this monitoring approach requires

differentiator and two samplers which increase the overall

system’s cost.

Because RF spectrum is insensitive to CD effect, the authors

in [154] proposed exploiting the low-frequency (LF) compo-

nents of the RF spectrum as a feature in monitoring OSNR

parameter. Simulation has been conducted for monitoring 112

Gbps DP-RZ-QPSK at OSNR range from 10 to 24 dB under

large amounts of CD up to 27,000 ps/nm impaired signal. The

obtained results showed RMSE value of 0.84 dB. This tech-

nique provides accurate results at high CD values. However,

it is not appropriate for CD and DGD monitoring because the

RF spectrum is insensitive to these impairments.

The previously mentioned techniques in this subsection

make use of ANN/SVM for impairment monitoring. In [152],

the authors proposed the utilization of CNN for joint OSNR

and CD monitoring for 10 Gbps, NRZ-OOK signal. The input

to the CNN was images representing the 2-D histogram, which

were extracted using the ADTS approach. Simulation results

for simultaneous monitoring of OSNR and CD in the range

of 10 to 40 dB and 0 to 2000 ps/nm, respectively, showed

correlation coefficient of value 0.995. This method achieved

good performance for joint monitoring of OSNR and CD at a

wide range of impairments values. However, it handles images

which increases the system’s complexity.

Table IV summarizes the ML-based OPM techniques for

direct detection. Specifically, we list for each reference the

type of extracted features, modulation formats under consider-

ation, data rate, the utilized ML technique, type of impairments

and their range of values, and monitoring accuracy.

b) ML for OPM using coherent detection: Coherent

detection is used to demodulate complex signals that include

amplitude and phase information represented by the compo-

nents I and Q. In [155], the received I and Q components

(we call them here x and y) are sampled asynchronously to
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TABLE IV
SUMMARY OF ML-BASED OPM TECHNIQUES FOR DIRECT DETECTION

construct a 2D constellation diagram. The constellation dia-

gram is divided into four quadrants (i.e., (xi , yi ) quadrant1

(Q1) if xi < 0 and yi < 0). Two quadrants, Q1 and Q3, are con-

sidered. The extracted features include µ and σ of Q1 and Q3

amplitudes, maximum and minimum values of the y’s at the

x = 0 axis and the Q-factor that is given by (µ3−µ1)/(σ1+σ3).

These features were used to develop a regression model using

ANN algorithm. The validity of this approach was examined

by monitoring OSNR, CD, and DGD for an impaired 40-Gbps

RZ-QPSK signal. This technique was verified by simulation

at OSNR range of 14 to 30 dB, CD range of 20 to 180 ps/nm,

DGD range of 2 to 18 ps. The results showed RMSE value of

0.77 dB for OSNR, 18.7 ps/nm for CD, and 1.17 for DGD.

Note that the utilization of asynchronous sampling eliminates

the need for timing recovery. However, the performance was

evaluated in the existence of small amounts of DGD, CD, and

high OSNR values.

The insensitivity of AAH technique to PN has been miti-

gated in [156] by asynchronously sampling the received signal

and building a 2D I and Q histogram (IQH), as shown in

Fig. 25. In this work, the IQH histogram was used to develop

an SVM-based regressor to monitor OSNR, CD, DGD and PN

(i.e., laser linewidth) impairments. Moreover, the separability

of impairments was investigated using the t-SNE algorithm for

Fig. 25. Asynchronous QPSK constellation diagram, and (b) corresponding
IQH plot.

both single and simultaneous multiple impairments. The t-SNE

is a nonlinear DR technique that facilitates visualization of

complex high-dimensional signals; thereby helps investigating

the conditions under which the optical channel impairments

can be monitored. This monitoring method was verified by

simulation, where a 12.5-Gbps DP-QPSK signal was moni-

tored in terms of OSNR of (9 to 19 dB), CD (200 to 1600

ps/nm), DGD (10 to 70 ps), and PN (10 KHz to 1 MHz). The
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TABLE V
SUMMARY OF ML-BASED OPM TECHNIQUES FOR COHERENT DETECTION

results showed high accuracy compared with AAH. However,

both I and Q samples are needed to build IQH.

To deal with the raw data directly without feature pre-

engineering, like building histograms, the authors in [139]

proposed a technique using DNN (i.e., ML-ANN) algorithm to

monitor OSNR at range from 7.5 to 27 dB. The DNN was trained

using asynchronous raw data for both vertical and horizontal

polarizations (i.e., IH, QH, IV and QV). The proposed technique

was verified experimentally using 14/16 Gbaud DP-QPSK and

14/16 Gbaud 64-QAM signals with different symbol rates and

multi-modulation formats. The results showed mean absolute

error (MAE) less than 0.5 dB. This technique performs OSNR

monitoring without manual feature engineering. However, it

requires the utilization of complex data models. Moreover, it

requires expensive graphics processing units (GPUs). Similarly

in [140], the authors utilized asynchronous raw data to train

LSTM-RNN for simultaneous OSNR and CD monitoring at

28/35 Gbaud DP-16-QAM and 28/35 Gbaud 64-QAM signals.

The performance of this method was evaluated by simulation

for 28/35 Gbaud DP-16-QAM/64-QAM and experimentally for

5/10 Gbaud DP-16-QAM/64-QAM at OSNR range from 15 to

30 dB, and CD range from 1360 to 2040 ps/nm. The results

showed RMSE value less than 0.12 dB for OSNR and 1.09

ps/nm for CD. In this technique, the simultaneous monitoring

of OSNR and CD at high CD range was performed without a

need for preprocessing to extract training features. However,

the requirement for a memory in the LSTM model makes it

of high cost [51].

The traditional DNN requires retraining when the parame-

ters to be monitored get changed; thus time consuming. The

authors in [158] proposed OSNR monitoring for 56/28 Gbps

QPSK signals using transfer learning assisted DNN algorithm,

utilizing amplitude histogram (AH). Transfer learning relies on

adjusting neuron weights based on previous knowledge rather

than random initialization, which in turn greatly accelerates

the training procedure. This technique was verified experimen-

tally at OSNR range from 5 to 30 dB, residual CD range from

0 to 600 ps/nm, and optical launched power range from −6 to

8 dBm. The results showed RMSE value of less than 0.1 dB.

This technique provides high accuracy results in wide OSNR

range. However, it is limited just for OSNR monitoring only.

LSTM-RNN algorithm was also used in [157] to moni-

tor simultaneous OSNR and nonlinear noise power (NL-NP)

caused by fiber nonlinearity. The fiber nonlinearity is due to

transmitting high signal power through the fiber. The LSTM-

NN algorithm was trained using FFT with length 1024. In

this work, simulations were used for verification puposes by

building a setup consisting of five channels with 50 GHz chan-

nel spacing. Different modulation formats were considered

(QPSK, 16-QAM, and 64-QAM) at 28 Gbaud symbol rate

at OSNR range from 15 to 30 dB and at optical power range

from −3 dBm to 3 dBm. The transmission length was varied

from 100 to 1000 km. The obtained results showed that OSNR

monitoring is tolerant to fiber nonlinearity. However, since the

LSTM-based classification/monitoring deals with sequential

data in the time domain, the LSTM-based features extracted

in the frequency domain do not take full benefit of LSTM.

Table V summarizes the literature pertaining to the ML-

based OPM techniques for coherent detection. Specifically, we

list for each reference the type of extracted features, modu-

lation formats under consideration, data rate, the utilized ML

technique, type of impairments and their range of values, and

monitoring accuracy.

2) ML-Based Techniques for MFI: In this section, we

review the proposed techniques for MFI. These techniques are

classified based on the type of signal detection, whether it is

direct or coherent. Although direct detection has an advan-

tage in that it reduces the cost of proposed solution, we
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TABLE VI
SUMMARY OF ML-BASED MFI TECHNIQUES FOR DIRECT DETECTION

notice that most of the proposed MFI techniques are using

coherent receivers, because of the difficulty to recover phase

information in direct detection receivers.

a) ML for MFI using direct detection: The literature

in this category includes [159], where the AAH was uti-

lized to train ANN. The validly of this technique has been

verified by simulation, for six modulation formats with dif-

ferent data rates, including 10 Gbps RZ-OOK, 40 Gbps

NRZ-DPSK, 40 Gbps ODB, 40 Gbps RZ-DQPSK, 100 Gbps

DP-RZ-QPSK, and 200 Gbps DP-NRZ-16-QAM. The MFI

was performed at OSNR in range of 12 to 26 dB, CD in range

of −500 to 500 ps/nm, and DGD in the range of 0 to 10 ps. The

AAH was utilized after detecting the received signal using a

photodetector (direct detection). The results showed MFI accu-

racy greater than 97% for all modulation formats. In order to

reduce the ambiguity in MFI, the authors proposed splitting the

optical received signal into two polarizations. Each polariza-

tion was directly detected and then sampled asynchronously.

The samples for both polarizations were considered and the

AAH of the resulting samples were generated. This modifica-

tion increased the MFI accuracy by more than 99%. Similarly,

AAH has been used in [160], [162] for MFI with ANN classi-

fier optimized by genetic algorithm (GA). The results showed

same MFI accuracy as obtained in [159], with few number

of neurons and hidden layers. The MFI-based AAH provides

high accuracy. However, it cannot be utilized to identify phase

modulation formats such as the M-PSK.

For low OSNR and different modulation formats, the

authors in [161] proposed MFI technique using DT twin

support vector where feature extraction is exploited using

higher-order cumulants (HOC) (i.e., set of quantities describ-

ing a probability distribution). Fourth-order and eighth-order

cumulants and cyclic spectrum were utilized to identify six

modulation formats including 10 Gbps OOK, 40 Gbps DPSK,

100 Gbps QPSK, 100 Gbps OQPSK, 200 Gbps 16-QAM and

200 Gbps 64-QAM. This technique was verified experimen-

tally at OSNR range of −10 to 30 dB, DGD range of 0 and

10 ps, and different fiber lengths to produce CD varying from

0 to 4000 ps/nm. The achieved MFI accuracy for all modu-

lation formats was upto 100% when OSNR equal 5 dB. This

technique provides accurate results at very low OSNR values.

However, it is sensitive to pre-defined threshold values.

Table VI summarizes the literature of ML-based MFI tech-

niques for direct detection. Specifically, we list for each

reference the type of extracted features, modulation formats

under consideration, data rate, the utilized ML technique, type

of impairments and their range of values, and monitoring

accuracy.

b) ML for MFI using coherent detection: In the next

generation fiber-optic networks, there will be a need for

flexible transceivers that support multiple data rates and

multiple modulation formats [163]–[165]. Because of the flex-

ible transceivers, it is no longer assured that signals arriving

at the receiver side will have the same data rate and modu-

lation format. Thus, the receiver requires some techniques to

adjust these changes. MFI is of great importance for future

networks as it makes the network autonomous and flexible.

Therefore, coherent receiver must be able to recognize the

modulation format of arriving signals to guarantee proper

demodulation. Figure 26 shows an adaptive coherent receiver

with DSP architecture. Fortunately, there are some DSP algo-

rithm independent of modulation formats such as IQ skew

removal, CD compensation timing phase recovery, and con-

stant modules algorithm (CMA) equalization that are built in

the data receivers and can be used to improve the signal quality

before performing MFI.

There are many MFI techniques proposed in literature

for coherent detection. In the following, we discuss these
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Fig. 26. Coherent receiver architecture with MFI.

techniques in details. These techniques are based on extract-

ing different time domain features from the received signal. In

addition, there are other classification techniques such as those

relying on image processing. A summary of these techniques

is listed in Table VII.

i) MFI-Based Time Domain Features Extraction: In this

subsection, we review the ML algorithms that exploit the

time-domain to extract features such as the Stokes space

representation, AH, IQH, etc.

1. MFI-based Stokes Space Representation: For dual polar-

ization transmission, the received signal can be represented by

Stokes parameters. The Stokes parameters can be obtained as:

s =

⎡

⎢

⎢

⎣

s0[k ]
s1[k ]
s2[k ]
s3[k ]

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

x2[k ] + y2[k ]
x2[k ]− y2[k ]
2Re(xy∗)
2Im(xy∗)

⎤

⎥

⎥

⎦

(1)

where x[k] and y[k] are the amplitudes of the complex sig-

nal sample k in the V and H polarizations, respectively.

s0 parameter is the signal power, and (s1, s2, s3)
T parame-

ters represent the 3-D Stokes space constellations. It can be

observed from (1) that the phase information is removed after

transformation to Stokes space. Hence, Stokes parameters are

completely independent of the laser frequency offset and phase

noise as well as the polarization rotation of the signal. Other

information inferred from (1) is that the M-PSK signal only

exists in the (s1, s2, s3)
T plane because s1 = 0. However, the

M-QAM signal is more complex because it exists in the plane

(s1, s2, s3)
T . Figure 27 (a) shows the Stokes space represen-

tation of ideal noiseless QPSK, 8-PSK, 8-QAM, and 16-QAM

modulation formats in Poincare sphere. The projections of

modulation formats on (s1, s2), (s2, s3), and (s1, s3) planes are

shown in Fig. 27 (b-d), respectively. It is clear from Fig. 27

that QPSK and 8-PSK are allocated on the plane s1 = 0, while

8-QAM, and 16-QAM are allocated on several planes that are

parallel to the plane s1 = 0.

• MFI-based Stokes space representation with non-

supervised ML: Using Stokes space, the different modulation

formats are represented as clusters in 3D space. Then, it is

helpful to use clustering algorithms, i.e., unsupervised ML,

to classify the different types of modulation formats in this

space. This is the reason why most of the proposed Stokes

space-based ML algorithms are unsupervised.

The authors in [166], [167] proposed an MFI technique

based on Stokes space. The modulation formats are rep-

resented in the 3D Stoke space as clusters (point clouds).

Applying VBEM with GMM algorithms makes it possible to

determine the number of clusters (i.e., count clusters number)

that represents the modulation format type. This technique was

verified by simulation for DP-BPSK, DP-QPSK, DP-8-PSK,

DP-8-QAM, DP-12QAM, and DP-16-QAM modulation for-

mats at 10 Gbaud transmission speed, 30 dB OSNR, and

back to back configuration. Then, the performance was fur-

ther verified by proof-of-concept experiments using DP-QPSK

and DP-16-QAM at 19 dB and 27 dB OSNR, respectively.

The experiments were conducted at 10 Gbaud transmission

speed, 100 kHz-linewidth laser, several hundred MHz offset

frequency, and back to back transmission. The obtained results

revealed that the proposed technique can be used to separate

the aforementioned modulation formats without prior train-

ing. In addition, it is robust to polarization rotation and offset

frequency. However, this work did not consider the effect of

residual CD or low OSNR values.

To study the effect of different OSNR values and residual

CD, the authors in [168], [169] proposed MFI scheme based

on Stokes space analysis followed by HOC (i.e., fourth-order

cumulants) and spatial cross-correlation. In this work, different

types of amplitude and phase modulation formats were consid-

ered. The principle of this technique is as follow. First, Stokes

space is used to separate the modulation formats represented

by a 2D Stokes space (e.g., OOK, M-ary pulse amplitude mod-

ulation (M-PAM) and M-PSK modulation formats) from the

3D modulation formats such as M-QAM modulation formats.

For the 2D modulation formats, HOC is utilized to distin-

guish between them while for 3D modulation formats, spatial

cross-correlation is utilized. This technique was verified exper-

imentally to identify four modulation formats including 32

Gbaud OOK, 32 Gbaud BPSK, 32 Gbaud QPSK, and 16-

32-Gbaud 16-QAM within 11 to 34 dB OSNR range. The

experimental results showed the possibility of achieving more

than 60% probability of correct recognition (PoCR) in back

to back configuration. In case of introducing residual CD by

1056 km transmission fiber, the PoCR was reduced to 50%.

In general, the results showed poor performance in identifying

wide range of modulation formats.

To improve the MFI accuracy performance, the authors

in [170] exploited Stokes space and maximum-likelihood clus-

tering algorithms to identify different types of phase modula-

tion formats. In addition, the performance of these techniques

was compared with other proposed techniques including k-

means, EM, DBSCAN, OPTICS, and spectral clustering.

Simulations were used to identify five modulation formats

including DP-BPSK, DP-QPSK, DP-8-PSK, DP-8-QAM, and

DP-16-QAM, each was transmitted at 28 Gbaud speed with

OSNR in the range of 5 to 30 dB (0 to 15 dB for BPSK) and

back to back configuration. The simulation results showed that

under the same conditions, the proposed technique achieves

more than 95% MFI accuracy which is better than that of

other techniques. However, its computational time is higher

than that of DBSCAN and OPTICS algorithms.

To decrease the computational time, MFI-based non-

iterative algorithms was proposed in [171], [172]. The

proposed method is relying on Stokes space and connected

component algorithm (CCA). It is based on taking the projec-

tion of the 3D Stokes space on (s2, s3) plane. To reduce the
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effect of ASE on the constellation points in (s2, s3) plane,

Voronoi polygon filtering method [173] was utilized. The

remaining constellation points were converted into a binary

image. Then, the CCA [174] was used to count the number

of clusters, i.e., constellation points. Simulation was con-

ducted to identify three different modulation formats including

DP-QPSK, DP-8-PSK, and DP-16-QAM, all transmitted at

32 Gbaud transmission speed, with OSNR in the range of

10 to 30 dB. The simulation results showed the possibil-

ity of achieving high MFI accuracy of more than 99%.

Furthermore, this method was verified experimentally through

building autonomous receiver able to identify and detect two
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Fig. 27. (a) Stokes space representation of QPSK, 8-PSK, 8-QAM, and 16-QAM, (b) their projection on (s1, s2) plane, (c) their projection on (s2, s3)
plane, and (d) their projection on (s1, s3) plane.

modulation formats including DP-QPSK and DP-16-QAM

at 32Gbaud transmission speed. The MFI in this proposed

work was achieved with low computational time, but only

considered for few modulation formats.

Another MFI technique based on non-iterative algorithm

was proposed in [175]. This technique relies on Stokes space

and adaptive CFSFDP algorithm. In this technique, (s2, s3)

plane is produced and exploited to discriminate between the

various modulation formats according to the density of the

clusters which is achieved using adaptive CFSFDP algorithm.

Simulation was performed to identify five different modula-

tion formats including DP-QPSK, DP-8-QAM, DP-16-QAM,

DP-32-QAM, and DP-64-QAM, all are transmitted at 28

Gbaud transmission speed, with OSNR in the range of 8

to 28 dB. The minimum OSNR required to achieve 100%

MFI accuracy was 12 dB for DP-QPSK dB, and 23 dB

for DP-64-QAM. Furthermore, this technique was validated

experimentally for three different modulation formats includ-

ing DP-QPSK DP-16-QAM and DP-64-QAM, with 28 Gbaud

transmission speed, laser linewidth 100 kHz, OSNR with range

of 12 to 30 dB, and back to back transmission. The minimum

OSNR required to achieve 100% MFI accuracy for DP-QPSK

DP-16-QAM and DP-64-QAM was 12 dB, 19 dB, and 26 dB,

respectively. Furthermore, the effect of fiber nonlinearity and

CD were investigated where 100% MFI accuracy can be

achieved for all modulation formats when the transmitted

power ranges from 5 to 6 dBm. Although this technique is non-

iterative which requires low computational time, it is difficult

to determine the number of clusters for low OSNR values.

MFI based on subtraction (fuzzy mean) clustering [176] was

reported in [177]. In this technique, first, the 3D Stokes vector

is projected into the 2D planes (s2, s3) and (s1, s3). Then,

the fuzzy mean algorithm is applied to determine clusters

density center. Different modulation formats can be distin-

guished according to their statistical parameters (i.e., forth

order cumulant) of the cluster centers distributed on (s2, s3)

and (s1, s3) planes. The performance of this technique was

verified by simulation to identify five modulation formats

including DP-BPSK, DP-QPSK, DP-8-PSK, DP-8-QAM, and

DP-16-QAM, with 28 Gbaud transmission speed, and OSNR

in range of 7 dB to 28 dB. The simulation results showed

the possibility of achieving 99% MFI accuracy. Moreover,
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this technique was validated experimentally for DP-QPSK and

DP-16-QAM, with 28 Gbaud transmission speed, OSNR in

range of 10 dB to 28 dB and back to back transmission

configuration. The results showed the possibility of achiev-

ing 99% MFI accuracy. Furthermore, the MFI accuracy of

this technique was studied under the effect of CD and trans-

mission power. In comparison to the algorithms reported

in [170], this technique provides accuracy quit similar to

maximum-likelihood and better than DBSCAN. However, its

computational time is relatively similar to DBSCAN and better

than maximum-likelihood.

The utilization of CFSFDP algorithm with Stokes space was

reported in [178] for MFI of different M-PSK (M = 2, 4, 8,

and 16) and M-QAM (M = 8 and 16) modulation formats.

The principle of this technique is as follows. First, the M-PSK

modulations set is separated from M-QAM modulations set

according to the value of s1 (i.e., s1 = 0 in case of M-PSK

signals). Then, the CFSFDP algorithm is applied to (s2, s3)

and (s1, s3) planes to identify the M-PSK and M-QAM signals,

respectively. This technique was validated by simulations for

DP-BPSK, DP-QPSK, DP-8-PSK, DP-16-PSK, DP-8-QAM,

and DP-16-QAM modulation formats, with 32 Gbaud trans-

mission speed, 100 kHz laser linewidth, and OSNR in the

range of 7 to 24 dB. The simulation results showed the possi-

bility of achieving more than 95% MFI accuracy. The effect of

other impairments such as CD, PMD, and PDL were also con-

sidered in this work. Furthermore, this technique was verified

experimentally for the same modulation formats, where more

than 95% MFI accuracy was achieved. The proposed tech-

nique has the potential to identify DP-M-PSK and M-QAM

modulation formats.

• MFI-based Stokes space representation with supervised

ML: Instead of exploiting unsupervised ML in conjunction

with Stokes space, the authors in [49] and [179] proposed

using supervised ML algorithms. In [49], Stokes space in con-

junction with two consecutive PNN algorithms was proposed.

In this technique, the AH of projected parameters on (s1, s3)

plane are generated first. The AH is utilized to train PNN1

in order to separate the modulation formats into different

sets according to energy level in (s1, s3) plane. Since the

AH is limited for distinguishing the multi-level signals (i.e.,

M-QAM), the rest of modulation formats (i.e., M-PSK) are

identified using the constellation images of data on (s2, s3)

plane that are used to train PNN2. This technique was ver-

ified by simulation and experiments to identify DP-QPSK,

DP-8-PSK, DP-16-QAM, and DP-64-QAM modulation for-

mats. These modulation formats were transmitted at 28 Gbaud

transmission speed with OSNR in the range of 7 to 35 dB,

and back to back configuration. The DP-M-PSK, DP-16-QAM

and DP-64-QAM signals were separated using PNN1 while the

M-PSK signals were identified by PNN2. The achieved MFI

accuracy was more than 95%. Furthermore, the effect of fiber

nonlinearity and CD effect were investigated. Compared with

the traditional supervised ML (i.e., ANN), MFI-based PNN

is faster and more accurate. However, it needs extra memory

space to store the model.

DNN as a supervised ML algorithm was proposed in [179]

in conjunction with Stokes space for MFI. The constellation

in 3D Stoke space is projected onto three planes; (s1, s2),

(s2, s3,) and (s1, s3) to obtain three images for each exam-

ined modulation format. These images are used as inputs to

three-channels pre-trained CNN algorithm called MobileNet.

This proposed method was verified by simulation to iden-

tify six modulation formats including DP-BPSK, DP-QPSK,

DP-8-PSK, DP-16-QAM DP-32-QAM, and DP-64-QAM, all

transmitted at 28 Gbaud speed with OSNR in the range of 9 to

35 dB. In addition, a frequency offset of 1 GHz was introduced.

An MFI accuracy more than 95% was achieved with OSNR

greater than 8 dB. In addition, the effect of residual CD was

investigated. This technique provides accurate results. However,

it deals with images which increase the computational cost.

2. Other MFI-based time domain features extraction tech-

niques: DNN was exploited in [95] for MFI. The features

were extracted using AH and auto-encoder with Softmax clas-

sifier. First, the AH of I and Q signal’s components are

obtained. Then, an auto-encoder is used to extract a few rep-

resentative features of the signal. These features are used as

input for the Softmax to classify various modulation formats.

This technique was verified experimentally for DP-QPSK,

DP-16-QAM, and DP-64-QAM modulation formats transmit-

ted at 28, 14, and 20 Gbaud symbol rate, respectively. Signal

noise and PN impairments were considered. In addition, 1

GHz frequency offset was introduced. This technique has the

advantage of providing accurate results and robustness to PN

and offset frequency. However, it is restricted only for three

modulation formats and cannot be used to discriminate the

M-PSK modulation formats.

To perform MFI in the co-existence of different impair-

ments, MFI-based fractal dimension (FD) [182], [183] and

variance of the incoming signals’ amplitude was proposed

in [184]. The FD technique tries to find the slope of the

received signal. The scatter plot of FD-variance brings together

each modulation on one cluster with few overlaps. SVM was

used to separate the different clusters. The validity of this

technique was tested by simulation for six modulation for-

mats include BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, and

64-QAM, transmitted at 20 Gbaud speed. In addition, 1 GHz

frequency offset, residual CD and DGD impairments were

considered. The results showed that MFI accuracy greater than

98.05% can be achieved. The proposed technique considered

both M-PSK and M-QAM in the presence of different chan-

nel conditions such as ASE noise, residual CD, DGD, and

frequency offset. However, FD requires complex calculations.

MFI-based SVM with intensity fluctuation features was

proposed in [180]. These features include Godard’s crite-

rion error [185], [186] and intensity variance. The Godard’s

criterion error is given by

(

N
∑

n=1

|
(

D(n)|2 −
(

E |D(n)|4/E |D(n)|2
))

)

(2)

where |D(n)|2 is intensity of the received signal D(n), N is

the number of samples, and E |.| is the mean. Different modu-

lation format can be separated by plotting these features in

2D plane, before applying SVM. This technique was veri-

fied experimentally for different modulation formats including
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28 Gbaud DP-QPSK, DP-8-QAM, and DP-16-QAM, and 20

Gbaud DP-32-QAM. The results showed that MFI accuracy

greater than 99.8% can be achieved. In addition, the nonlin-

earity effect was investigated by launching variable signal’s

power. This technique can be used for both M-PSK and

M-QAM signals. However, it requires a large number of

symbols to get accurate results.

CFSFDP algorithm in conjunction with the signal ampli-

tude was proposed in [187] for MFI. The amplitude for both

and I and Q signal’s components is obtained first. Then, every

amplitude level in M-QAM signal is separated using CFSFDP

algorithm. This technique was verified by simulation to iden-

tify six modulation formats including DP-QPSK, DP-8-QAM,

DP-16-QAM, DP-32-QAM, DP-64-QAM, and DP-256QAM,

all transmitted at 12.5 Gbaud speed. The achieved MFI accu-

racy is 95% under ASE impairment effect. To proof the

concept, this technique was validated experimentally for DP-

QPSK, DP-16-QAM, and DP-64-QAM, with 12.5 Gbaud,

transmission speed, where the minimum achieved MFI accu-

racy is 95%. The proposed method is noise tolerant. However,

it is limited for M-QAM signals.

Random forest and AH were exploited in [181] for MFI. After

AH extraction, random forest was used to identify the differ-

ent modulation formats. Simulation was conducted to identify

five modulation formats in WDM transmission system with

three channels. The modulation formats include DP-QPSK,

DP-8-QAM, DP-16-QAM DP-32-QAM, and DP-64-QAM, all

transmitted at 16 Gbaud speed and subjected to ASE. The

minimum OSNR required to achieve 100% MFI accuracy was

between 5 and 24 dB. The effect of non-linearity and frequency

offset were considered too. Furthermore, this technique was

verified experimentally for DP-16-QAM DP-32-QAM, and

DP-64-QAM modulation formats. In addition, the accuracy

and complexity of the random forest is compared with other

techniques including k-NN, SVM and DNN. The results showed

that the MFI accuracy for random forest is better than SVM and

k-NN and the computational complexity for random forest is

less than DNN. However, this work is limited only for M-QAM

modulation formats.

ii) MFI using image processing techniques: Instead of

depending on time/frequency domain features, another MFI

technique that considers the pixel points of an image as the

data was described in [188]. In this work, images of constella-

tion diagram with CNN were used to classify different types of

modulation formats. The validly of this technique was tested

by simulation for six modulation formats including QPSK,

8-QAM, 16-QAM, 32-QAM, and 64-QAM, all subjected to

ASE. The results showed that 100% MFI accuracy can be

obtained. However, its computational complexity is relatively

high.

Similarly, the authors in [189] proposed two techniques

for MFI based on the singular value decomposition (SVD)

and Radon transform (RT) of the constellation diagrams. The

RTs for different modulation formats are shown in Fig. 28.

Different classifiers including SVM, k-NN, and DT were used.

This technique was verified by simulation to identify 4-, 16-,

64-, and 256-QAM and 2-, 4-, 8-, and 16-PSK at 10 Gbaud

transmission speed, OSNR values range from 2 to 30 dB, PN

Fig. 28. RTs of different modulation formats, (a) QPSK, (b) 16-QAM, and
(d) 64-QAM.

range from 1KHz to 10 MHz, and state of polarization (SoP)

range from 5◦ to 45◦. To proof the concept, this technique was

also validated experimentally for DP-QPSK, DP-16-QAM and

DP-64-QAM at 10 Gbaud transmission speed and back to back

transmission. The results showed that the proposed technique

provides accuracy up to 100% MFI even at low OSNR values

of 10 dB. This technique covers wide range of modulation

formats. However, its computational complexity is relatively

high.

3) ML-Based Joint MFI and OPM Techniques: In this sec-

tion, we review the proposed techniques for joint MFI/OPM

in both direct and coherent systems. It is observed that most

of the proposed techniques, especially in coherent systems,

focused on joint OSNR monitoring and MFI because of the

direct relationship to BER and the existence of algorithms

which are able to compensate some other impairments (e.g.,

the CD) before MFI.

a) ML for joint MFI/OPM in direct detection systems:

In [190], SVM and ANN algorithms were used for MFI

and OSNR monitoring, respectively. This technique was veri-

fied experimentally for 32 Gbaud 4, 8, 16, and 64 DP-QAM

signals. In this method, the power eye-diagram is produced

after up-sampling the detected signal in 10 samples/symbol.

Statistical features are extracted from the eye diagram includ-

ing mean, variance, etc. The disadvantage of this method is

using the up-sampler ADC which makes it cost in-effective.

In [191], the authors proposed simultaneous bit rate iden-

tification (BRI), MFI and OPM based on PCA algorithm

in conjunction with ATDS. The principle of this method

is as follows. The ATDS with N × N dimensions is con-

verted into one dimensional vector with length N 2. Then,

the PCA algorithm is used to reduce the dimension (vec-

tor length). The Euclidean distance between the vectors in

lower dimension was used to distinguish the different mod-

ulation formats. This technique was verified by simulation

of 10/20 Gbps RZ-OOK,40/100 Gbps DP-RZ-QPSK, 100/200

Gbps DP-NRZ-16-QAM at OSNR range from 14 to 28 dB,

CD range from −500 to 500 ps/nm, and DGD range from 0

to 10 ps. This method provides information about the slope,

so it extends the impairments range. However, it requires two

samplers.

Instead of using two samplers, as in [191] which increases

the cost, the authors in [192] proposed MFI and OSNR

monitoring technique using PCA in conjunction with the asyn-

chronous single channel sampling (ASCS). ASCS is similar to

ADTS but it uses single sampler rather than two samplers. This

technique was validated experimentally to identify RZ-OOK,
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NRZ-DPSK, and RZ-DPSK, all transmitted at 10 Gbps trans-

mission speed at OSNR range from 10 to 25 dB and CD range

from 0 to 700 ps/nm. Compared with ADTS, ASCS uses one

sampler, hence, the implementation complexity and cost of the

system is reduced. However, it requires additional circuit (i.e.,

software synchronization).

The authors in [193] proposed joint OSNR and MFI

using CNN. Synchronous eye diagram was used to train

CNN. This technique was verified by simulation for DP-

BPSK, DP-QPSK, DP-8-PSK, DP-8-QAM, DP-12QAM, and

DP-16-QAM modulation formats at 10 Gbaud transmission

speed, 30 dB OSNR, and back to back configuration. This

technique does not need manual intervention, i.e., it does not

require extracting features from the eye diagram. The limita-

tions of this method are that first, it requires timing recovery

leading to high cost. Second, the monitoring is performed

using a classifier, not a regressor.

In [194], the authors proposed simultaneous MFI and OSNR

monitoring for 28 Gbaud NRZ-OOK, 4-PAM and 8-PAM,

using AH with MTL-based ANN. In MTL, the network

(i.e., ANN) performs multiple tasks, such as monitoring and

classification, simultaneously. This technique was verified by

simulation and experiments at OSNR range from 10 to 35 dB

under residual CD effect ranging from −100 to 100 ps/nm.

The results showed 100% MFI accuracy and OSNR monitor-

ing mean square error (MSE) below 0.12 dB. The use of MTL

improves the performance compared with traditional training

that is based on single-task learning. However, this work is

limited only for intensity modulation formats.

Similarly, the authors in [41] considered simultaneous

BRI, MFI and OSNR monitoring for higher-order modula-

tion using MTL-based ANN in conjunction with AAH. This

technique was verified by simulation and experiments for DP-

QPSK, DP-8-QAM, and DP-16-QAM at OSNR range from

10 to 26 dB and CD value range from 0 to 1600 ps/nm.

The monitoring is asynchronous as it uses AAH, hence no

time recovery is required and low cost/low complexity is

achieved. The limitations of this method are that first, the

performance decreases as CD increases owing to the fact that

the AHH offers only information about the amplitude. Second,

the simulation results do not match with the experimental

results.

In [195], the authors proposed MFI and OSNR monitoring

using CNN in conjunction with ADTS. The ADTP images

are used as input for the CNN for joint OSNR and MFI.

This technique was verified by simulation for DP-16-QAM,

DP-16-QAM, and DP-64-QAM modulation formats, all trans-

mitted at 28 Gbaud symbol and subjected to ASE and CD

impairments. 100% MFI and OSNR accuracies are obtained.

Furthermore, it was verified experimentally for 16-QAM and

64-QAM signals with achieved accuracy more than 96%. The

advantage of this technique is providing accurate results in the

existence of CD. However, its cost is relatively high because

of using two samplers and the need for more computational

time due to processing images.

The authors in [40] proposed BRI, MFI and OPM including

OSNR, CD and DGD using MTL-based CNN in conjunc-

tion with ATDS. This technique was verified by simulation

Fig. 29. CDFs of different modulation formats.

for NRZ-OOK, RZ-OOK, and NRZ-DPSK for 10/20 Gbps

at OSNR values range from 10 to 28 dB, CD range from

0 to 450 ps/nm, and DGD range 0 to 10 ps. MTL improves

the performance due to the simultaneous training of BRI, MFI

and OPM. However, this technique is computational expensive

because it deals with ADTS as images.

Table VIII summarizes the literature of ML-based joint

OPM-MFI techniques for direct detection.

b) ML for joint MFI/OPM in coherent detection systems:

Among the different types of impairments that affect optical

signals in coherent systems, OSNR is the only parameter con-

sidered in literature in joint MFI and OPM. This is because

OSNR is easier to estimate compared to other impairments

when MFI is required.

The authors in [39] proposed a technique based on AH in

conjunction with DNN (i.e., ML-ANN) to identify MFI as

well as joint OSNR monitoring. This technique was verified

experimentally for identifying three optical signals 56 baud

QPSK, 28 Gbaud 16-QAM, and 60 Gbaud 64-QAM. The

results showed the possibility of monitoring OSNR with less

than 1.2 dB estimation error and 100% MFI accuracy. The

proposed technique is sensitive to PN and offset frequency.

However, it is limited for M-QAM modulation.

Joint BRI, MFI and OPM based on ANN algorithm that

exploits AH features was reported in [196]. The proposed tech-

nique was verified experimentally for DP QPSK and 16-QAM

signals with 12.5, 14, and 16 Gbaud symbol rates, at OSNR

range from 9 to 19 dB, CD range from 200 to 1600 ps/nm,

DGD range from 10 to 70 ps, and PN range from 1 kHz to

1 MHz. This work considered BRI and MFI. However, the

influence of simultaneous co-existence of multi-impairments

was not taken into consideration.

In addition to exploiting AAH features, CDF was exploited

in [197] to train SVM algorithm for joint OSNR monitor-

ing and MFI. The CDFs for different modulation formats

are shown in Fig. 29. This technique was verified numeri-

cally and experimentally for three modulation formats; 4QAM,

16-QAM, and 64-QAM with 12.5 Gbaud speed and back-to-

back setup configuration. The results showed high accuracy

of identifying the transmitted modulation formats. In addition,

they showed the possibility of estimating OSNR with less than
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TABLE VIII
SUMMARY OF ML-BASED JOINT MFI-OPM TECHNIQUES FOR DIRECT DETECTION

1 dB estimation error. This technique requires few number of

samples and is robust to PN and offset frequency. However, it

is limited for M-QAM signals.

Stokes space with DNN (ML-ANN) algorithm was used

in [198] for joint monitoring of OSNR and MFI. The first

order derivations of (s2, s3) and (s1, s3) planes were utilized

as features. Two cascaded DNN algorithms were utilized. The

first was used for MFI while the second was utilized for OSNR

estimation. Four signals with PMD were used to evaluate the

proposed technique performance. The signals under consid-

eration were QPSK, 8-QAM, 16-QAM at 28 Gbaud symbol

rate and 32-QAM at 21.5 Gbaud symbol rate. The results

showed high accuracy of identifying the different transmit-

ted modulation formats. In addition, OSNR estimation error

was found to be less than 0.5 dB. This technique is basically

insensitive to carrier PN, frequency offset and polarization

mixing. However, it contains multiple hidden layers with

multiple neurons leading to an increase in the computational

complexity.

CNN algorithm was used in [199] for MFI and OSNR esti-

mation. Images of constellation diagram of received signals

were used as a training dataset for the algorithm. The validly

of this technique was verified by simulation for six modula-

tion formats: QPSK, 8-PSK, 8-QAM, 16-QAM, 32-QAM, and

64-QAM. The results showed an accuracy larger than 95% for

identifying the different modulation formats, with less than

0.7 estimating error for the OSNR. However, the authors dealt

with the OSNR monitoring as a classification problem, which

is only suitable for discrete OSNR values, as well the compu-

tational complexity is relatively high. Moreover, it is difficult

or even impossible to recover the constellations without prior

information about the modulation formats [179].

Table IX summarizes the literature of ML-based joint OPM-

MFI techniques for coherent detection.

C. Lessons Learned

In this section, we discussed the conventional and ML-based

techniques for OPM and MFI. Few lessons are given below.

• The conventional OPM techniques have been mainly

applied to either single impairment or few impairments
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TABLE IX
SUMMARY OF ML-BASED JOINT MFI-OPM TECHNIQUES FOR COHERENT DETECTION

with a small range of monitoring values. Besides, the con-

ventional FB-based MFI algorithms are either sensitive to

pre-defined threshold values or only limited to classifying

few modulation formats.

• The time domain-based AH features extracted for MFI

can cope with the existence of PN. However, its accu-

racy is affected by ASE noise. On the other hand, features

extracted from the frequency domain are robust to ASE

noise. Therefore, it would be useful to have features that

are extracted from both time and frequency domains.

Such features are already exploited in RF communication

systems and can be adopted for optical communication,

as well.

• The majority of ML-based OPM techniques adopt super-

vised learning, especially ANN. Additionally, OPM tech-

niques are envisioned to be deployed in a large number

of intermediate network nodes to provide comprehen-

sive surveillance. Hence, inexpensive acquisition systems

should be employed. Therefore, receivers with asyn-

chronous sampling and direct detection are preferred

over expensive coherent systems. Moreover, the vast

majority of OPM techniques mainly consider monitor-

ing OSNR parameter, and CD and DGD impairments

in transmission systems employing OOK, DPSK, and

DQPSK direct detection modulation formats. However,

it is more challenging in direct detection acquisition

to monitor impairments when using higher order mod-

ulation formats such as M-QAM (M = 16, 32, and

64) signals. Therefore, more studies are needed in

this field.

• Most of the ML-based MFI techniques are mainly

proposed for coherent adaptive receivers where the

received modulation format changes according to the

network status. Such receivers are using coherent detec-

tion to benefit from the built-in DSP algorithms for

mitigating some signal impairments such as CD. Note

that some algorithms developed for impairments mitiga-

tion are modulation dependent which require identifying

the modulation format first. Therefore, it is advisable that

ML algorithms are built around features that are impair-

ment independent so that the MFI is achieved with high

accuracy. Stokes space features are a viable option, which

allows MFI with relatively high accuracy under stressed

optical signal.

• The intermediate nodes and/or optical receivers are envi-

sioned to have the capability of performing both OPM

and MFI functions. However, achieving such simulta-

neous tasks is not an easy task. ML-based techniques

for joint OPM/MFI are available. But, these techniques

are mainly limited to monitoring only a single param-

eter (OSNR) during the process of performing MFI for

either direct or coherent detection acquisition systems.

Therefore, this calls for conducting more studies to

develop joint OPM/MFI techniques capable of incorpo-

rating more impairments to monitor.

• A closer look at the majority of ML-based OPM and

MFI techniques reveals that these algorithms have been

developed for a set of modulation formats/impairments,

which may not cover the whole set of formats of practical

interest. Therefore, it is necessary to develop ML-based



SAIF et al.: ML TECHNIQUES FOR OPM AND MFI: A SURVEY 2871

OPM/MFI techniques that consider a wider range of

modulation formats and channel impairments, without

compromising the classification/monitoring accuracy or

adding impractical computational complexity.

• The proposed supervised ML techniques for OPM and

MFI are often trained off-line using a specific dataset that

might not be comprehensive to include all key network

situations. Hence, the applicability of these techniques in

practical systems remains questionable, and self-learning

approaches could play a vital role in such cases.

V. OPM AND MFI FOR MULTIPLEXED SIGNALS

In Section IV, we have discussed ML for OPM and MFI for

fiber-based optical networks. However, the advances in optical

communications opened new applications that require intro-

ducing new types of optical networks or using more efficient

multiplexing techniques. In this section, we discuss the ML-

based OPM and MFI methods that are proposed in literature

for multiplexed signals.

In general, multiplexing techniques are useful to increase

network data rate, hence improve bandwidth efficiency.

However, they come with some challenges that require ade-

quate OPM and/or MFI techniques. In the next subsections,

we review such multiplexing techniques that are proposed in

optical networks.

A. Orthogonal Frequency-Division Multiplexing (OFDM)

Orthogonal frequency-division multiplexing (OFDM) is one

of the multiplexing techniques that can be used in next gen-

eration optical networks. It provides some advantages such as

its resistance to CD effect. During the last two years, few

MFI and OPM techniques have been proposed for OFDM

signals using direct detection [200], [201] and coherent detec-

tion [202] receivers. In [200], an MFI technique that is relying

on ANN algorithm was proposed. The ANN is trained using

AH features extracted from the real part of data after FFT

stage. This technique was verified experimentally to iden-

tify five modulation formats including 4-, 16-, 32-, 64- and

128-QAM, transmitted over 25 km fiber link. The proposed

method achieved 100% identification accuracy for received

optical power (ROP) greater than -10 dBm. Later, the authors

extended their work to perform joint OSNR monitoring and

MFI using k-NN algorithm which was trained using AH [203].

To reduce the computational complexity, the authors applied

some pre-processing to reduce the features size. The results

showed reduction in the computational complexity of 1.4%

compared with ANN-based technique. Direct detection was

used in this work, which reduces the cost so that MFI can be

used for intermediate nodes. However, MFI-based AH cannot

be used for phase modulation formats (e.g., M-PSK) because

these types of modulations have constant amplitude, whereas

AH deals with changes in amplitude.

Another MFI technique based on CFSFDP algorithms that

does not require prior training was presented in [204]. In

this technique, the peak density and distance between data

points are utilized to define the number of clusters, based

on which the MFI is achieved. The proposed technique was

verified experimentally for 4-, 8-, 16-, 32-, and 64-QAM mod-

ulation formats. The results showed that this technique can

achieve 100% classification accuracy but only for high OSNR

greater than 21 dB. This work was extended in [201] by utiliz-

ing k-NN regression method to count the number of clusters.

The simulation results showed that this technique can achieve

100% identification accuracy for 8-PSK, QPSK, 8, 16, 64,

and 128-QAM modulation formats transmitted at 12.5 Gbaud

symbol rate with OSNR greater than 19.5 dB.

In [202], the authors introduced MFI based modulus mean

square (MMS) features. In this method, different modulation

formats are transmitted over each subcarrier. The mean square

of the I and Q points for each modulation is calculated and

then an appropriate threshold is applied for each subcarrier.

The proposed method was verified through simulation and

experiments to identify different QPSK and M-QAM (M =
8, 16, 32, and 64) signals. The maximum OSNR required to

achieved 100% identification rate is 25 dB. This work can

be used to identify hybrid modulation formats. However, it is

based on coherent detection to extract the dataset which in

turn increases the cost.

B. Few Mode Fiber (FMF) Multiplexing

FMF is a type of SDM where more than one mode is exploited

for data transmission. Recently, there has been much interest

to exploit FMF in future elastic optical networks to reduce the

overall cost while improving the network capacity. Using MFI

for SMF-based networks has been widely studied in literature.

However, applying MFI for FMF-based networks is still in

its infancy. In contrast to SMF, the optical signal in FMF is

subject to some additional impairments such as the introduced

cross-talk between the modes (mode coupling (MC)). The

authors in [205] investigated by simulation identifying six

types of modulation formats, including DP-BPSK, DP-QPSK,

DP-8-QAM, DP-16-QAM, DP-32-QAM, and DP-64-QAM,

under the effect of ASE and CD impairments, besides, the

MC. ANN classifier was used which exploits the sampled

received signal’s IQH features to train the network. The average

identification accuracy was found to be 98% in the presence

of low MC. However, this accuracy reduces to 90% under

the effect of high MC and CD. Furthermore, the average

identification accuracy was investigated under different symbol

rates including 14 and 20 Gbaud.

C. Lessons Learned

The ML-based techniques of OPM and MFI for multiplexed

signals are still in its infancy and only few studies are reported

in the literature. For the OFDM signal, the reported monitor-

ing techniques considered the traditional impairments of the

optical signal and ignored the impairments related to OFDM

signal such as inter-carrier-interference. Similarly, reported

techniques for FMF signals did not consider all the impair-

ments related to FMF signals such as PMD, mode-dependent

loss (MDL), and frequency offset. Since FMF technology

is a promising solution for future optical networks, more

research is needed in this area. Moreover, developing adap-

tive techniques that can work for single and multi-carrier
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(i.e., super-channel and WDM) networks is of interest to

next-generation high-speed networks.

VI. MFI AND OPM FOR ACCESS NETWORKS

Here, we survey OPM and MFI for access networks. In

particular, we consider two networks where MFI and/or OPM

are used to improve their performance. These are RoF and

free space optical (FSO) communication networks.

A. Radio Over Fiber (RoF) Network

RoF is a hybrid network, where the RF wireless signals’

transportation and distribution is achieved through optical

networks. This technology is gaining more interest especially

in future wireless networks such as the 5G communication,

where RF transmission distance is getting shorter due to

exploiting the high frequencies. Hybrid RoF network can solve

the distance reach issue by extending the RF transmission dis-

tances using fiber. Using ML for MFI in RF wireless networks

is well investigated in literature [206]–[208]. However, MFI in

hybrid RoF technology is still in its early stages. In [209], the

authors proposed using ANN algorithm to classify four types

of modulation formats; BPSK, QPSK, 16-QAM, and OFDM-

QPSK. The extracted AAH features of the sampled received

signal are used to train the ANN. Different impairments were

considered, including CD, DGD, and ASE. Using 60 GHz RF

carrier, the simulation results showed that an accuracy more

than 99% can be achieved regardless of the type of modulation

formats at data rate less than 2.6 Gbps.

Another technique for MFI in hybrid RoF was proposed

in [210], which exploits an auto-encoder preceded by a pre-

processing step. The pre-processing step involves sorting the

values of the in-phase and quadrature samples of a received

signal. In this work, a 28 GHz RF signal and six differ-

ent modulation formats; BPSK, QPSK, 8-PSK, 16-, 64-, and

256-QAM were considered. The performance of the classifier

was investigated experimentally and by simulation under the

effect of CD and ASE impairments. The results showed good

agreement between the simulation and experiments. A classi-

fication accuracy of 98% was achieved for OSNR greater than

10 dB and fiber length less than 60 km. For fiber length longer

than 70 km, the performance starts degrading more because

of CD effect.

B. Free Space Optical (FSO) Communication Network

In FSO communications, OAM is a new multiplexing tech-

nique that has gained interest during the last years due to

its capability to provide new freedom of signal’s carriers

and hence double the data rate of optical communication

systems [211]. When the orthogonal OAM modes are trans-

mitted over turbulent free space channel, the wave-front phase

is perturbed and hence cross-talk is introduced at the receiver.

Monitoring the atmospheric turbulence (AT) impairment helps

in exploiting adaptive modulation techniques or even correct-

ing AT impairment. In [212], a CNN algorithm was used to

determine the severity of AT and simultaneously detect the

OAM modes, in an M-ary pattern coding system. The proposed

algorithm was verified in simulation by considering six values

for AT covering weak to strong turbulence for 4-OAM, 8-

OAM, and 16-OAM. The detecting accuracy of AT types was

found to be 95% on average. Instead of monitoring specific AT

types, the authors in [213] used CNN to build a system that

is capable of providing feedback to the transmitter to correct

the OAM’s transmitted mode, which was disturbed by ran-

dom AT. The results showed that by using such a technique,

the received OAM’s mode has been found to be close to the

desired profile.

C. Lessons Learned

Few lessons can be extracted from this section pertaining

to MFI and OPM for access networks.

• The reach distance in future RF wireless networks such

as 5G/6G is very short. Fiber cables are then viable

solutions to extend the reach distance. The transmitted

signal over this hybrid RF/fiber link is subject to different

types of impairments, some of which occur in the optical

domain and the others in the electrical domain. Therefore,

the development of future OPM/MFI techniques should

consider both types of impairments. Additionally, fiber

impairment, particularly CD, shows a different behavior

in RoF channels, owing to the double-sideband trans-

mission, as compared to the optical baseband distortion

such as the repetitive signal fading and time-shifting

effects. This new behavior deserves special attention from

researchers to investigate its effect on the performance of

ML classifiers.

• Fiber installation is sometimes difficult or even impos-

sible. Therefore, FSO technology is proposed to replace

the fiber in such cases. However, FSO technology has its

own impairments which require designing suitable MFI

and OPM techniques. The work in this area is still in

its infancy and more research is required to consider the

different types of impairments, such as signal scattering,

turbulence, pointing errors, and phase distortion, in the

development of OPM/MFI techniques.

VII. DISCUSSIONS AND GUIDELINES

Since there are many ML-based techniques proposed for

OPM and MFI, some criteria are needed to help identifying

the appropriate algorithms for specific applications. Moreover,

feature selection is a primary element in determining the algo-

rithm performance. In this section, we first list some criteria

that can be used for ML algorithm selection. Then, we discuss

and compare the different types of features that are proposed

in the literature for OPM and MFI in optical networks.

A. Criteria for Identifying the Appropriate Algorithm

1) Accuracy: The accuracy is an important metric that

identifies how much the proposed technique is accurate and

sensitive in predicting the amount of a specific impairment or

identifying a type of a modulation format. High accuracy is

required to provide suitable decisions accordingly.

2) Multitasking: Multitasking in OPM is defined as the

capability of the proposed technique to monitor multiple

impairments simultaneously because the optical signal is
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subjected to different simultaneous impairments while prop-

agating in the channel. In MFI, the proposed techniques are

developed to identify multiple modulation formats, as in adap-

tive optical networks where the modulation formats change

according to the channel condition. Therefore, multitask solu-

tions can be utilized to perform joint OPM and MFI; thereby

implementing one system/algorithm instead of many.

3) Cost of Data Acquisition Hardware: The first step in

OPM and MFI is data acquisition. The hardware required for

signal acquisition needs to be simple and inexpensive. This

is because OPM and MFI functions need to be installed in

many nodes in the network, therefore low-cost solutions help

in reducing the overall network cost.

4) Implementation: The proposed techniques need to be

easy to implement and integrate with the network equipment.

A technique that only requires installing of the OPM/MFI

algorithm on the receiver memory is easy to implement. On

the other side, a technique that requires modifying the receiver

somehow to implement the algorithm is harder to implement.

5) Computational Complexity: Computational complexity

means the amount of time, storage, and other resources that

are needed to execute a particular algorithm. MFI and OPM

techniques that exploit algorithms with low computational

complexity are preferred. The input data size to the algorithm

needs to be small. Furthermore, predicting the impairment or

identifying the modulation format needs to be fast to ensure

building proactive optical networks.

6) Impairments Range: The severity of an impairment

depends on the conditions of the impairment’s source. For

example, low OSNR values exist in case of fiber damage or

power eavesdropping. In such cases, OSNR can drop to low

values in range of few decibels. Therefore, an OPM technique

should be able to monitor a specific impairment over wide

range extending from low values to high values. Similarly, an

MFI technique should be able to identify the type of a modu-

lation format even under harsh conditions such as low signal

power, large noise, and large CD.

B. Features Utilized for OPM and MFI

The performance of ML algorithms is heavily based on

the utilized features and classifiers/regressors. In Section II,

we discussed in details the different classifiers/regressors

employed in literature. Therefore, to complete the picture

about the surveyed algorithms, we consider here the most

commonly used features in literature for OPM and MFI.

Each OPM or MFI technique reported in this survey is

using certain type of features for training the ML algorithm.

Therefore, these features play an important role in determining

the effectiveness of the ML-based OPM and MFI techniques.

In this section, we further discuss these features with emphasis

on their pros and cons.

By virtue of the discussion previously presented in

Sections IV and V, we observe that most of the features extracted

from the time domain signals can be classified according to

their sampling technique, either synchronous or asynchronous.

Asynchronous features are often used such as the recon-

struction eye diagram using the chirp-z conversion software

synchronization algorithm [145], AAHs [148], [159], [162],

ADTSs [40], [150], [152], [191], [195], ASCS [192], IQH [156],

[205], and asynchronous constellation diagram [155]. Most of

these features have been extracted using low cost direct detection

acquisition systems, making them attractive for intermediate

nodes in the optical networks.

In heterogeneous fiber optic networks, direct detection

acquisition systems are not appropriate for long fiber trans-

mission links due to the accumulated linear impairments such

as the CD. In contrast, in coherent detection acquisition

systems, MFI becomes more reliable because DSP algorithms

for CD and some other impairments compensation are often

employed. Features that have been considered from such

acquisition systems include AH [39], [49], [95], [181], [196],

[200], [203], CDF [197], and power distribution [130]. These

features are insensitive to PN and frequency offset. In addi-

tion, they are suitable for multi-level modulation formats such

M-QAM (M = 2, 4, and 8) because of their dependency on

the signal amplitude. However, for phase modulation formats

such as the M-PSK (M = 4, 16, 32, and 64), they are not

appropriate. Moreover, they cannot be used for PN impair-

ment monitoring because they are insensitive to it. In dual

polarization modulations, the signals are prone to polarization

rotation as well as PN and frequency offset. The received sig-

nal that is acquired coherently is often mapped into Stokes

space constellation to produce features that are completely

independent of these impairments [49], [166]–[172], [175],

[177]–[179], [198]. However, Stokes space constellation fea-

tures are sensitive to ASE noise, because the mapping distorts

the ASE noise probability density function. Moreover, Stokes

space constellation features are distorted by PMD and PDL.

Besides, HOC features and some other features extracted

from the signal amplitude and phase that are acquired coher-

ently have been exploited in [132], [133], [135]. In contrast to

Stokes space constellation features, these features are insen-

sitive to ASE noise. However, they are relying on DT that is

sensitive to pre-defined threshold values.

Features extracted from the frequency domain have been

considered as well. LF components of RF spectrum have been

used as features for OSNR monitoring [154]. These features

showed accurate results under high CD impairment values.

However, they are not suitable for CD and PMD monitoring.

On the other hand, FFT-based features extracted after tak-

ing different powers of the time-domain received signal [137],

[138] introduce computational complexity. In addition, these

features are only robust at low values of OSNR due to their

association with thresholding.

Features extracted from images, e.g., the eye diagram

images [193], constellation images [199], and RT images [189]

require long processing time and large memory. Similarly,

deep learning algorithms, which extract features directly from

raw data require long training time and large data size to get

acceptable results.

Figure 30 presents pictorial classification for the commonly

used features in the literature for OPM and MFI, while Table X

summarizes the pros and cons of these features. Moreover,

Table XI lists some reported comparisons in the literature for

different ML techniques using specific features.
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Fig. 30. Features used in the literature. C: coherent detection and D: direct detection.

VIII. LESSONS LEARNED, OPEN ISSUES AND

RESEARCH DIRECTION

ML-based OPM and MFI for optical networks have received

considerable attentions over the last decade. However, there

are some challenges that still require more investigations. In

addition, there are some other optical networks that require the

development of MFI and OPM techniques adequate for their

nature. In this section, we discuss the learned lessons, highlight

the main gaps in the currently proposed ML-based tech-

niques, and present our vision to improve their performance.

Furthermore, we discuss the research directions pertaining to

OPM and MFI in the coming few years.

A. Algorithm Multitasking

ML-based OPM and MFI techniques in the current existing

works are limited to monitoring/identifying specific impair-

ment/modulation formats, which do not support future optical

networks that are subject to different types of impairments

and support variety of modulation formats. For example, the

algorithms that exploit AH features can be used to iden-

tify M-QAM (M = 4, 16, 32, and 64) modulation formats

but not M-PSK (M = 2, 4, and 8) modulation formats.

Similarly, the usage of AH features in OPM algorithms does

not support monitoring PN impairment. Therefore, there is a

need to propose more comprehensive features so that OPM

and MFI techniques have the capability to monitor a wide

range of impairments and identify a large number of modula-

tion formats. The ability to develop a multitasking algorithm

that performs joint OPM/MFI is the foundation for future

intelligent optical networks.

B. New Modulation Formats

So far, the surveyed literature is limited to the recognition

of the traditional modulation formats such as M-PSK (M =
2, 4, and 8) and M-QAM (M = 8, 16, 32, and 64). Apart

from BPSK and QPSK, M-PSK (M ≥ 8) systems are not rec-

ommended for future optical fiber networks (i.e., 400 Gbps

and 1Tbps) [214]. Besides, for the M-QAM schemes, every

point in the constellation diagram is located on a uniform

Cartesian grid and transmitted with equal probability. Recently,

new more efficient modulation formats have been proposed to

improve the capacity and achieve better power efficiency such

as the probabilistic constellation shaping modulation and geo-

metric constellation shaping formats [215]–[217]. The former

relies on transmitting the constellation points at different prob-

abilities while the latter is based on optimizing the OSNR.

The introduction of such new modulation formats in optical

communication requires new MFI algorithms at the receiver

not only to determine the different modulation orders but also

the signal type such as OOK, QAM, probabilistic, geometric,

etc. to facilitate proper demodulation. A recent study for MFI

of probabilistic shaping modulation formats showed that for

some special cases the probabilistic shaping 16-QAM format

might have very small differences in the Jones space with the
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TABLE X
SUMMARY OF PROS AND CONS OF THE FEATURES UTILIZED IN THE LITERATURE

standard 4-QAM format. Similarly, it would be the case with

the probabilistic shaping 64-QAM format and the standard

16-QAM format. Therefore, current MFI techniques used for

standard M-QAM modulation formats may produce low clas-

sification accuracy when employed for the classification of

probabilistic shaping modulation formats, and hence new MFI

techniques are required for such new formats [218].

C. Nonlinear Impairments

The vast majority of research has focused on single car-

rier optical systems, making these studies limited only for

linear effects. However, in WDM networks, beside the linear

effects, there are some other nonlinear impairments such as

FWM, SPM, and XPM that require OPM. Non-linear impair-

ments limit the maximum signal power in optical channel

which reduce the transmission distance. Therefore, it is nec-

essary to accurately measure these effects to enhance the

quality of transmission. According to ITU-T G.697 recom-

mendations [84], in 100 Gbps NRZ/RZ line coding high

speed coherent networks, nonlinear impairments have medium

effect which requires adequate OPM solutions. ML techniques

can help in providing such solutions with high performance

and reasonable cost. In fact, ML-based OPM is an attractive

solution because it does not require exact knowledge of the

mathematical modeling of impairment’s nonlinearity.

D. Wireless and Hybrid Optical Networks

Similar to fiber-based optical networks, some other opti-

cal networks such as RoF, free space optical communication

(FSO), radio over FSO (RoFSO), and visible light com-

munication (VLC) are gaining more interest as counterparts

to fiber-based optical networks. They are useful when fiber

installation is impossible or costly. Such networks require

the development of suitable MFI and OPM techniques that

consider additional types of impairments such as RF noise,

path loss, shadowing and fading effect in RoF and RoFSO

networks. In addition, the VLC and FSO networks have

their own impairments such as turbulence, free space signal
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TABLE XI
SUMMARY OF REPORTED COMPARISON IN LITERATURE OF ML ALGORITHMS IN TERMS OF

COMPUTATIONAL COMPLEXITY AND PERFORMANCE (ACCURACY)

scattering, light reflection, and pointing errors. As the hybrid

networks combine different types of channels, the task of

designing suitable OPM and MFI becomes more complicated.

E. New Multiplexing Techniques

Besides the traditional multiplexing technique, SDM is a

large player in next generation of optical networks to over-

come the capacity limit of the existing optical communication

systems. SDM is realized by multi-core fiber (MCF), multi-

mode fiber (MMF), and FMF. Furthermore, the dense SDM

(DSDM) systems, MCFs with FMFs, known as few-mode

multicore fibers (FM-MCFs) are also proposed [219]. Such

multiplexing techniques have their own new impairments that

are not yet considered in the literature such as mode coupling

and mode dependent loss which may require the development

of new ML-based OPM and MFI algorithms.

F. Real-Time ML Approaches

In many ML-based algorithms, real-time processing of

samples and number of samples required to achieve cer-

tain accuracy are major concerns especially in time-sensitive

applications such as optical communication. Therefore, the

processing efficiency is an important factor in developing ML-

based solutions. On the other hand, it is noted that all ML-

based OPM and MFI techniques utilize offline training data.

However, in real dynamic optical network, the traffic data as

well as the optical components behavior may change over

time. It is envisaged that the optical network would be capa-

ble to perform self-learning, self-adapting, and self-optimizing.

Therefore, ML-based OPM and MFI techniques need to per-

form training and fast convergence in real time. Therefore,

optical components could be considered to build such algo-

rithms, which will lead to a quantum leap because of their

high speed.



SAIF et al.: ML TECHNIQUES FOR OPM AND MFI: A SURVEY 2877

G. Available Algorithms and Frameworks in Other Fields

Since using ML for OPM and MFI in optical networks is

recent, researchers can benefit from the proposed techniques

and used features in other fields such as RF communica-

tion, bioinformatics and image processing. MATLAB software

is common among researchers in optical communication to

develop ML algorithms for OPM and MFI, which is not

popular in ML community. Other software such as Python

might be more useful for developing ML algorithms because

of the availability of many open-source frameworks such as

TensorFlow, Pytorch, and Caffe.

IX. CONCLUSION

OPM and MFI are expected to be an essential part of

the next generation optical networks by enabling autonomous

optical nodes and receivers which provide increased stabil-

ity, adaptability, and efficient utilization of network resources.

Machine learning has emerged as a reliable solution to build

estimation and classification models for OPM and MFI,

respectively, due to their ability to provide data-drive solutions

that are efficient and accurate. This article provided a compre-

hensive survey of ML-based OPM, MFI, and joint OPM/MFI

techniques for both direct and coherent systems. It also pro-

vided comparisons between these proposed techniques and

addressed future research directions and open issues.

Proposed algorithms in the literature span a wide spec-

trum of techniques but can be categorized in terms of feature

extraction and training method. The majority of algorithms

use supervised approaches to train OPM and MFI models.

However, most of the proposed OPM algorithms have the

advantages of exploiting low-cost direct detection acquisi-

tion systems with simple asynchronous features. On the other

hand, most of the MFI algorithms are using coherent receivers

for data acquisition equipped with impairments’ mitigation

DSP algorithms (e.g., CD compensation algorithms) as pre-

processing step. Features used in most MFI algorithms are

handcrafted to be transparent to certain types of impairments

by utilizing different domains such as Stokes space, CDF, and

AH domains. Some MFI algorithms have been proposed using

unsupervised learning techniques to cluster data samples from

different modulations, and then identify new data samples by

finding common features with existing clusters. For joint OPM

and MFI, most of the proposed algorithms are limited to joint

monitoring of OSNR with MFI.

Unlike OPM/MFI algorithms that uses traditional ML tech-

niques, recent algorithms propose using deep CNNs and

LSTMs models to automatically identify features and per-

form classification or estimation using the same network. This

raises the issue of lack of experimental datasets that are truly

representative of the different settings in optical networks.

One approach to resolve this issue is the use of generative

adversarial neural networks to expand existing experimental

measurements data. Additionally, transfer learning can be used

to efficiently train deep neural networks on new and emerg-

ing technologies such as free space optics, few mode fiber,

or orbital angular momentum. Other trends in machine learn-

ing field such as adaptive learning and online learning can

be enabling technologies for OPM and MFI to build the next

generation optical networks.
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