
Mach ine Lea rn ing Techniques to M a k e Compu te rs Easier to Use

Hi rosh i M o t o d a
The Inst, of Scientific and Industrial

Research, Osaka University
Mihogaoka, Ibaraki, Osaka 567, Japan

Ken ich i Yoshida
Advanced Research Laboratory,

Hitachi, Ltd.
Hatoyama, Saitama 350, Japan

Abs t rac t

Identifying user-dependent information that
can be automatically collected helps build a
user model by which to predict what the user
wants to do next and to do relevant preprocess
ing. Such information is often relational and is
best represented by a set of directed graphs. A
machine learning technique called graph-based
induction {GBI) efficiently extracts regularities
from such data, based on which a user-adaptive
interface is bui l t that can predict next com
mand, generate scripts and prefetch files in a
mult i task environment. The heart of GBI is
pairwise chunking. The paper shows how this
simple mechanism applies to the top down in
duction of decision trees for nested attr ibute
representation as well as finding frequently oc
curring patterns in a graph. The results clearly
shows that the dependency analysis of compu
tational processes activated by the user com
mands which is made possible by GBI is indeed
useful to bui ld a behavior model and increase
prediction accuracy.

1 I n t r o d u c t i o n
Computers are sti l l not easy to use. The main reason
is their ignorance about the user. The user information
that is available to an interactive computer system is l im
ited, and thus, the user model acquisition is a difficult
problem. Classical acquisition methods like user inter
views, application-specific heuristics, and stereotypical
inferences are often not appropriate, and a better auto
mated method is being sought.

Finding regularities in data is a basis of knowledge
acquisition, and extracting behavioral patterns from the
user information is one such problem. Each user has a
different way of doing the same thing and identifying the
information that can characterize the user and be auto
matically collected is crucial. Once such information is
found and if an appropriate machine learning technique
can induce regularities in each user's behavior to carry
out his/her intended task, we can use them to guide the

daily work and to do some preprocessing, which may
facilitate easiness of usage and increase efficiency.

We discuss three learning tasks, command prediction,
script generation and file prefetching in mul t i task en
vironments. The scope of user behavior is l imited to
a sequence of task execution (e.g., edit ing, formatt ing,
viewing, etc.) using plural application programs.

Most studies that attempted to develop a user-
adaptive interface system only analyzed the sequence of
user behaviors, from which to automate the repetitions
(See 7). In this setting, the data can easily be repre
sented by at tribute-value pairs, each attr ibute denoting
the sequence order and its value, the command. Since
the command sequence does not necessarily typify the
user's behavior, the user model constructed from only
the sequence information may not adequately capture
the user's behavior. We focused on the process I /O in
formation that is also automatically collected along wi th
the command sequence. Since this is dependency infor
mation and its relationship cannot be fixed in advance,
it is not straightforward to represent this by attr ibute-
value pairs.

We show that graph-based induction [Yoshida and
Motoda, 1995] can nicely be applied to the three learning
tasks. In this paper, we revisit GBI, show how it can ex
tract typical patterns from a set of directed graphs and
how it can induce classification rules using a similar tech
nique in the Top Down Decision Tree Induction (TDDT)
algorithm. The first and the second learning tasks are
implemented as ClipBoard which is a window like UNIX
shell [Yoshida and Motoda, 1996], and the th i rd task is
implemented as Prefetch daemon that is hidden from the
user. The results clearly show that the dependency anal
ysis of computational processes activated by the user's
commands, which is made possible by GBI, is indeed
useful. ClipBoard is in daily use and its prediction ac
curacy and response t ime are satisfactory. Prefetch dae
mon works as expected only for I /O intensive task due
to an implementation problem, and thus needs further
improvement.

The following section introduces the three learning
tasks. Subsequent sections describe the learning method
GBI and summarize the results of learning experiments
performed to date. The last two sections consider lessons

1622 INVITED SPEAKERS

learned from this study and directions for future re
search.

2 Learn ing Tasks
Command prediction is a real t ime task that takes a
user's operational history and predicts the next com
mand. Figure 1 shows, in a simplified form, an example
of operational history when a user is making a document
using a latex document formatter. The bold arrows show
the command sequence. The history includes, in addi
tion to this, I /O relationships between commands, and
thus, takes the form of a directed graph. Each link has
a label that corresponds to a file extension. For exam
ple, the link connecting latex to emacs has a label tex.
However, one l ink is reserved for sequence information.
ClipBoard keeps recording and updating the history, and
at any point of operation, predicts the next command.
The learning task is to induce classification rules from
the past history. For each command in the past, a di
rected graph of a certain depth (number of sequentially
connected links) and width (number of sibling links) is
taken out1 . Each directed graph forms a training exam
ple. Its root is a class and the rests are considered to be
nested attributes.

Figure 1: I /O relationships between commands (appli
cations)

Script generation is a batch task that extracts fre
quently occurring patterns from a large graph represent
ing a history of order of days, generalizes the arguments
and generates shell scripts to execute a sequence of oper
ations by a single command. Figure 2 shows an example
of the generated scripts when a user repeatedly calls up
emacs, latex and xdvi

File prefetching is a real t ime task that predicts files to
be used in the immediate future and prefetches them into
the cache. Unlike the command prediction, prefetching
must predict a few steps ahead and thus more than one
file. The learning task is done in a batch mode using a
large directed graph. The task is to extract frequently
occurring patterns first like script generation, from each

1In the experiments described in 4.1, the depth was set
5 and the width 128 (this is maximum and automatically
adjusted).

Figure 2: Example of a generated script

of which a prefetch rule is generated and then to merge
them into a single trie structure (example shown in
Fig. 10). The prefetching is made in real time based
on this trie. Since prefetching is automatic, this task is
invisible.

3 G r a p h - b a s e d I n d u c t i o n
3.1 F i n d i n g Regular i t ies in a D i rec ted

G r a p h
GBI was originally intended to find interesting concepts
from inference patterns by extracting frequently appear
ing patterns in the inference trace. In [Yoshida and Mo
toda, 1995], it is shown that GBI was able to discover
the notion of NOT and NOR from the simulation traces
of an electric circuit. In this application, the original in
puts are causal relations of voltage and current between
various nodes of the circuit; there is no notion of logical
operation. However, by finding regularities in the input
traces, it was able to lift up the abstraction level and find
more abstract concepts. Later, we showed that the same
idea can be applied to other types of learning (speed up
learning and classification rule learning) [Yoshida et a/.,
1994]. "

The original GBI was so formulated to minimize the
graph size by replacing each found pattern with one node
that it repeatedly contracted the graph. The graph size
definition reflected the sizes of extracted patterns as well
as the size of contracted graph. This prevented the al
gorithm from continually contracting, which meant the
graph never became a single node. Because finding a
subgraph is known to be NP-hard, the ordering of links
is constrained to be identical if the two subgraphs are
to match, and an opportunistic beam search similar to
genetic algorithm was used to arrive at suboptimal solu
tions. In this algorithm, the primitive operation at each
step in the search was to find a good set of linked pair
nodes to chunk (pairwise chunking).

Because the search is local and stepwise, we can adopt
an indirect index rather than a direct estimate of the
graph size to find the promising pairs. On the basis of
this notion, we generalize the original GBI, and further
extend it to cope wi th the classification problem. The
idea of pairwise chunking is given in Fig. 3, and the gen
eral algorithm in Fig. 4.

The selection criterion of the pair nodes should be such
that its use can find interesting patterns (e.g., patterns
occurring more frequently than others or patterns more

MOTODA & YOSHIDA 1623

Figure 3: The idea of graph contraction by pairwise
chunking

easily identifiable than others). Proper termination con
dit ion must be used in accordance wi th the selection cri
terion (e.g., iteration number, chunk size, change rate
of selection indexes, etc.). Examples of such indexes are
information gain [Quinlan, 1986], information gain ra
t io [Quinlan, 1993] and gini index [Breiman et a/., 1984].

We use information gain as an index here, but the
other indexes can be used in the same way. Unlike de
cision tree bui lding where the index is used for selecting
an attr ibute, here we have to select linked pair nodes.
Each node has a value (color) and each link has a la
bel. We can interpret the tr iplet as saying
that the value of the i-th attr ibute of the parent Ak

is or when the i- th at tr ibute takes the value Bj,
its immediate result is Ak. The problem is which (i , j , k)
to select to chunk. A natural way is to focus on one of
the three elements, and select the best remaining two to
identify the chosen element. Three alternatives exist: a)
focus on k, b) focus on i and c) focus on j. Case a) tries
to find the at tr ibute and its value pair that best char
acterizes the chosen immediate result. Likewise, case b)
tries to find the result and the attr ibute value pair that
best characterizes the chosen attr ibute, and case c) tries
to find the at tr ibute and its result pair that best charac
terizes the chosen at t r ibute value. Which one to adopt
depends on what the directed graph represents in terms
of the original problem description. The default is to
choose a).

In what follows, only case a) is described. The other
two are obtained by permutating the subscripts. Let the
underline in the subscript mean its complement (e.g., i
means the attr ibutes other than the i-th.), the overline

1624 INVITED SPEAKERS

This is recursively repeated unti l each subgroup, after
testing, contains a single class value or some stopping
condition is satisfied.

4 C l i pBoa rd Interface
Figure 5 shows the system configuration for ClipBoard
Interface and Prefetch Daemon. The process I/O
recorder is a part of the operating system and records
all the I /O operations of each command issued. This
information is represented together wi th the command
sequence by a directed graph as operation history. GBI
program runs on this graph and generates prediction
(classification) rules and typical patterns. The mouse-
based command controller uses these to 1) select the
next command, and to 2) create UNIX shell scripts. The
prefetch daemon uses the typical patterns to generate
prefetch rules and merges them into a trie structure to
3) prefetch files.

(c) ClipBoard suggests emacs for paper.tex

Figure 6: Screen image of ClipBoard

Figure 5: ClipBoard and prefetch system configuration 4.1 C o m m a n d P r e d i c t i o n

Figure 6 displays the screen images of ClipBoard dur
ing a simple document processing task. When ClipBoard
starts wi thout any information, the screen lists only file
names (Fig. 6 (a)). At this stage, after selecting a file
to be processed, the dialogue box appears so that the
user can specify the command (Fig. 6 (b)). If the user
specifies emacs, it treats emacs as the default for the
file w i th the extension tex. ClipBoard tries to learn the
appropriate command for each file extension, and rec
ommends the command by icons (Fig. 6 (c)). ClipBoard
never asks the user for information. The user can always
override Clip Boards recommendation, which triggers the
learning task. Icons for the same files change over time
reflecting context changes.

Currently, ClipBoard interface is wri t ten by
The G B I program has both C and Lisp versions. The
prefetch daemon is wri t ten by Java.

I / O I n f o r m a t i o n Ana lys i s
Consider an operation history in Table 1. As shown

in steps (A), (B), and (C), the file paper.dvi is processed
by three different commands: xtex, xdvi and dvi2ps. Fig
ure 7 shows the corresponding directed graphs that are
inputs to GBI. The algorithm described in 3.2 first
chooses the dvi attr ibute and its value latex
for testing, and chunks the triplets (xdvi, dvi, latex) in
(B) and in (C). The No branch con
tains only one instance, (A) , and the Yes branch contains
two instances, (B) and (C). Next, the algorithm chooses
the sequential attr ibute and its value xdvi for testing and
chunks the tr iplet , . This
separates (C) from (B) and the induction stops3. The

3In reality, there are many occasions in history where dvi
files are used by the same command that has different de-

MOTODA & YOSHIDA 1625

shaded parts in Fig. 7 are the typical patterns. Figure 8
is the interpretation of the extracted patterns.

Figure 8: Interpretation as prediction rules

GBI assumes the existence of a strong correlation be
tween the linked attributes. As described in 3.2, the
algorithm follows the standard T D D T induction, but
the attributes to be selected are dynamically modified
in the process. Note that it is impractical to represent
the graph structure by a single table of attribute-value
pairs.

E v a l u a t i o n
The above algorithm for the classification problem was
implemented and tested for the command prediction
problem using both artif icially generated and real op
eration data.

Art i f ic ial data were generated approximating user's
behavior by a Markov model that comprises five differ
ent tasks. The model used is shown in Fig. 9. About

2000 different sequences were generated, in which com
mands that were not in the model (e.g., Is , df, etc.) were
added as noise. Three fold cross validation was used to
evaluate the prediction accuracy. The results are shown
in Table 2. This table includes the results obtained by
other methods for comparison.

Figure 9: Markov model used to generate artificial data

Table 2: Prediction accuracy for artificial data

There are two cases for GBI. G B I 1 is the case where
dependency information is used only for the commands
(nodes) preceding the root node. In other words, no de
pendency information is used for the root node. This re
flects the fact that the argument is not known in advance
to predict the next command. GBI2 is the case where
the dependency information for the root node (command
to predict) is also used. This corresponds to a case where
the file to process is specified, and this is exactly what
the current ClipBoard Interface does4. In [Yoshida and
Motoda, 1996] the former is called command prediction
and the latter, application selection.

Default is the simplest way of prediction that al
ways assumes the most frequently used command to
be the next command. LD is a linear discrimination
method [James, 1984], which gave the same answer as
the default and did not improve the accuracy. The best
result by the conventional method was achieved by the
decision-tree learning method CART [Breiman et al.,
1984]. LD and CART use only sequential informa
tion because these methods cannot deal w i th information

pendency, in which case the chunking process becomes more
complicated.

4 This is not a strong restriction because files associated
with a given task are generally known and the prediction of
the command for each of these files can be made with this
method.

1626 INVITED SPEAKERS

Def.: Default value for most frequently used
command

LD: Linear Discrimination Method
GBI\: Without dependency info, for the root node

(command to prediCt)
GBI2. With dependency info, for the root node

having a graph structure. From these results, it is clear
that the I /O dependency information (in particular, the
one immediately before the command to predict) plays
an important role in increasing the accuracy of predic
t ion.

The same algorithm was tested against the real data
that had been taken from the log of daily usage over
three months of a single user. The data include about
2000 kinds of commands. Two-thirds of them was used
as a training data set and the rest as a test data set.
The result is shown in Table 3. It is clear that GDI
outperforms the other methods. Interestingly G B I 1 is
much better than CART in real data. This is probably
because the number of commands actually used is much
larger than the artificial data case and the noise level
is also higher. Unfortunately the value for GBI2 is not-
available for the same data set. It is instead estimated
by the daily usage when the performance approached the
steady state. Once again, the role of I /O dependency is
clear.

Table 3: Prediction accuracy for real data

The non-essential commands such as Is and df can be
naturally ignored by a mouse-based interface system. If
we ignore these effects and focus on the important com
mands, we obtain the results shown in Table 4, which
is by far better. Whi le evaluation of ClipBoard is still
ongoing, most of the important commands predicted by
ClipBoard is quite adequate, and the user does not feel
any burden in using i t .

Table 4: Prediction accuracy of selected commands
(GBI1)

4 .2 S c r i p t G e n e r a t i o n
I / O I n f o r m a t i o n Ana l ys i s
To be precise, the I /O recorder keeps track of 1) all pro
cess creations in the operating system, and 2) all I /O
operations (open system calls). Thus, even in a mult i -
window and/or a multi-task environments, it is possi
ble to extract relationships between commands that may
have been issued across the different shells. We use the
whole graph to extract patterns. The extracted pat
terns are frequently appearing ones in the history, and
we convert them to shell scripts. The input file name is
changed to the argument of the script wi th extensions
retained (See Fig. 2).

E v a l u a t i o n
Table 5 lists the scripts generated from the sample his
tory, which involves about 10,000 process creations and

about 130,000 I/O operations. The number of processes
includes system programs that were not invoked by the
user (e.g., telnet daemon, line printer spooler daemon,
etc.), some user commands (e.g., shell scripts), and cre
ated child processes. The number of the actual com
mands invoked by the user was approximately 2000.

Table 5: Generated scripts with more than three com
mands

Since the algorithm only considers the frequency or its
equivalent as measured by the index, evaluation of the
usefulness or importance of the generated scripts must
be rendered to the user. Unlike the case for command
prediction, there is no direct feedback from the user. The
scripts in Table 5 have clear meanings except script 3.
Wi thout having knowledge about the C compiler, Clip-
Board could generate scripts 4 and 6. ClipBoard did not
use any pre-specified knowledge about latex and related
commands in generating script 5. Script 1 is a unique
script for this particular user. Without ClipBoard the
user has to write this by him or herself.

5 Prefetch Daemon
I / O I n f o r m a t i o n Ana lys i s
In a multi-task environment different users work on the
same machine for different tasks (e.g., editing and p r o
gramming). Even though the I /O operation sequence of
each task has regularity, the overall I /O sequence is af
fected by the subtle t iming of each task progress. The
graph structure can encode the correct information even
in a multi-task environment. Just like in the case of
script generation, GBI analyzes the process data and
represents them by a set of directed graphs, from which
it extracts typical patterns. Each of the patterns repre
sents an aspect of the user (we call it user model for con
venience). Figure 10 shows how these patterns are used
to prefetch files. First, each of the patterns is converted
into a prefetch rule. Unlike the command predictions,
the point here is not to predict the root node from the
rest, but to predict from the bottom (first) node in the
sequence how certain files are going to be used along the
subsequent command execution. Each rule consists of a
sequence of events, i.e., command executions and I/O
operations, wi th a list of files to be prefetched. Next,
each rule is merged into a single trie structure. The sys
tem checks the common event sequences in the rules and
merges the same parts into a single structure. For ex
ample, in Fig. 10, the first nodes of the two user models,

MOTODA & YOSHIDA 1627

A and B, are the same and are thus merged. In order
to improve the prefetch accuracy, the frequency informa
tion in the log is used to prune files5. The generation of
trie structure is performed as a batch process.

Figure 10: User models and a merged trie structure for
prefetching

E v a l u a t i o n
After the batch process constructs the trie structure, the
prefetch daemon uses this tr ie structure to prefetch files.
The daemon maintains the status information for each
process. If a new process is activated, the prefetch dae-
mon creates a new pointer which points the root node
of the trie structure. If the process executes command
emacs (i.e., the program memorized in the succeeding
trie node), the daemon prefetches program files make
and bibtex and updates the pointer. In Fig. 10 process
(a) shows the position of the pointer after it executed
emacs and then bibtex. Each time it updates the pointer,
it also looks for the same command from the root (i.e.,
the command just below the root node) as if a new pro
cess wi th this command was init iated. When it finds the
command, it also prefetches the associated files. This is
recursive. If the actual events of the process exhibit a
different sequence from the trie, all the pointers for this
process are removed and the prefetch daemon ignores
the process unt i l a new process is init iated.

The above prefetch mechanism was tested for the daily
usage data (the length of the log was about 38,000). The
prefetch cache size was automatically adjusted by OS.
The trie had approximately 1000 nodes. Although fur
ther experiments are necessary, the preliminary experi
ments show that the trie structure has high prediction
accuracy. For the experiment we conducted, the hit rate
was almost 100%.

Unfortunately, even wi th the high hit rate, the current
implementation slows down the CPU intensive tasks due

5There are many patterns that partially overlap and/or
are subpatterns of the others. A threshold can be set to the
number of occurences of the files for them to be prefetched.

to the CPU resources used by the prefetch daemon. We
could only speed up I /O intensive tasks. It could indeed
speed up the invocation of a large program such as X-
windows and mule to the extent that we did not feel
we had waited. The process switching overhead and the
JAVA byte code interpretation are the sources of the
problem. A kernel embedded file prefetcher that is coded
by C and assembler would solve the problem.

6 Discussion
6.1 Learning Semantics from Syntax
Although what OBI does is simply extracting the syn
tactic/statistical nature of what a user has done in the
past, it is sti l l possible to extract useful semantics of
the user's behavior. The user never tells the start of
his/her task to ClipBoard, but the scripts generated by
GDI does capture a piece of meaningful tasks. Most cru
cial is the information source. The surface form of the
user's input (i.e., command sequence) was not enough.
Other information that is hidden and invisible (i.e., pro
cess I /O) contributed much. Standard techniques (e.g.,
index based on information theory, cross validation, etc.)
that statisticians have developed are also important fac
tors.

6 .2 I n f o r m a t i o n t o C a p t u r e U s e r B e h a v i o r
[Piernot, 1993] addresses the importance of the context
in an interface system. File extensions we used in our
analysis to capture the I /O information helped provide
rich context. Other information that may help capture
the user's behavior is command exit status and time of
execution. For example, if the user fails to compile a
program because of a simple syntactic error, the next
step tends to be an editing task. If s/he succeeds, it
tends to be a test run. Thus, the exit status seems to be
informative. Since most users tend to check e-mail in the
morning, the time of day also seems to be informative.
Experiments using ClipBoard uti l izing such information
are currently under investigation.

The method of encoding information is also important.
We encoded the I /O information from how a file was
made by application program. The experimental results
suggest the adequacy of this encoding, but this is not the
only way to use the I /O information. For example, how
a file was used by application program is another way
of encoding. Figure 11 shows a graph format that was
designed to emphasize this aspect. We confirmed the
usefulness of this encoding wi th a version of ClipBoard
that uses this as an alternative to the sequence infor
mation. Note that this encoding has a noise-tolerant
nature. User errors, such as mistyping and wrong com
mand selection, and unexpected interrupts, such as new
mail arrival, sometimes cause noise in sequence informa
tion. The replaced I /O information is less affected by
such noise.

6 .3 M e t h o d o f A n a l y z i n g U s e r B e h a v i o r
If the user is always logical and consistent, the analyti
cal methods, such as explanation-based learning, are ad-

1628 INVITED SPEAKERS

(C) is the directed graph of the history information at Step
(C) in Figure 1. The shaded part indicates that paper, dvi
was previously used by xdvi. (C)' is the reconstructed graph.
The dvi node is removed for brevity and the (used by) xdvi
node replaces the sequence information.

Figure 11: Graph encoding the knowledge of how a file
was used.

equate in making the user behavior model. Unfortu
nately, the user is sometimes illogical and inconsistent,
and capriciousness makes it difficult to apply analyti
cal methods to the interface problem. The statistical
methods, such as linear discrimination and k-nearest-
neighbor [Jlames, 1984], and empirical learning methods,
such as [Quinlan, 1986], seem to be more adequate. The
errors, i.e., mistyping and wrong command selection, are
naturally ignored as noises in these methods. However,
these methods are not suited to handle structural data
as was the case for this study.

If we set the maximum width (number of input files)
per command and the maximum depth (number of
chains of I /O relationship), it is possible to design a table
of attributes and values that can record all the necessary
information. If we take the maximum width as 50 and
the maximum depth as 5, a table wi th attributes
is created6. This is only for one instance. If the analysis
requires 1000 cases, the table size becomes huge.

Inductive logic programming (ILP) [Quinlan, 1990;
Muggleton and Feng, 1992; Pazzani and Kibler, 1992],
on the other hand, is more expressive and captures the
relations most naturally in first-order logic. It can also
handle noise [Quinlan, 1990; Pazzani and Kibler, 1992].
To explore the potential of this approach, we tried to use
FOCL, one of the most efficient ILP systems, to analyze
the real data used in Section 4.1. However, FOCL took
more than 4 hours to find the first test condition of the
first rule; therefore we had to give up this approach7.

GBI's expressiveness lies in between the attr ibute-
value pairs and the first-order logic. It is a l imited form
of propositional calculus. Its learning potential is much
weaker than that of ILP, but stronger than that of the
attribute-value representations and yet as efficient. We
demonstrated that command prediction we addressed in
this paper is a class of the problem that GBI's framework
fits well.

6.4 O t h e r App l i ca t i ons
The idea of ClipBoard seems to be useful in designing
interface systems of other kinds such as automatic chart

6Note that a typical (not maximum) single run of the latex
command receives 50 input files (e.g., .tex, .aug, . sty. .bbl,
.eps, .tfm, .fmt, etc).

7We have not taken advantage of the search strategy used
in GBI.

format selection in spread sheet and data base, naive-
user guidance and installation guidance-and-diagnosis
systems. The last two are meant to apply the knowl
edge learned from expert behavior to non-expert users.
During the development of ClipBoard, we were able to
use the I /O information itself, i.e., the raw history data,
for debugging purposes. A good display system of this
information seems to be beneficial even for an expert
user.

We are aware of some minor things that could improve
ClipBoard's ease of use. For example, we could improve
ClipBoard's selection function by highlighting the second
suggestion shown in the dialog box (See Fig. G (b)) when
the user wants to override ClipBoard''s first suggestion
(which is displayed by icon).

One promising application that goes beyond those
within a single machine is dynamic World Wide Web
caching. The rapid growth of information gathering
through W W W causes a heavy network overload, and
the resulting slow response is causing a problem. Dis
tributed caching is a promising approach. Our prelimi
nary study [Yoshida, 1997] by GBI shows that it is pos
sible to reduce the overload by extracting frequent oc
curring data transmission patterns from the wide area
network flow and using this to allocate distribute cache
storage. The simulation assumed the situation where
32,000 W W W servers are accessed simultaneously by 16
clients. Each client and router had a 32 MB cache capac
ity. The data were taken from the access log of our proxy
server that included 2.3 mill ion data transfers (18.7 GB
in size). Figure 12 shows how the traffic changes with
the time of day with and without cache, from which we
observe 26% reduction of traffic between 10 am and 8
pm. The traffic reduction at the peak time amounts to
100 MB.

Figure 12: Network traffic distribution over the time of
day wi th and without cache

7 Related Work
Intellectual assistance by computers has attracted many
people, and various attempts have been undertaken with

MOTODA 8c YOSHIDA 1629

different approaches and for different tasks. There are
many terms that characterize these approaches such as
learning apprentice, software agent, learning agent, in
terface agent, programming by example or demonstra
t ion, personal knowledge based system, etc. What is
common to many of them is that they observe repetition
or regularity in the user's behavior and use them for au
tomation, prediction and customization in one way or
another.

The amount of knowledge that has to be provided in
advance varies among the approaches. General remarks
are that making the user program everything requires
too much insight, understanding and effort from the user,
and having to encode a lot of domain-specific background
knowledge about the task and the user also requires a
huge amount of work from the knowledge engineer. Both
have fixed competence, and are hard to customize to
individual user differences or changes of habits. Some
sort of automatic knowledge acquisition that can capture
each user's habits is needed.

EAGER [Cypher, 1991] is an example of program by
demonstration (PBD), which is a Hyper' Text system that
keeps watching a user's actions, detects an iteration and
offers to run the iterative procedure to completion by
generalizing the repetitions and making macros. My
ers 's demonstrational formatter [Myers, 1991] is also an
example of PBD. It does not focus on the repetit ion,
but generalizes a single example to create a template
for later use, which enables the formatting of headers,
itemized lists, tables, references, etc. Another example
is Gold [Myers et a/., 1994] which is a business chart ed
itor. It is given the knowledge of properties of the data
and the typical graphics in business charts to generalize
a single, or a very few examples, by interpreting them as
a combination of primitives.

[Greenberg and Wi t ten , 1988] analyzes repetitive pat
terns in the U N I X command histories and observes some
regularities. [Masui and Nakayama, 1994] also uses the
repetitive nature for a predictive user interface. When a
user types a repeat key after doing repetitive operations,
an editing sequence corresponding to one iteration is de
tected, defined as a macro, and executed at the same
time. Although being simple, it covers a wide range
which had to formerly be covered by keyboard macro.

Al l of the above approaches do not use machine learn
ing techniques although they do guess and generalize.
The Interface agent of [Maes and Kozierok, 1993] takes
a machine learning approach. They address the problem
of self-customizing software at a much more task inde
pendent level. The core is to learn by observing the user,
i.e., by find reguralities in the user's behavior and using
them for prediction. They also adapt two other learning
modes: learning from user feedback and learning by be
ing told. They used memory-based learning (k-nearest
neighbor) which is good for explanation. Situations in
the user are described in terms of a set of attributes
which are hand-coded. The tasks that they applied are a
calendar management agent and an electronic mail clerk.

The personal learning apprentice CAP [Dent et a/.,

1992] is similar to the above. It is an interactive assis
tance that learns continually from the user to predict de
fault values. Their application is a calendar management
apprentice which learns preferences as a knowledgeable
secretary might do. Two competing leaning methods are
used: decision tree learning and backpropagation neural
net. The attr ibute value representation suffices for this
purpose. Another related system addresses the task of
form-fil l ing [Hermens and Schlimmer, 1993]. They use
decision tree learning to predict default values for each
field on the form by referring to values observed on other
fields and the previous form copy.

[Schlimmer and Hermens, 1993]'s pen-based interac
tive note taking system is a self-customizing software to
eliminate the need for user customization. It starts wi th
partially-specified software and applies a machine learn
ing technique to complete any remaining customization.
The system learns a finite state machine to character
ize the syntax of user's notes and learns decision tree to
generate predictions. Letizia [Lieberman, 1995] is an in
terface agent that assists a user browsing the W W W . It
tracks user behavior and attempts to anticipate items of
interest by doing concurrent, autonomous exploration of
links from the user's current positions. Intelligent agent
for information browsing is a hot area and many sys
tems are being pursued (e.g., [Etzioni94 and Weld, 1994;
Perkowits and Etzioni, 1995].

The research on prefetching is carried out by a sep
arate community. The standard Least Recently Used
(LRU) based caching offers some assistance, but ignoring
any relationships that exist between file system events
fails to make ful l use of available information. The clos
est work that uses the relationship would be [Kroeger
and Long, 1994]. They use trie structure to memo-
rize previous I /O sequence but no explicit learning is
performed. Their results indicate that the predictive
caching gains on the average 15% more cache hits than
the LRU based caching. However, since they are using
only sequential information, their method does not work
well in a multi-task environment.

A l l of the applications that use machine learning tech
niques do not require relational representations. The
data are represented by a set of features. Analysis of se
quential information is enough for the selected applica
tions. Some require additional task specific knowledge.
We showed in this paper that there are other applica
tions that this success cannot be easily generalized, and
proposed the GBI as a general induction mechanism for
this type of applications.

8 Conclusion
We have modeled a user adaptive interface that can pre
dict next command, generate scripts and prefetch files
in a multi-task environment. The analysis of behavioral
data indicated that the directly observable sequential
records are not enough to capture the behavior, and that
simultaneous use of process I /O information that is hid
den from the user is beneficial. An efficient induction

1630 INVITED SPEAKERS

algorithm that can handle relational data was needed
and a technique called graph-based induction was ap
plied. It can find frequently occurring patterns from a
graph representation. It also induces classification rules
from structured data that have intra-relationship. Pair-
wise chunking, which is the heart of the algorithm, does
not guarantee an optimal solution by any means, but
empirical study shows that use of statistical measure re
sults in a good solution. It is efficient and can run in
real time. The command prediction module is in daily
use. Shell script generation works as expected but is less
used. Prefetching daemon sti l l needs a better implemen
tation to enjoy the real benefit .

Acknowledgments
Much of the work was conducted while the first au

thor was at ARL , Hitachi, L td . Authors are grate
ful to Shojiro Asai and Katsumi Miyauchi of ARL for
their generous support of this work. They extend their
thanks to Takashi Washio, Tadashi Horiuchi and Toshi-
hiro Kayama of Osaka University for the discussions.

References
[Breiman et ai, 1984] L. J. Breiman, H. Friedman,

R. A. Olshen, and C. J. Stone. Classification and Re
gression Trees. Wadsworth &: Brooks/Cole Advanced
Books & Software, 1984.

[Cypher, 1991] A. Cypher. Eager: Programming Repet
itive Tasks by Example. In Proc. of CHI'91, pages
33 39, 1991.

[Dent et al, 1992] L. Dent, J. Boticario, J. McDermott,
T. Mitchel l , and D. Zabowski. A Personal Learning
Apprentice. In Proc. of A AAI' 92, pages 96-101, 1992.

[Etzioni94 and Weld, 1994] O. Etzioni94 and D. Weld.
A Softbot-Based Interface to the Internet. Commun.
ACM, 37(7):72- 76, 1994.

[Greenberg and Wi t ten , 1988] S. Greenberg and I. H.
Wi t ten. How Users R.epeat Their Actions on Comput
ers: Principles for Design of HISTORY Mechanisms.
In Proc. of CHI'88, pages 171-178, 1988.

[Hermens and Schlimmer, 1993] L. A. Hermens and J.C.
Schlimmer. A Machine-learning Apprentice for the
Completion of Repetitive Forms. In Proc. of the Ninth
Conf. on Artificial Intelligence for Applications, pages
164-170, 1993.

[James, 1984] M. James. Classification Algorithms. A
Wiley-Interscience Publication, 1984.

[Kroeger and Long, 1994] T. M. Kroeger and D. D. E.
Long. Predicting File System Actions from Prior
Events. In Proc. of CHI'94, pages 319 328, 1994.

[Lieberman, 1995] H. Lieberman. Letizia: An Agent
That Assists Web Browsing. In Proc. of IJCAI'95,
pages 924-929, 1995.

[Maes and Kozierok, 1993] P. Maes and R. Kozierok.
Learning Interface Agents. In Proc. of AAAV98, pages
459-465, 1993.

[Masui and Nakayama, 1994] T. Masui and
K. Nakayama. Repeat and Predict - Two Keys to
Efficient Text Edit ing. In Proc. of CHI'94, pages 118
123, 1994.

[Muggleton and Feng, 1992] S. Muggleton and C. Feng.
Efficient Induction of Logic Programs. In S. Muggle
ton, editor, Inductive Logic Programming, pages 281
298. Academic Press, 1992.

[Myers et al, 1994] B.A. Myers, J. Goldstein, and M. A.
Goldberg. Creating Charts by Demonstration. In
Proc. of CHI'94, pages 106 111, 1994.

[Myers, 199l] B.A. Myers. Text Formatting by Demon
stration. In Proc. of CHI'91, pages 251256, 1991.

[Pazzani and Kibler, 1992] M. Pazzani and D. Kibler.
The Ut i l i ty of Knowledge in Inductive Learning. Ma
chine Learning, 9(l):57-94, 1992.

[Perkowits and Etzioni, 1995] M. Perkowits and O. Et-
zioni. Category Translation: Learning to Understand
Information on the Internet. In Proc. of IJCAI'95,
pages 930 936, 1995.

[Piernot, 1993] P. P. Piernot. The A IDE Project:
An Application-Independent Demonstrational Envi
ronment. In A. Cypher, editor, Watch What I do:
Programming By Demonstration, pages 387-405. M I T
Press, 1993/

[Quinlan, 1986] J. R. Quinlan. Induction of Decision
Trees. Machine Learning, 1:81-106, 1986.

[Quinlan, 1990] J. R. Quinlan. Learning Logical Defini
tions from Relations. Machine Learning, 5(3):239-266,
1990.

[Quinlan, 1993] J. R. Quinlan. C4-5: Programs for Ma
chine Learning. Morgan Kaufmann, 1993.

[Schlimmer and Hermens, 1993] J.C. Schlimmer and
L. A. Hermens. Software agents: Completing Pat
terns and Constructing User Interfaces. Artificial In
telligence Research, 1:61-89, 1993.

[Yoshida and Motoda, 1995] K. Yoshida and H. Mo
toda. Clip: Concept Learning from Inference Pattern.
J. of Artificial Intelligence, 75(l):63-92, 1995.

[Yoshida and Motoda, 1996] K. Yoshida and H. Mo
toda. Automated User Modeling for Intelligent In
terface. Int. J. of Human Computer Interaction,
8(3):237-258, 1996.

[Yoshida et ai, 1994] K. Yoshida, H. Motoda, and
N. Indurkhya. Graph-based Induction as a Uni
fied Learning Framework. J. of Applied Intelligence,
4:297 328, 1994.

[Yoshida, 1997] K. Yoshida. W W W Cache Layout to
Ease Network Overload. In Proc. of Sixth Interna
tional Workshop on Artificial Intelligence and Statis
tics, AISTATS97, pages 537-548, 1997.

MOTODA & YOSHIDA 1631

