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Recently, interest in Internet of Vehicles’ (IoV) technologies has significantly emerged due to the substantial development in the
smart automobile industries. Internet of Vehicles’ technology enables vehicles to communicate with public networks and interact
with the surrounding environment. It also allows vehicles to exchange and collect information about other vehicles and roads. IoV
is introduced to enhance road users’ experience by reducing road congestion, improving traffic management, and ensuring the
road safety. +e promised applications of smart vehicles and IoV systems face many challenges, such as big data collection in IoV
and distribution to attractive vehicles and humans. Another challenge is achieving fast and efficient communication between
many different vehicles and smart devices called Vehicle-to-Everything (V2X). One of the vital questions that the researchers need
to address is how to effectively handle the privacy of large groups of data and vehicles in IoV systems. Artificial Intelligence
technology offers many smart solutions that may help IoV networks address all these questions and issues. Machine learning (ML)
is one of the highest efficient AI tools that have been extensively used to resolve all mentioned problematic issues. For example, ML
can be used to avoid road accidents by analyzing the driving behavior and environment by sensing data of the surrounding
environment. Machine learning mechanisms are characterized by the time change and are critical to channel modeling in-vehicle
network scenarios. +is paper aims to provide theoretical foundations for machine learning and the leading models and al-
gorithms to resolve IoV applications’ challenges.+is paper has conducted a critical review with analytical modeling for offloading
mobile edge-computing decisions based on machine learning and Deep Reinforcement Learning (DRL) approaches for the
Internet of Vehicles (IoV). +e paper has assumed a Secure IoV edge-computing offloading model with various data processing
and traffic flow. +e proposed analytical model considers the Markov decision process (MDP) and ML in offloading the decision
process of different task flows of the IoV network control cycle. In the paper, we focused on buffer and energy aware in ML-
enabled Quality of Experience (QoE) optimization, where many recent related research and methods were analyzed, compared,
and discussed. +e IoV edge computing and fog-based identity authentication and security mechanism were presented as well.
Finally, future directions and potential solutions for secure ML IoV and V2X were highlighted.
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1. Introduction

Intelligent Transportation Systems (ITS) and computational
systems’ rapid development opened new scientific research
in smart traffic safety with comfort and efficient solutions.
Artificial Intelligence (AI) has been widely used to optimize
traditional data-driven approaches in different research
areas [1]. AI-based on the Vehicle-to-Everything (V2X)
system obtains information from various sources, i.e., car,
train, bus, etc., and enables to increase the realization of
drivers and forecast to avoid accidents. +is progression has
directed to the opportunity to understand smart driving,
which was built on the idea of copying real driving com-
portment, while avoiding human mistakes and bringing
comfortable safety to drivers. Many services have been
invented from crowd and light road traffic to adapting traffic,
a legacy from self-based vehicle systems to the IoV [2]. IoV is
addressed to change the interaction between the vehicles,
roadside stations, on-board stations, and environments to
communicate data and multimedia between various net-
works. +e motivation of IoV is to be adopted and build the
human-vehicle-roadside onboard IoT Connected services
within the various vehicle and different networks.

Machine Learning (ML) is responsible for a wide range
of AI applications. +e ML techniques are unsupervised,
supervised, and reinforcement learning. In the unsupervised
ML scheme, training depends on untagged data. It tries to
find an adequate representation of untagged data. While, in
supervised learning, it learns from a group of labeled data. In
supervised learning, regression and classification schemes
train the discrete and continuous data for prediction and
decision-making. Reinforcement learning (RL) studies from
the learning agent’s activities from the consistent reward to
capitalize on the notion of cumulative rewards. +e Markov
Decision Process (MDP) is a sample of RL [2].+is scheme is
a perfect technique for taking many issues’ research prob-
lems in vehicular networks, such as in collaborative opti-
mization of oil consumption for a specific area and optimum
path forecasting of electric vehicles and minimizing traffic
congestions.

Given the importance of the use of Artificial Intelligence
(AI) in IoV, as it provides smart models in most of its
applications, this paper contributes a brief concept on one of
the AI methods known as machine learning and the pos-
sibility of its use in several specific aspects related to the IoV
network. In IoV networks, edge computing and caching
problems are the most considered challenges requiring an
intelligent optimization method. Edge computing and
caching challenges are related to many factors, i.e., channel
condition, dynamic communication topology, and resource
allocation management. In the IoV network architecture,
artificial intelligence is in a separated layer responsible for
virtual cloud infrastructure. +e AI layer act as an infor-
mation management brain. Deep neural networks are ML
algorithms developed to make decisions according to
learned IoV resource actions [3].

+is paper has conducted a critical review with analytical
simulation for offloading mobile edge computing decisions
based on learning and Deep Reinforcement Learning (DRL)

technologies for vehicular communication in (IoV). We
have considered a typical IoV network architecture with one
IoV Edge-Computing (IoVEC) and one mobile user. +e
tasks of the device arrive as a flow in time. Our analytical
model performs the offloading decision process of the task
flow as aMarkov Decision Process (MDP).+e optimization
object minimizes the weighted sum of offloading latency and
power consumption, which is decomposed into the reward
of each time slot.

+e rest of the paper is organized as follows; the study
background and motivation are presented in Section 2, where
systematic technical knowledge and motivation of secure ML
in the IoV field were discussed. A brief concept of AI in IoV is
reviewed in Section 3 by considering using AI in multimedia
and IoV edge-based and Vehicle-to-Everything’s Internet
communications. Section 4 provides a clear concept about the
contribution of AI to enabling QoS and QoE optimization,
where QoS manages and controls resources of the IoV net-
work by setting various priorities for each data type, while
QoE discusses the measurement of the overall system ho-
mogeneity and stability of service. Section 5 provides a de-
tailed description of using machine learning algorithms with
IoV in different aspects.+emost common use cases ofML in
IoV applications are presented in Section 6. Section 7 gives a
brief review of the possible future research directions and
potential ML solutions in IoV. Finally, the conclusion is
presented in Section 8.

2. Background and Motivation

Due to the significant research and technology development
in wireless communication, the traditional ITS has to care
about the vehicular communication field. Recently, the
numbers of vehicles have increased due to transporting huge
numbers of people from region to region. +is increment in
the number of vehicles would create issues such as crowding
and accidents on the roads.+is issue could be considered as
one of the main problems in daily life. Most of the general
form of vehicular networking is known as the vehicular ad
hoc network (VANET) [4]. VANET consists of Vehicle-to-
Vehicle (V2V) and Vehicle-to-Roadside (V2R) communi-
cations to transfer the vehicles’ information. +e VANETs’
communication depends on the Roadside Unit (RSU) to
support Wireless Access in Vehicular Environments
(WAVE).

+e Roadside Unit (RSU) along the roadwork acts as
wireless access points’ support communication to the ve-
hicles inside its coverage area [5]. +e hybrid vehicular
network architecture, interacted with the cellular commu-
nication architectures, will operate the cellular communi-
cation services, i.e., voice, in collaborations. Due to the
current trend to connect vehicular networks to information
centers and the need to exchange data, IoV allows enabling
Internet access among on-road vehicles. One of the essential
IoV applications is to improve the features of VANETs to
reduce various issues in urban traffic and accident envi-
ronments [6]. IoV enables the vehicular road networks to
interconnect with different wireless network technologies
i.e., Wi-Fi and 4G/LTE for V2I, IEEE WAVE for V2V and
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V2R, MOST/Wi-Fi for V2S, and CarPlay NCF for V2P. It is
useful to provide a comprehensive presentation to ML’s
concepts in IoV and explain the areas that could contribute
to these networks’ development [7].

In recent years, the arising need to introduce artificial
intelligence technologies in IoV applications has been facing
some challenges. +ese challenges are related to making
particular decisions and forecasting different aspects of IoV,
such as traffic monitoring and management, big data pro-
cessing, energy and resource management, and intelligent
interaction with users to provide high-quality services [6, 7].
Several studies have been conducted on using artificial in-
telligence techniques such as machine learning to develop
solutions to most of these challenges [8]. Due to the current
developments in the field of AI, especially in using machine
learning techniques to make intelligent decisions in several
IoV applications, it is useful to provide a comprehensive
presentation to study some concepts of using ML in IoV and
explain the areas that could contribute to the development of
these networks.

3. Artificial Intelligence Methods in the
IoV Network

AI technology is more related to the layer responsible for
presentation and functionalities in the IoV-layered archi-
tecture. A term of virtual cloud infrastructure can describe
this layer and be responsible for storing, processing, ana-
lyzing the information received from the IoV network, and
decision-making based on the analyzed information. In IoV,
the computation and analysis are provided by Big Data
Analysis (BDA) and Vehicular Cloud Computing (VCC)
systems which are used as an information management
center [9]. According to the IoV applications, many services
can be provided by the IoT cloud environment, requiring
intelligent service management.+e smart cloud-computing
servers provide many smart services, i.e., safety, traffic ad-
ministration, entertaining, and subscription, which are the
foundation of elegance in IoV.+e cloud servers based on AI
enable the procedure and develop AI in Real-Time (RT)
massive data traffic to provide a smart decision for intelligent
customer services. +e Vehicular Cyber-Physical System
(VCPS) is considered a vehicular network model that
concerns disseminating information using next-generation
Internet [10]. VCPS depends on AI technology to provide
smart processing in huge data traffic utilizing fog and cloud
computing for civilian and safety applications.

In IoV networks, edge computing and caching prob-
lems are the most considered challenges requiring an in-
telligent optimization method. Edge computing and
caching challenges are related to many factors, i.e., channel
condition, dynamic communication topology, and re-
source allocation management. AI in IoV provides an
intelligent approach to solve most of these challenges. +e
use of ML offers a means of interaction to the IoV envi-
ronment and enables the creation of an agent that learns
challenging factors to optimize the overall IoV network

utilization [11]. Q-learning and deep neural networks are
ML algorithms developed to make decisions according to
learned IoV resource actions. In the IoV network archi-
tecture, the presentation of artificial intelligence in a
separated layer is responsible for virtual cloud infra-
structure. +e AI layer acts as an information management
brain [10, 11]. +e AI layer in IoT architecture consists of
big data analysis, cloud computing, and expert systems. It
plays an essential task in storing, processing, and analyzing
the information received from the coordination layer and
takes decisions according to the network status.

3.1. Artificial Intelligence Methods for IoV Multimedia
Communication. +e deployment of IoV in multimedia
communications requires a device that allows data exchange
and communication with other surrounded devices.+is can
be achieved by any technology such as Personal Area
Networks (PAN), the Internet of +ings (IoT), and Wireless
Sensor Network (WSN). Data exchange’s scalability and
flexibility are quite important for IoV by integrating sensors,
vehicles, humans, actuators, machines, etc. +e sensor in
intelligent IoV enhances vehicle and traffic systems’ safety,
while harmonized traffic data transfer in the IoV system
network enhances vehicular system efficiency. However, the
amount of energy consumption, required capacity, green
buffer-awareness, and message exchange through IoVs may
compromise severe data transfer risk [12]. AI based on self-
driven vehicles encourages several types of applications with
many benefits of intelligence. Especially for the increase in
the amount of data and complexity, which the algorithms
will be processing, it is precise and effective for future di-
rections. As growing, the high traffic information in IoVs
required a smart utility, followed to efficiently monitor and
manage the demand for intelligent IT technologies [13].
With the rapid evolution in digital technologies, the de-
velopment of multimedia depends on the IoV system, and it
needs a portable device to collect a voluminous amount of
information for aiding and guiding the specific trend for
analyzing the transportation industry by IoT-based
platforms.

Figure 1 shows the structure of multimedia communi-
cation through sensor nodes in the IoV system. Its structure
consists of three main parts for IoV data and information
network techniques and models. +e data and information
network techniques and models are redeveloped with the
central server. +e inter and intravehicle network connec-
tions among various sections are executed by transferring
urgent and sensitive data throughout the vehicle via adaptive
and smart wireless communication. +e vehicle’s client
enables QoS monitoring [13, 14]. In this structure, the IoV
traffic can be arranged based on the category containing
sensitive/standard, prestored, real-time, or high-definition
resolution, respectively. To accomplish the real-time and
jitter-tolerant data and information exchange with low
buffer storage and scarce power supply, it should be fortified
to tolerate the raw unprocessed data and information into
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the regular and synchronized format with good and clean
visibility.

3.2. Intelligent IoV Edge-Based Algorithm. IoV Edge Com-
puting (IoVEC) is a new technology that enables vehicles to
communicate with cloud computing to directly deliver cloud
services from the network edge and support delay-critical
IoV applications. It could be achieved by placing computer
servers at radio access points or base stations. In edge
caching and computing platforms, AI trains and deploys
powerful ML models at the edge servers and mobile devices.
Edge AI techniques changed the structure of the semicon-
ductor industry [15]. In IoV, the Edge Information System
(EIS) plays a vital and unique role. It is able to help the key
functionalities of intelligent vehicles, from data acquisition
and data processing to actuation. Data processing in the
network edge can satisfy the low-latency requirement for
mission-critical tasks and save an amount of communication
bandwidth. +e AI edge-based IoV typically has high spatial
locality for road conditions, map information, and temporal
locality for traffic conditions. On the contrary, with big
sensing data, intelligent vehicles are facing tremendous
computation burdens [12, 15].

Offloading computation and load balancing are the most
critical factors that determine the maximum system utility in
IoV. Cooperative edge caching and edge computing can
serve to improve the performance of these factors. But in-
deed, the edge computing and caching policies are limited in

dynamic systems’ applications such in IoV networks. AI
cognitive capability helps develop edge cognitive computing
architecture to provide dynamic computing service [16]. AI
cognitive capability will improve energy efficiency and user
experience since it is able to interact with other IoV com-
ponents to perform efficient resource management, as
shown in Figure 2. IoV architecture-based AI algorithms
enable the perception of vehicular environment informa-
tion’s real-time behavior by interacting with the environ-
ment according to the current state related to offloading,
cooperative caching, and edge computing [15, 16].

+e IoV edge-based AI architecture can efficiently drive
the edge computing resources depending on cooperative
caching to manage edge computing policies. Such edge-
based AI architectures can use deep ML algorithms for
efficient IoV resource management. Other considerations
related to system utility are IoV network mobility and ve-
hicles’/RSUs’ handover mechanisms. +ese considerations
are significant factors that significantly affect temporary
storage resources [15]. +erefore, it is necessary to the trade-
off between the accuracy of the prediction, the temporary
storage of content on the move, and the handoff imple-
mentation. AI enables the prediction of handover and in-
telligent sharing of allocated bandwidth and edge caching.

3.3. Artificial Intelligence Methods for Vehicle-to-Everything.
In vehicular applications, AI enables executing tasks intel-
ligently, such as enhancing the Plug-in Electric Vehicle
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Figure 1: IoV data and information network techniques and models [14].
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(PEV) charge, minimizing fuel consumption, enhancing
location-based services, and traffic congestion rectification.
+e traffic flow information can be obtained from multiple
sources such as induction loops, crowd sourcing-based
information services and vehicles, and Closed-Circuit
Television (CCTV) cameras [17]. Modeling precise and
accurate traffic exchange prediction procedures utilizing
legacy traffic flow prediction mechanisms is a vital prob-
lematic issue. AI techniques have been extensively used for
modeling estimation mechanisms in research areas such as
robotics, data science, computer vision, natural language
processing, and medicine. AI used the data-driven method
that facilitates it more efficiently to tackle little and multi-
media data. +e aims of V2X technology to transportation
systems are to enhance safety and efficiency by sharing data
among vehicles, infrastructures, and walkers. V2X schemes
received a tremendous amount of use in academia, industry,
and governments.

+ere are three fundamental aspects of a V2X commu-
nication system: road safety, energy efficiency, and traffic ef-
ficiency [18].+e V2X scheme is based on sharing information
among Vehicle-to-Infrastructure (V2I), Vehicle-to-Vehicle
(V2V), Vehicle-to-Self (V2S), Vehicle-to-Pedestrian (V2P),
and Vehicle-to-Road side units (V2R). V2X is an evaluation
technology for vehicular networks. AI with V2X can enable
new approaches to applications such as traffic flow prediction
and management for real-time data, location-based applica-
tions, vehicular platoons, data storage in vehicles, autonomous

transport facilities, and congestion control. +e most widely
utilized AI techniques are Heuristic Techniques, Robotics,
Game-+eoretic Learning, Expert Systems, Evolutionary Al-
gorithms, Turning Test, Logical AI, Planning, Schedule and
Optimization, Natural Language Processing, Swarm Intelli-
gence, Inference, Fuzzy Logic, andMachine Learning [19]. One
of the ML-based V2X is autonomous driving where AI is used
to enable essential features of human driving. ML in V2X can
play a critical role in enhancing safety and efficiency of in-
vehicle networks [18]. Modern machines have widely applied it
for applications such as competing at the highest level in
strategic games, autonomous vehicles, understanding human
speech, and intelligent network routing in content delivery
networks.

Other considerations are related to security in V2X
applications. AI provides many security mechanisms for
routing protection against threats and attacks. In addition,
the AI swarm intelligent algorithms protect against mali-
cious vehicle attacks. A DL-based technique for anomaly
detection in V2X vehicles provides a means of security
against different kinds of attacks, i.e., Denial of Service
(DOS), rushing attacks, gray hole, and Sybil attacks. +e
research work presented by Abdallah Moubayed (2020)
reviews the concept of using machine learning in fifth
generation (5G) IoV for security issues, in addition to
discussing various challenges faced by V2X communications
[20]. +e study presents the considerations related to V2X
security and privacy and illustrates different kinds of attacks
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Figure 2: IoV edge-based AI architecture.
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related to authentication, confidentiality, data integrity, and
accountability. Zeinab El-Rewini (2020) provided a three-
layer automotive security framework considering the issues
of control, communication, and sensing [21]. +e frame-
work enables eavesdropping, jamming, and spoofing attacks.

Moreover, it has the ability to detect different com-
munication layer attacks in the V2X network such as
spoofing, man-in-the-middle, and Sybil attack; the research
is also providing a survey on using the machine and deep
learning for cybersecurity solutions and V2X network se-
curity. Haji M. Furqan (2019) had introduced an intelligent
security framework for V2X communication based on the AI
radio brain model to enable learning information from
higher network layers and radio environment [22]. +e
security framework detects the vehicle condition and con-
siders the channel information to decide the best-suited
security level. In this scheme, decision-making depends on
vehicle conditions related to location, environment, utility,
time, and application. In automotive V2X, traffic safety is an
important issue that needs to make data classification and
enable secure permitting of the autonomous vehicle. +e
defensible decision to pass another vehicle is a critical issue
according to its dynamic behavior. Jean-Philippe Monteuuis
provided a misbehavior classifier related to data classifica-
tion for multiple road users using machine learning algo-
rithms [23].

Another V2X traffic issue is location spoofing, which can
cause traffic congestion. So (2019) reviewed practical
spoofing attacks that can pay to pass the security checks in
the V2X application layer [24]. +e study proposed three
physical layer checks to ensure the detection rate and de-
crease false positives, in addition to enabling comprehensive
evaluation of the performance of the security for several
types of attacks. +e misbehavior detection is depending on
machine learning to security checks at the application layer
using the VeReMi datasets which are enhanced datasets for
several types of attacks. Kang (2016) used the Intrusion
Detection System (IDS) based on Deep Neural Network
(DNN) for V2V and V2I networks [27]. +e proposed study
uses unsupervised Deep Belief Network (DBN) pretraining
schemes to train the parameters of the DNN to optimize the
learning efficiency. +e IDS-based DNN enables to train
high-dimensional CAN packet data afterwards, in order to
extract the statistical properties of normal and attack packets
to identify the attack. +is method provides security features
against hacking packets and identifies any malicious attack
to V2X networks. Table 1 presents a brief summary of
different research works considering the use of AI tech-
nology in Vehicle-to-Everything’s security issues.

4. Artificial Intelligence-Enabled Quality of
Experience Optimization (QoE)

In IoV, QoE provides measurement deals with network
performance and perception, in addition to IoV application
experience. +e QoE considers the IoV experience to ensure
high quality of data transmission by continuously measuring

the QoE of the network and updating. For IoV end users and
due to the rapid change of IoV communication topology, the
user’s quality of experience is considered as one of the main
challenges in IoV networks [28]. +e flexible and scalable
connection between integrated components of the IoV
system i.e., vehicles, sensors, actuators, humans, and ma-
chines, is vital for IoV, which must fit with the requirement
of user perception enhancement to decrease the power
consumption. Moreover, to improve transportation systems’
safety and traffic data exchanging in vehicular networks,
power and buffer-aware QoE/QoS via IoV came with a high
risk of quality compromise during sensitive IoV applications
i.e., in the medical field. For such reason, cost-effective
power and buffer-aware QoE optimization solutions for
designing and deploying the IoV are required. Quality of
Service (QoS) in IoV is related to the routing path quality,
impact of velocity, position of vehicles, and network to-
pology. +ese aspects mainly affect IoVs’ energy efficiency
[29]. +e QoS optimization with energy efficiency regarding
the IoV network efficiency is about developing a solution to
the multiattribute decision-making and being able to opti-
mize many IoV network operations.

AI techniques have changed the landscape of the IoV
through multimedia communication. It improves the overall
IoV network by efficiently optimizing the route selection to
obtain stable transmitting multimedia content in the IoV
system [14, 29]. AI can also help develop energy and buffer-
aware optimization mechanisms to optimize the QoE and
QoS during multimedia communication in the IoV system.
Machine Learning (ML) techniques can provide a frame-
work to analyze the QoE services with the high level of
optimization. ML will help in assessing and examining the
faults and quality degrading factors prospected from im-
portant collected information by IoV systems to enhance the
IoV user’s satisfaction, in addition to evaluating the QoS by
considering several impacts to the IoV network related to
communication, energy, and resource management opera-
tions [14].

4.1. Buffer-Aware QoE/QoS Optimization. Due to the high
demand for video traffic in IoV networks, the development
of intelligent solutions must fulfill the expectations and
ensure maximum Quality of Experience (QoE). +e opti-
mization of QoE during multimedia communication in the
IoV system can be obtained by deploying a novel algorithm
based on the buffer allocation mechanism, which enables
controlling the high peak variable rate of multimedia by
allocating the proper buffer size in IoV. +e buffer aware
QoE optimization must consider the requirements related to
energy and video rate adaptation. In IoV applications based
on video transmission, the dynamic adapting coding rate of
the requested videos can ensure that optimizing the QoE by
the encoding rate depends on the video content itself.
Machine learning algorithms provide automatic video
processing with the additional complexity given by the data’s
temporal dimension [30]. ML can achieve different video
processing schemes in pixel level or higher-level
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representations obtained after additional preprocessing of
raw images. +e ML schemes enable the optimization of the
process of buffer allocation and dynamic video-rate
adaption.

In IoV networks, it is challenging to achieve QoS and
efficiency for multimedia streaming, especially in high-
mobility features. +e buffer-aware streaming approach will
allow users to play multimedia streaming over the IoV
network. AI-based buffer-aware QoS adopted for vehicle
streaming services to evaluate multimedia content preloaded
by IoV servers according to the user’s mobility information.
A buffer-aware QoS streaming approach over the IoV
network can provide various priority levels of streaming
service [31]. ML will evaluate vehicle mobility’s direction
and speed, the strength of IoV signals, and the size of media
content stored in the buffer to optimize the quality of
streaming service on the IoV network.

4.2. Energy-Aware QoE/QoS Optimization. Energy man-
agement in IoV systems is considered one of the main
challenges faced in IoV applications. It is very important to
effectively manage the power resources during communi-
cation in the IoV system. In most IoV applications, the
Electric Vehicles’ (EVs) charging and discharging time
negatively impact the QoE. Power-aware QoE Optimization
in Vehicle-to-Grid (V2G) networks expresses the degree of
satisfaction with the State of Charge (SOC) and charging the
cost of using an EV [32]. In the charging schedule, the
service of enough CSs is an important QoEmetric, especially
in the peak charging hours. AI-based charging scheduling
schemes must consider the QoE optimization. +e QoE of
vehicles in the IoV network with a higher vehicle’s mobility

and limited coverage area of RSU can be degraded and can
significantly affect communication quality by decreasing
flow satisfaction. In addition, any growth in energy con-
sumption in RSU leads to inefficient IoV energy network
management [33]. Moreover, due to the limited IEEE
802.11p-based vehicular communication bandwidth, pro-
viding a fair share of network resources among vehicles will
face a crucial problem related to flow management [34]. AI-
based energy management schemes provide an intelligent
decisions’ controller to overcome energy operation’s com-
plexity by providing efficient solutions. Table 2 presents the
key points of most related works in AI technologies that use
the IOV QoS/QoE optimizations.

5. Machine Learning Algorithms in the
IoV Network

Machine learning has different models, classifications, and
training methods widely used for prediction problems and
intelligent managing. In IoV applications, Reinforcement
Learning (RL) will provide guidance behavior to promote
resilience and scalability. It can give path selection or route
optimization in IoV networks. +e use of ML with the
Software Defined Network (SDN) in IoV can ensure delay of
minimization and throughput maximization as the opera-
tion and maintenance strategy. Together, ML and SDN will
improve the IoV network performance with stable and
superior routing services [35]. +ey can ensure optimal
routing policy adaptation according to sensing and learning
from the IoV environment to achieve better utilization.
Figure 3 shows the functions of ML that can be deployed in
the IoV networks. In the domain of IoV network security,

Table 1: Summary of artificial intelligence methods in secure Vehicle-to-Everything networks.

Year Source Security approaches Features Advantages Challenges Citations

2020 ArXiv
NSL-KDD data mining;
Cloud Security Alliance

(CSA)

Machine learning in
fifth generation (5G)

IoV

Security issues related to
softwarization, software-
defined perimeter, and

virtualization

QoS performance and
scalability and cost in
secure V2X dynamic

networks

Abdallah
[20]

2020 Elsevier

Controller Area Network
(CAN); IDS; Security-Aware
FlexRay Scheduling Engine
(SAFE); Hardware Security

Module (HSM)

AI-based V2X
automotive security

framework

Detects sensing and
communication layers’

attacks

Cybersecurity in fully
autonomous V2X

El-Rewini
[21]

2019 arXiv
Intelligent V2X security
(IV2XS); physical layer

security (PLS)

Cognitive security
based on context-
aware proactive

security

Security decision-making
according to vehicles’
channel conditions

Identify the best-suited
level of security.

Furqan [22]

2019 WiSec’19
Basic safety messages

(BSMs).

Misbehavior
detection based on
ML for secure V2X

traffic

Detects spoofing attacks in
the V2X application layer

Identify and detect the
V2X location spoofing

So [24]

2018 IEEE
MinMax, MLP, Adaboost,

and Random Forest
misbehaving classifiers

V2X traffic safety-
based ML algorithms

A misbehavior classifier
for vehicle data
classification

Secure decision for
V2X traffic safety

Monteuuis
[26]

2016
PLoS
ONE

Controller Area Network
(CAN) and IDS

Intrusion detection
system (IDS) based
on deep neural
network (DNN)

Extract the statistical
properties of normal and
attack CAN data packets

Identify malicious
attack to V2X networks

Kang [27]
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ML with the SDN brings some unique advantages to the
deployments of security solutions. For security issues, the
centralized control on the software layer with API access will
be convenient to develop ML software interaction with the
SDN data plane to provide statistical reports to the appli-
cation layer upon vehicles’ requests [36].

In Cognitive Internet of Vehicles’ (CIoV) applications,
i.e., automatic driving, automation and connectivity are very
important in self-driving aspects which should be sufficient
of intelligence to reduce road accidents. ML can take control
of vehicles to enable error-free driving. CIoV allows cloud-
based ML into a transportation system for security risks and
privacy issues [37]. In CIoV cognition and control layer, ML
provides strategic services for different function levels, i.e.,
driving behaviors, health monitoring, and pattern and
emotion analysis, in addition to network resource allocation
and optimization. To improve driving safety and efficiency
in the IoV transportation system, deep learning (DL)
schemes provide intelligent decision-making to evaluate the
critical, influential collision probability factors and risk of
possible accidents in the IoV [38]. Different DL techniques
can be used for collision prediction and accident forecasting,
i.e., Genetic Algorithms (GA), Neural Networks (NN),
Fuzzy logic, and Support Vector Machine (SVM).

5.1. ML-Based Edge Caching Mechanisms for IoV. +e op-
erational excellence and cost efficiency in IoV depend on the
caching and computing design. To efficiently improve the
QoS for applications, edge caching placements and com-
puting offloading at the vehicles and the RSUs can ensure
efficient QoS. Machine learning provides schemes to tackle
problems encountered in caching, computing, and

communications for IoV. ManyML schemes can be used for
edge caching in IoV [39]. It provides relatively right caching
decisions, IoV traffic levels’ classification prediction, and
content demand in supervised learning. Unsupervised
learning can be applied to the edge caching design by
clustering numbers’ vehicles into different groups according
to their behavioral and data request history information
[40]. +e ML-based clustering scheme can predict the data
demand depending on the entire vehicle group’s interests or
social relations.

+e reinforcement learning scheme such as the Q-
learning technique will enable distribution cache replace-
ment strategy according to the content popularity. More-
over, it can estimate the unknown popularity of caching
contents. IntegratedMobile Edge Computing (MEC) servers
in the IoV network will help reduce the workload at roadside
stations and make the vehicle requesting content perform
data and computation offloading during its movements such
as mobility-aware caching and computational scenario, as
shown in Figure 4. +e use of deep Q-learning will optimize
the parameters of caching and computing for resource al-
location. DeepQ-learning will determine the optimal actions
from the collected status of MEC and RSU servers in ad-
dition to each vehicle’s mobility, channel information,
caching contents, and computing [39, 40]. +ese actions are
forwarded to vehicles. Deep Q-learning will select the best
set of caching activity for RSU, MEC, and vehicles to serve
the requesting and compute the offloading tasks for the IoV.

Integration of ML with edge caching has challenges
related to data processing and analysis. +e diffusion and
high density of data are challenges for the learning and
training process. In addition, insufficient computing re-
sources can manipulate the high-dimensional information

Table 2: Artificial intelligence methods in IoV QoS/QoE optimization.

Year Source Approaches Features Advantages Challenges Citations

2020 Sensors
Reinforcement learning;
centralized Q-learning

Energy optimization with
5G vehicular social networks

Maximize the
energy efficiency
and optimization

Ensure
communication

quality and reduce
delays

Park and
Lim [33]

2019 IJEAT
SDN-based ML (BAT

algorithm)
Prioritize the data packets in

IoT cloud storage
Enhance traffic QoS

Traffic delay reduction
in IoT multimedia

applications

Hasan et al.
[28]

2019 Elsevier
Fuzzy-enabled algorithms for
buffer and power-aware QoE

optimization.

AI-based multimedia
communication mechanism

and IoV-based QoE
optimization framework

Improve
multimedia

streaming for end
users

QOE optimization for
multimedia

communication in IoV
Sodhro [14]

2018 IEEE
QoE-based ML for video
admission control and
resource management

Extracting the quality-rate
characteristics of unknown

video sequences

Improve the service
and quality level
delivered to end

user

Guarantee a minimum
service quality level

Islam et al.
[30]

2017 EAI

Many-to-one matching game;
Stable Matching Algorithm
(SMA); Pareto Optimal

Matching Algorithm (POMA)

Traveling plan-aware
scheduling scheme for EV
charging in driving pattern

Improve the QoE in
vehicle power grid

networks

QoE enhancement in
EV industry

Bozkaya
and

Canberk
[34]

2016
Science
PG

Fuzzy QoS
Enhance energy efficiency in

IoV
Optimize energy

QoS
Trade-off between QoS
and energy efficiency

Hu [29]
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that cannot provide precise buffering decisions. To strongly
cooperate ML at the IoV network edge to enhance the edge’s
smart duties, it requires an effective learning approach for
massive high-dimensional information that is established to
offer a precise estimation of the buffered information at the
IoV network edge. Moreover, ML schemes’ deployment in
IoV applications will extract much sensitive and critical
information, and if there is any leakage of information, it can
cause serious confidentiality, security, and privacy concerns
[40]. For these concerns, an edge-caching system must be
secured by security and privacy-preserving schemes and
should be developed in different system levels, i.e., trans-
mission/collection, data processing, data access, and storage
levels for both edge networks and vehicles.

5.2. Deep Reinforcement Learning-Based Offloading
Algorithm. +e execution of computing-intensive applica-
tions on resource-constrained vehicles still faces a challenge
related to offloading the IoV system. Deep Reinforcement
Learning (RL) will provide an intelligent offloading system
for vehicular edge computing. Integration of Deep RL with
vehicular edge computing helps to schedule offloading re-
quests and allocate IoV network resources. Deep RL opti-
mizes the scheduling and resource allocation in IoV to
maximize the QoE. In IoV, vehicles calculate utility values
related to their available RSUs and pass the offloading re-
quests to the roadside stations. +e stations perform task
scheduling and resource allocation and inform the RSUs.

RSUs are able to receive all vehicle offloading tasks to
perform computation offloading. +e deep RL algorithms
help to optimize the offloading decision by intelligent task
scheduling. Figure 5 shows the deep reinforcement learning-
based task offloading framework. Offloading requests are
scheduled in the task according to the action-value function
Q. RSU is selected by vehicles from the available accessing
list with probability ε and largest Q-value of the current
action-value function [41]. +e use of deep RL in IoV off-
loading optimization will be guaranteeing their venue of
network operators by ensuring cooperative offloading in the
IoV network, which will maximize the QoE of vehicles.

In IoV offloading computing, optimization parameters
are related to the offloading ratio Ґi for each task. +e ve-
hicle’s utility value constraints are related to the limitations
of vehicle’s CPU and memory resources. Offloading opti-
mization depends on how to minimize the function task
latency and energy costs [42]. +e cost function can be
calculated as follows:

Function �∑
N

i�1

Li + wi Ei( ), (1)

where N represents the number of tasks, Li is denoted for
latency cost, and Ei is denoted for energy cost, and wi is
denoted for the weight ratio between latency and energy
cost. Each offloading decision is taken depending on the
resource unit time slot. +is means the flow of scheduling
tasks is a sequence in time. For the sequence of N, tasks
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arrive during a limited observing time Lobs, and the cost
function F can be calculated depending on the reward
function R(t) by

Function � ∑
Lobs

t�1

c
t− 1
R(t)( ), (2)

Task 1 Task 2 Task 3 …….. Task N

Vehicle tasks' request

Memory resource
occupational 

CPU resource
occupational 
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Figure 5: Offloading decision optimization-based deep reinforcement learning.
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where R(t) is the reward of time slot t and c denoted for the
reward discount ratio to describe affection of rewards of the
future time slot on the overall cost function. +is total cost
function can be used to make policy network training. Deep
neural networks will provide a policy for mapping from
perceived states of the IoV environment to the probabilities
of actions to be taken. +e policy network-based deep RL
training will achieve optimized computing via each time slot
[42]. +is will minimize the weighted sum of offloading
latency and power consumption cost and ensure offloading
decision optimization. Figure 6 presents the average cost for
power consumption versus probability of task arrival, and
Figure 7 shows the average cost for task latency (in Seconds)
for different ML for IoV architecture vs. task arrival
probability.

+e Markov Decision Process (MDP) method is com-
pared with three various techniques i.e., Local, IoVEC, and
Random. Local means the zero-offloading technique where
all tasks are performed in the vehicle on-board device.
IoVEC is known as an integrated IoV edge computing server
where a full-offloading procedure has to be maintained and
performed. Finally, a random technique selects offloading
randomly.

In IoV-based edge computing, vehicles act like clients
connecting over the edge-computing node on the roadside
without accessing a remote cloud. In this scenario, the off-
loading decision for heterogeneous resources is considered a
complex operation. +is is because the environment of ve-
hicular edge computing is changing each time and requires that
offloading decisions be re-computed, which will delay pro-
viding services. In addition, for vehicular service, the task
execution progress cannot guarantee fairness offloading
queuing. Deep RL provides a unique decision algorithm to
achieve intelligent vehicular-controlled services based on an
edge computing model [43]. It helps to learn the service off-
loading knowledge and the observation functions related to
environmental data of vehicular mobility and the edge com-
puting nodes. +e offloading decision model is trained at the
powerful edge computing nodes and distributes the decision
information to the vehicles for services offloading. During
decisionmodel training, vehicles transmit the parameters to the
roadside station edge-computing node for updating the nec-
essary offloading decision periodically.

5.3. ML for Dynamic and High-Mobility IoV. IoV networks
may have dynamic features in many aspects, i.e., topology,
traffic, and wireless propagation channels, due to their
mobility. An efficient learning and dynamic prediction must
provide a degree of optimization in routing, traffic load, and
assisting the channel estimation module-tracking channel
variations [44]. Machine learning (ML) methods lead to
better results for modeling the dynamic changes of vehicular
channels and optimizing vehicle routing and traffic flow. ML
systems integrated into RSUs help to estimate traffic patterns
by collecting information about vehicles. ML can provide
intelligent IoV routing protocol with critical information for
a highly dynamic environment. It was able to predict the
network capability of paths to optimize vehicle route

selection based on vehicle mobility and transmission ca-
pacity. In dynamic IoV, RSUs-based ML can predict the
vehicle’s moves and direction [45]. +e prediction is
depending on the information provided by the vehicle when
it moves from RSU to another which will help RSUs to
enable estimation of the traffic flows.

5.4. ML-Based Decision-Making in IoV. In recent years,
Autonomous Vehicle (AV) growth generates a novel
tendency to implement several intelligent approaches and
methods to enhance adaptive decision-making efficiency
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and quality.+e combination of AI, ML, RI, and IoV offers
high-efficient control systems that can be exploited in
various applications to accommodate more adaptive,
automatic, and robust embedded systems [46]. Decision-
making in IoV networks requires intelligent algorithms to
handle the processes related to driving environment
perception, path planning, strategy network control, and
resource management. For an intelligent driving vehicle
system, a module that integrates the path, behavior, and
motion planning is needed to operate in a highly opti-
mized decision-making algorithm. In addition, the de-
cision-making algorithm must take into account the
operations of vehicle control. It must be able to predict
and learn the information related to vehicle platform
faults, trajectory, and energy [47]. +ese considerations
deal with vehicles’ platform, as shown in Figure 8. For
cognitive driving, localization, semantic understanding,
and sensor fusion contribute to the decision-making
process.

Furthermore, the intelligent vehicles and IoV systems’
applications face the decision-making challenges associated
with collecting and distributing IoV big data to vehicles and
interested users to enhance road intelligence experience, in
addition, in making decisions related to traffic managing,
road congestion, and safety. Huge volumes of big data re-
quire a more robust and intelligent mechanism in decision-
making procedures to reduce road congestion and improve
traffic operations in addition to challenges related to useful
communication links between different types of vehicles and
smart devices and security and privacy problems [48]. Many
machine learning methods can be used to contribute to
solving the above challenges where these methods enable to
model channels in different IoV network scenarios. In ad-
dition, it provides intelligent solutions to avoid road acci-
dents by smart learning and analysis of the driving
environment using the data collected from the sensors since
IoV networks are interested in exchanging messages ev-
erywhere and sharing content between smart vehicles [49].
ML-based smart resource management for IoV networks has
become crucial to decide the policy of the connection
method of power control, selection, and resource allocation
and assignment.

5.4.1. Network Control. Higher IoV network performance
demands efficient solutions for network operation and
optimization. ML in the network domain will leverage ML
abilities for new network management for IoV applications.
+e capabilities of ML will provide an efficient way for
intrusion detection and performance prediction. Besides,
ML enables the IoV network to make intelligent decisions
for network scheduling, and adaptation depends on network
characteristics and environment [50]. ML algorithms will
facilitate the IoV network to classify and predict traffic
patterns and network states. In general, the use of ML in
communication networks promises to achieve many solu-
tions for different networking aspects, i.e., data collection
and analysis, clustering decision-making and prediction, and
model construction validation, in addition to network

deployment and interference, as shown in Figure 9 [51].
Because of the IoV characteristics, which depend on the
Internet, data and traffic prediction, analysis, and classifi-
cation are the most critical aspects related to IoV network
control.

(1) Traffic Prediction. Data collection and analysis are related
to collecting a large amount of representative network data
and the ability to characterize the network factors. Based on
the IoV application, data collection can be gathered from
different network layers. According to the IoV network state,
offline data collection with high quality is required for data
analysis, while online data collection will enable learning
network performance and adaptation [52]. For IoV critical
applications, data analysis needs to find a proper network
feature, i.e., to predict the best network traffic performance
by analyzing the historical data. Data collection and analysis
need to prepare network data by normalization, dis-
cretization, andmissing value completion.ML is an excellent
choice to help extract the network feature. For IoV networks,
ML plays an essential role in traffic prediction and network
management [53]. Accuracy in traffic volume estimation in
IoV networks is considered as one of the main factors that
impact the performance analysis of network operations, i.e.,
resource allocation, network routing, congestion, and data
streaming control.

(2) Traffic Classification. Traffic classification represents the
need for IoV network applications to be matched with the
Internet traffic flow. In IoV, the Internet traffic classification
is an essential aspect of efficient network quality of service
and quality of experience. Moreover, in the network edge,
accurate Internet traffic classification is a critical challenge
and an essential component of the network security domain.
In this case, network traffic classification’s importance is to
recognize the vehicle network applications and control the
traffic flow as needed to balance value or prioritize each
other. In the security issue, traffic classifications provide a
means of intrusions and malicious attack detection [53].
ML-based statistical features will give a classification sce-
nario to the more realistic situation for IoV network traffic
for network control and security. Moreover, it achieves
efficiency, adaptability, and performance enhancement.

(3) Traffic Management. Other considerations related to
network control are network traffic monitoring and man-
agement. In the IoV network, to ensure efficient network
optimization, ML enables to adapt the dynamic Internet
traffic in IoV and maximize the QoS/QoE without com-
promising end user experiences. ML provides an adaptation
of real-time network conditions and maximizes the user
experience [53]. ML can help to overcome the shortcoming
of classical TCP congestion control algorithms by classifying
a packet loss due to congestion or link errors. ML ap-
proaches will be easy to customize best-suited congestion
control schemes that can adapt to unique network re-
quirements. ML can systematically prospect important in-
formation from data held by vehicles and automatically
identify very complex links, allowing vehicles to monitor
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their environment intelligently and use data for training
purposes [53, 54]. ML enables predicting and adapting to the
evolution of environmental features, including wireless
channel dynamics and traffic and mobility patterns, and
configuring the network, which gives the high possibility to
control and manage the network traffic.

Other ML solutions relate to developing accurate
channel models in different environments and reducing path

loss. +ese solutions lie in predicting IoV topology and
treating severe interference from other IoVs using naviga-
tion data and vehicle connectivity. In IoV applications,
Internet traffic may be impacted by the weakness of wireless
communications [54]. ML technologies can assess wireless
conditions without the need for a large number of datasets.
Using ANNs’ methods, an RSS prediction can be performed
in an IoV environment.
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Figure 9: ML for the IoV network control cycle.
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5.4.2. Location Prediction. Automation is considered one of
the essential advantages of the IoV network. +e vehicles
contain a perception system to be able to object detection
and prediction. In most applications, vehicles’ behavior
depends on sensory data and the ability to classify the objects
in the surrounding environment. +ese factors help develop
autonomous vehicle applications using efficient vehicle
behavior prediction and decision-making [55]. +e intelli-
gent prediction will help to optimize the decision-making of
vehicle trajectories to avoid any risks. Self-driving and au-
tonomous IoV depend on location prediction. +e predic-
tion requires information about the position of the vehicle
itself and the behaviors of the surrounding vehicles, in
addition to the road geometry and traffic rules. Different
vehicle behavior prediction models are developed i.e., in-
tention trajectory, maneuver-based, and interaction-aware
models [56]. +ese kinds of models are categorized as input
representation and output types’ criterion, as shown in
Figure 10. In recent years, researchers have tried to use the
ML prediction methods to optimize location prediction
precision.

ML uses recorded vehicle historical mobility patterns to
predict the next location prediction according to mining
trajectory patterns. +is strategy is depending on the
availability of enough historical trajectory data. To gain
accurate prediction, ML provides an efficient method to get
rid of the problem of suffering from the data sparsity and
little historical trajectory and the impact of unknown dy-
namic contexts, traffic flows, and weather. ML enables the
incorporation of this contextual information into the vehicle
movement prediction. ML helps to model the contextual
information characteristics between the trajectories and
builds a learning model by integrating, for example, the
neural network with the Long Short-Term Memory (LSTM)
to predict the next location, as shown in Figure 11 [57]. +e
LSTM can easily incorporate heterogeneous features by
integrating the trajectory variables to predict the following
location effectively.

5.4.3. Intelligent Resource Management. Since IoV applica-
tions depend on the IoT, it is found that resource manage-
ment in this technology is facing many challenges, especially
in large-scale IoT networks. +ese challenges are related to
massive channel access, power allocation, interference
management, energy management, and coexistence between
V2V or V2I and IoT traffic. Massive channel accessing causes
overloads to networks and congestion [58]. For resource
management, there is a need to develop proper load balancing
and access management techniques. +e crowded vehicles
traveling over the roads make interference problems which
requires efficient power allocation and interference man-
agement techniques. In the IoV, the IoT’s nature is charac-
terized by continuous data traffic, which leads to high energy
consumption. Moreover, the harmonious coexistence be-
tween the V2V or V2I-existing networks and IoT traffic re-
quires intelligent resource management [58, 59]. ML
algorithms play an essential role in addressing the mentioned
challenges related to resource management.

ML can make classification, regression, and density
estimation for intelligent resource management to exploit
data traffic and develop automated solutions for IoV ser-
vices. ML provides the intelligent prediction for unknown
IoV system parameters and system behavior, i.e., RL can
control system actions from anonymous monitored system
behavior during network activities. Moreover, ML provides
suitable solutions for helping careful channel and power
allocation and extracts the network parameters to make
decisions for CSI, traffic characteristics, and demands of the
vehicle’s users [59]. Deep learning promises smart solutions
to characterize the inherent relationships between the IoV
system input and output to develop a traffic control system
to optimize the network management and scheduling
adaption [50]. +is will help to optimize the IoV network
QoE.

Another consideration related to the ML use in resource
management is maximizing the overall network capacity and
guaranteeing the best QoS. Q-learning can attain a sub-
stantial regulation and strategy by utilizing the network
learning policy to accomplish smart resource control, as-
signment, and management with the continuous valued
activities. It can be employed to obtain an optimal resource
allocation approach in V2V communications to maximize
the long-term expected accumulated discounted rewards,
where the Q function is approximated by a deep neural
network [50]. +e following equation can find the optimal
policy with Q values:

Qnew st, at( ) � Qold st, at( )
· +α rt+1 + cmaxsεSQold st, at( ) − Qold st, at( )[ ].

(3)
+e observed state is represented by sεS, where S rep-

resents the state space, t denoted for time, st is an agent state,
and at represents action. +e Q-learning can be deployed by
what is known as Actor-Critic (AC) learning algorithm
which is discussed in [50] by (Wang in 2017). +e frame of
AC learning consists of actor and critic parts which are
responsible for control strategy adoption with action se-
lections based on the tested network status and the entered
policy of the environment parameter reward function, re-
spectively, as shown in Figure 12. +is mechanism enables
the IoV vehicles to make decisions based on their learned
policy strategy [60]. Each of IoV communication link will
observe the current network state, i.e., resource block al-
location, channel quality, and QoS requirements to enable
selection of actions related to resource block assignment and
power level according to the policy strategy to provide a new
IoV network state.

6. Machine Learning Applications in IoV

ML contributes to many IoV applications related to
emergent message transmission for road safety and dan-
gerous activities. In addition, ML provides new smart
solutions for IoV services and entertainment. To minimize
the overall energy consumption of the computational fa-
cilities and vehicles, while satisfying the delay constraint for
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traffic offloading, ML technology in data mining, pattern
recognition, processing, and cognitive computing is an
alternative for decision making, which will open new

opportunities for intelligent IoV networks, i.e., in driver
safety, smart transportation, and autonomous driving
applications.
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6.1. Intelligent AutonomousDriving. Machine learning plays
a vital role in vehicle intelligent driving applications, making
vehicles perceive and estimate to manage the vehicle driving
system efficiently. ML makes the vehicles self-automated
which will improve the society by reducing road accidents.
In general, self-driving vehicles are very closely associated
with IoV. +e combination of the IoT with ML and smart
computing will provide an intelligent driving system. Ma-
chine learning algorithms in self-driving enable IoV to
predict the possible changes in the surrounding driving
environment and provide different tasks i.e., object detection
and identification, in addition to prediction of another
vehicle’s localization and movement [61]. Many ML algo-
rithms can be used to provide the mentioned tasks. Re-
gression algorithms provide a localization scheme to develop
prediction and feature selection models for self-driving
vehicles. Clustering algorithms provide a way to model
approaches such as centroid-based and hierarchical for
intelligent localization [61, 62]. Decision matrix algorithms
will help identify, analyze, and rate the performance of
relationships between sets of values and information for
intelligent decision-making.

To enable self-driving vehicles, intelligent decision-
making must process streams of observations coming from
different vehicle devices, such as cameras, radars, LiDAR’s,
ultrasonic sensors, GPS units, and sensors. +e information
gathered by these sources helps the vehicle’s ML-based
computer to make driving decisions, as presented in the
study proposed by Hussain (2020) [58]. Decision-making
can take place by the modular perception-planning-action
or by the End2End learning fashion. +e modular percep-
tion-planning-action uses the AI and deep learning meth-
odologies to make various learning and nonlearning-based
components. End2End learning is based on deep learning
which performs the direct mapping from sensory data to

control commands. End2End learning can also be formu-
lated as a backpropagation algorithm scaled up to complex
models [63]. Such deep learning-based algorithms will be
able to find a route between the vehicle start position and the
desired location, which represents path planning. It is able to
consider all possible obstacles present in the surrounding
environment and find out a trajectory free of the collision
route.

6.2. Deep Learning for Driver Safety and Assistance. Due to
the increasing number of accidents and the urgent need to
reduce road accidents and improve traffic safety, modern
vehicles are equipped with sensors and connected to high-
speed mobile communication networks. +e vehicle sensors
allow collecting a large amount of data used in vehicle safety
analysis procedures. +e data are analyzed in real time by AI
algorithms in the autonomous driving systems’ applications
to reach a high level of safety through several designs. It
enables the designing of the road safety index and its pre-
diction of parameters such as street engineering, human
behavior, and traffic flow. +e description of road safety by
deep learning will predict the real-time road safety index
based on the deep dense neural network. Moreover, ML
helps to learn the association between visual entities and city
characteristics to estimate road safety based on image
processing [64]. +e extraction of associations between
captured pictures and estimated road safety with multiple
cross-domain factors can achieve high prediction accuracy
of the road safety index (SI). +e real-time road safety index
estimation will enhance vehicle safety. +e road SI can be
defined as a number used to inform the public about the
area’s safety, as published by Abdallah in 2018 [65]. +e
safety index can be calculated based on the traffic accident
rate per 100,000 inhabitants Ra as follows:
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SI �(1 − Ra)∗ 100. (4)

Driver Assistance Systems (ADAS) are quickly being
established for self-directed vehicles which are considered
driver safety and assistance methods. ML and embedded
computing are considered the main driving factors en-
abling the development [65]. ML will enable driver assis-
tance systems to perceive obstacles, objects, lanes,
pedestrians, and other cars and predict obstacle trajectories
and targets. ML helps to detect and to track the obstacle to
avoid collision and for path planning. Vehicle camera-
based deep learning improves quality enhancement and
cost reduction of blind spot prediction rather than radar
[66], as proposed by Ball and Tang (2019). It uses a
lightweight and computationally effective Neural Network
(NN).

6.3.ML in Smart Transportation. Intelligent transport is one
of the most important vehicle Internet applications, as it
covers several applications including improving track,
parking lots, avoiding and detecting accidents, and other
applications related to infrastructure. ML technologies serve
to develop advanced models of ITS. In general, traffic
congestion is one of the most important problems faced by
transportation systems in urban areas, especially in cities
that contain high vehicle density [67]. +e use of ML with
smart transport systems provides optimization for traffic
network configuration. Another smart transportation ap-
plication in modern cities is parking. Smart cities try to find
an intelligent parkingmethod to provide reservation services
and select parking for vehicles. IoT and ML technologies
enable free parking methods. ML helps manage parking for
different drivers. It can classify parking according to drivers’
requirements, i.e., regular drivers or those with special
needs. +e IoT helps to exchange the mapping of parking
information to the vehicles or for mobile users through
cloud servers [68]. Moreover, IoT will improve traffic
monitoring, live location streaming, and vehicle perfor-
mance monitoring.

Since the IoV network consists of multiple types of smart
vehicles, transport data processing of these numerous ve-
hicles in real time requires an intelligent schedule and data
processing mechanism [68]. Distributed systems provide an
efficient and fast method for such a situation. +is needs to
deal with big transportation data collected from heteroge-
neous sources of database solutions. ML-based SQL database
enables smart database queries and flow data processing. ML
will allow the balance between the algorithms’ accuracy and
the size of the data and determine the circumstances in
which it becomes useful to implement distributed systems.
For transportation route optimization, ML provides reliable
predictions to make routing decisions [69]. ML enables a
clear understanding of available route options, associated
energy, and environmental costs in real time. ML provides
predictability of changes that can help convoy operators
choose vehicles and methods that save fuel costs, while
maximizing efficiency [70].

7. Secure Vehicular Network towards 6G

Cyber-physical security is one of the hot research areas in the
Internet of +ings, which is also a thoughtful subject in
vehicular communication. +e attack and malicious activ-
ities of vehicular networks cause thoughtful damage that
threatens passengers’ safety in vehicles and affects network
performance. +e vehicular systems usually need many
severe strains in the ML-based security scheme. +e precise
restraints of the vehicular system can be presented as
follows.

7.1. Vehicle Speed. One of the most critical parameters of
the vehicular system is the high mobility of vehicle nodes
and the network dynamics. Communications between
nodes regularly go down, making the system security and
authentication quite hard [71]. +e system traffic is
abruptly flapping with the rapid change and dynamic of the
network topology which seriously disturbs the intrusion
detection and security algorithm and schemes of the
packets [72]. Additionally, the vehicle speed results in the
random mobility of vehicles, which delays and disturbs the
performance of the security and authentication data
exchange.

7.2. Diversity Framework. +e Vehicule-to-Vehicle (V2V)
topology is structured with different nodes and a dynamic
network, which is implanted with various network re-
sources. +e main challenge is to study the different re-
sources among vehicles to guarantee security and
authentication schemes. As an instance, in the storage-
constrained, processing, and energy vehicular system, the
challenge is to optimize and capitalize the security guarantee
which can be resolved by neural network or fuzzy logic or
game theory [73].

7.3. Network Size. +e volume of the Internet of vehicular
nodes grows rapidly. +ousands of nodes in vehicles are
probable to be linked to the huge IoTnetwork in near future
[74]. +ough, no present worldwide group or body offers
security for such a huge rapidly changing network. Addi-
tionally, the growing volume of the Internet of Vehicular
network grows both the processing and network protocol
that lead the growing security protocol traffic, which grows
the error detection and network latency.

7.4. Confidentiality Obligation. Always there is a compro-
mise between privacy and security in the Internet network,
especially in IoT and IoV. In IoV, vehicle nodes’ authenti-
cation and confidentiality are usually designed and modeled
by security algorithms. Without data privacy assurance, the
security scheme is usually hungry for resources to distin-
guish and differentiate anomaly and error from flow data
[75].
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7.5. Fast Response Prerequisite. Unlike legacy networks, the
Internet of vehicular networks needs an instantaneous
handle to cope with the rapid and dynamic change network,
i.e., news broadcasting, fast rescue, and avoidance of acci-
dents. Such network needs fast response requirements for
the Internet of vehicular network such as low-latency
communication channels and real-time prevention of attack
techniques [76]. To overcome these problematic issues,
many solutions and mechanisms have been anticipated in
the literature. Interfering and sniffing are two main vul-
nerabilities in IoV; Elliptic Curve Digital Signature Scheme
(ECDSA) and vehicular Public Key Infrastructure (PKI)
have been suggested to be the two primary intrusion
techniques to guarantee privacy during communication
from vexatious activities [46, 76].

Nevertheless, the vexatious activities include the pseudo
spoofing, the wormhole attack, the packet drop attack, the
Denial-of-Service (DoS) attack, the spurious data intrusions,
and the reiteration intrusions that can counterfeit identity,
broadcast junk packets, and kidnapping vehicle nodes to
penetrate and stealth elliptic curve digital signature algo-
rithm and public key infrastructure [77]. Many vexatious
attitude recognition techniques have been invented [71, 73].
Some works suggest that infiltration and attacks can be
drawn with machine learning techniques from rapid and
high-diversity network traffic [75, 78]. +e attack prevention
mechanism for legacy networks is typically achieved by
determining the normal state from flooding-emulated
packets. In the highly rapid Internet of the vehicular net-
work, the present emulated packets are not useful for in-
novative intrusions in such a dynamic environment. +e
legacy machine learning technologies, such as association
rules, autoregressive, and classification, are widely used in
the abovementioned works for intrusion detection. Recently,
ML has proposed to be the promising machine learning and
data mining utilities for enhancing the authentication,
privacy, and attack prevention performance on the Internet
of vehicular networks.

7.6. Authentication Technology in the IoV. Authentication
algorithms for IoV networks are considered essential for
network and communications’ security purposes. Several
studies dealt with the concept of certificates to determine
the identity of vehicles. Other studies have used anony-
mous credentials and designated an unknown identity
IoV area for the vehicle that allows access to it safely with
the possibility of hiding the information. A hiding vehicle
information mechanism is adopted by specifying the
unknown identity to achieve safety against any attack by
any malicious vehicle that tries to steal vehicle infor-
mation in the IoV network [79]. Despite this mechanism’s
efficiency in maintaining the confidentiality of vehicle
information, it is facing a delay issue in processing
identity and is wasting a large amount of identity storage
resources. Finding an effective anonymous authentication
method in IoV, while reducing its computational cost is a
big challenge. AI mechanisms can provide solutions to
improve the anonymous authentication system by

reducing account costs through a contextual tracking
mechanism to manage IoV network vehicles and units on
the roadside. Liu et al. (2018) proposed a mechanism
based on the safe communication between vehicles and
units on the side of the road using machine learning
technology [80]. +e study relies on creating a Certified
Short Signature Model (CLSS) that works with the re-
gional management strategy to design an anonymous and
efficient anonymous authentication scheme for IoV. +e
study achieves a highly efficient model in terms of the
interaction between vehicles and roadside units compared
to traditional plans. +e proposed CLSS scheme is secure
under adaptively chosen message and ID attacks in the
random oracle model.

On the contrary, issuing identity certificates to enable
privacy protection is more efficient. Still, it is the re-
sponsibility of the RSU, which increases the operating cost
and causes the greater consumption of network resources
to operate and configure RSU. In addition, the resource
management processes related to vehicle verification and
requesting authentication take a lot of time [80]. Aggre-
gated authentication technology can reduce time delay, but
it also contains frequent authentication problems and re-
quires a large amount of authentication information. An
authentication protocol is known as Distributed Aggregate
Privacy-Preserving Authentication (DAPPA), proposed by
Zhang (2017), enables to authenticate the vehicles in the
vehicular network by providing a multiple trusted au-
thority based on an identity-based aggregate signature
mechanism [81]. +e aggregation of vehicle signatures in
one of the verified messages reduces storage needs and
resource management costs. A smart adaptive data ag-
gregation study by Islam et al. (2016) presents a method to
enable data communication between distributed mobile
vehicles on vehicles unknown to other vehicles or IoV
locations [82]. +e adaptive data aggregation depends on
machine learning to analyze data and extract information
for the drivers, enabling fully automated switching of
different vehicle sensors and data fusion processes’
adaptation.

In general, the AI technologies in IoV develop secure
management processes and achieve intelligent, fast authen-
tication and progressive authorization. AI enables to provide a
light authentication scheme in addition to a comprehensive
authentication and authorization system. Machine and deep
learning can enhance IoV security by investigating valuable
information and providing self-adaptation for certification
and authorization. In IoV channel communication, the
Support Vector Machine (SVM) enables developing a
lightweight authentication system to identify vehicles based
on their pseudorandom arrival in the time domain or the
frequency range via multiple sensors. Hasan et al. (2020)
provided a fast authentication mechanism for large-scale IoV
that depends on the identical unique Pseudo-Random Binary
Sequence (PRBS) for vehicle access time slots or access fre-
quencies [83]. +is mechanism can be used to verify the
authentication of vehicles to the IoV network base station
access. Figure 13 shows the possible lightweight authentica-
tion scheme based on SVM for IoV secure authentication.
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+e decisions taken by the SVM are a function of the
support vector machine network. +e output decision is
according to several linear combinations of the middle
layer nodes. +e layer nodes correspond to the inner
product between the input sample and support vector that
enables the selection of the most suitable optimized
communication mode [83]. +is module provides a fast
authentication scheme by directly specifying access times
or frequencies and the progressive protection of trusted
communications without the need for a complex account.
+e PRBS between each vehicle and the gateway can be
obtained by utilizing their unique features by the SVM.+e
PRBS between each vehicle and the IoV base station can be
obtained by utilizing their unique features based on the
SVM. +e selected features are measured by channel in-
formation estimation. +e separation between the dense
data and sparse data is enabled by an SVM-based quan-
tization technique. +is technique reduces the wrong de-
cisions by diminishing the measurements near the
boundary [84]. +e lightweight authentication scheme
based on the SVM ensures higher similar binary sequences
acquired on both IoV base stations and vehicles because of
the channel reciprocity.

7.7. Fog-Based Identity Authentication. In IoV applications,
the fog-computing concept reduces the burden on the traffic
control center. All computing components in IoV, i.e., the
roadside and vehicle units, are well suited to the concept of
fog computing and enable the communication and inter-
action between vehicles and clouds [85]. Due to several fogs’
possibility, the vehicle identification certification system’s
security is essential to enhance the security issues related to
the fog nodes. +e fog-based identity authentication scheme

presented by Song (2020) provides two authentication levels:
vehicles outside the fog and the other for the security
monitoring of the rest of the vehicles. +e scheme uses deep
learning for security monitoring to conduct real-time se-
curity in the IoV [86].

A reliable and secure IoV fog mechanism based on
machine learning develops access security authentication
and security timing detection for vehicles that need to join
IoV. When using vehicle safety certification and timing
detection mechanisms, it is very important to pay attention
to the fog head replacement frequency to reduce resource
consumption and time delay and detect the manufactured
vehicles to access the fog legitimately [87]. AI-based coding
algorithms provide intelligent solutions that ensure the
exchange of information for vehicles that leave and join the
IoV fogs. Machine learning technologies enable the de-
tection of malicious vehicles that use legal personalities to
join the fog. In general, most current fog-based IoV se-
curity mechanisms, such as authentication, encryption, and
access control, are relatively weak solutions. AL and ML
technologies provide a defensive scheme for the fog-IoV
environment enabled to secure related operations such as
activities monitoring, misuses identification, and threats
and vulnerabilities detection in accessing processes
[88–91].

Table 3 summarizes the key factors regarding secure IoV
communications.

8. Future Directions and Potential Solutions

It is well known that artificial intelligence plays a vital role
in most IoT applications that depend on perception and
predictions of events. As one of these applications, IoV
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Figure 13: IoV authentication scheme based on the SVM.
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networks require the development of smart algorithms to
manage intelligent technology, such as self-driving cars. Self-
driving cars are a high-risk test for machine learning au-
thorities, as well as a test case for social learning in technology
management [92–96]. In IoV applications, the convergence
between machine learning and the Internet of+ings promises
future progress in efficiency, accuracy, and improved resource
management. +e use of machine learning with IoV provides
high performance in communication and computing to
achieve efficient control, management, and decision-making
processes [92, 97]. ML allows the extraction of big sensory data
to get better insights into the range of problems associated with
the IoV and the surrounding environment and the ability to
make critical operational decisions. It also promises soon to
upgrade vehicle networks’ performance and make them more
interactive with other things’ Internet applications. Using ML
in the IoV enables interaction between the cyber and physical
components together and can significantly improve the effi-
ciency and reliability of processes and systems [97]. Moreover,
machine learning offers smart solutions to enhance decision-
making in the event of cyber attacks.

ML provides solutions for many ITS applications, es-
pecially in 2D level realization and forecasting. However, it
can develop AI techniques that can develop collaborative
mobility applications based on the description of realistic 3D
objects and 4D perception for autonomous driving [98]. For
different IoV applications, such as driving managements,
route, and localization prediction, smart ITS camera devices
can create holograms to provide 3D object visualization. Due
to the hybrid ITS context, the combination of data from
different resources to improve 3D visualization accuracy is
an exciting potential solution and critical future research
direction. +e 5G of the IoV network is expected to provide
some AI technologies to provide network management
completely smart and provide innovative services [89, 90].
However, the Sixth Generation (6G) is expected to pack

machine learning techniques an essential role in its opera-
tion through self-reconfiguration on demand to ensure a
doubling in network performance and service types [99]. ML
techniques can provide the 6G network model that can
rapidly respond to IoVmanagement processes by learning in
real-time the network’s state.

9. Conclusion

Machine learning (ML) helps analyze big data in IoV net-
works, enabling intelligent forecasting and decision-making.
Various potential applications have been indicated for the
use of ML to improve the performance of IoV networks. ML
technologies offer beneficial solutions in addressing con-
gestion problems in high-density IoV networks to achieve
quality services and experience. Moreover, the scope of
employing machine-learning technology in network man-
agement and control, data flow, site forecasting, and re-
source tools across different layers of communication
networks were discussed. In general, we find that, in most
automated learning applications, performance depends on
the amounts of data available and that must be large enough.
Recently, parallel computing capabilities and machine
learning methods have been developed to build smart in-
tegrated systems for IoV networks. +is development can
build intelligent systems with immense parallel processing
capabilities and energy efficiency to prepare solutions for
various operations associated with the IoV, such as multi-
dimensional signal/image processing and wireless
communications.

Data Availability

Data used to support the findings of this study are already
available in the manuscript.

Table 3: Summary for secure IoV communications.

Year Source Approaches Features Advantages Challenges Citations

2020 IEEE
Fog-based identity

authentication (FBIA)

Fog-based identity
authentication scheme
and deep learning

IoV real-time security
monitoring

Dual authentication
levels for access

authentication and
vehicles’ timing detection

Song et al.
[86]

2020 IEEE SVM-based classifier
Authentication

scheme based on SVM

Secure access frequencies
and progressive protection

of trusted
communications

Fast authentication
mechanism for large-

scale IoV

Hasan
et al. [83]

2018 IEEE
Certificateless Short

Signature Scheme (CLSS)
and ML

Anonymous
authentication

scheme-based ML

Secure communication
between vehicles and

roadside units

Security under adaptively
chosen message and ID

attacks

Liu et al.
[80]

2017 IEEE

Aggregate privacy-
preserving authentication
protocol; Multiplicative
Secret Sharing (MSS)

technique

Distributed aggregate
signature mechanism

Secure vehicular network
authentication and trusted

authority

Trade-off between
security and storage
resource management

Memon
et al. [81]

2016 Elsevier

Smart Adaptive Data
Aggregation (SADA);

machine learning-based data
fusion and analysis

Adaptive data
aggregation-based ML

Secure data exchange
between vehicles

Fully automated
switching to unknown

vehicle

Islam et al.
[82]

20 Security and Communication Networks



Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is work was supported by the research grant Universiti
Kebangsaan Malaysia (UKM) under Grant nos. FRGS/1/
2020/ICT03/UKM/02/6 and DIP-2018-040.

References

[1] W. Tong, A. Hussain, W. X. Bo, and S. Maharjan, “Artificial
intelligence for vehicle-to-everything: a survey,” IEEE Access,
vol. 7, pp. 10823–10843, 2019.

[2] H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, and
K. Wu, “Artificial intelligence-enabled intelligent 6G net-
works,” 2019, https://arxiv.org/abs/1912.05744.

[3] A. A. Eltahir, R. A. Saeed, A. Mukherjee, and M. K. Hasan,
“Evaluation and analysis of an enhanced hybrid wireless mesh
protocol for vehicular ad-hoc network,” EURASIP Journal on
Wireless Communications and Networking, vol. 1, pp. 1–11,
2016.

[4] Y. Dai, “Artificial intelligence empowered edge computing
and caching for internet of vehicles,” IEEE Wireless Com-
munications, vol. 26, no. 3, pp. 12–18, 2019.

[5] H. Ji, “Artificial intelligence-empowered edge of vehicles:
architecture, enabling technologies, and applications,” IEEE
Acces, vol. 8, pp. 61020–61034, 2020.

[6] A. H. Sodhro, Z. Luo, G. H. Sodhro, M. Muzamal,
J. J. P. C. Rodrigues, and V. H. C. de Albuquerque, “Artificial
Intelligence based QoS optimization for multimedia com-
munication in IoV systems,” Future Generation Computer
Systems, vol. 95, pp. 667–680, 2019.

[7] M. B. Hassan, E. S. Ali, R. A. Mokhtar, R. A. Saeed, and
B. S. Chaudhari, “NB-IoT: concepts, applications, and de-
ployment challenges, book chapter (ch 6),” in LPWAN
Technologies for IoT and M2MApplications, B. S. Chaudhari
and M. Zennaro, Eds., Elsevier, Berlin, Germany, 2020.

[8] Y. Dai, D. Xu, S. Maharjan, G. Qiao, and Y. Zhang, “Artificial
intelligence empowered edge computing and caching for
internet of vehicles,” IEEE Wireless Communications, vol. 26,
no. 3, pp. 12–18, 2019.

[9] E. S. A. Ahmed and R. A. Saeed, “A survey of big data cloud
computing security,” International Journal of Computer Sci-
ence and Software Engineering (IJCSSE), vol. 3, no. 1,
pp. 78–85, 2014.

[10] Z. K. A. Mohammed and E. S. A. Ahmed, “Internet of things
applications, challenges and related future technologies,”
WSN, vol. 67, no. 2, pp. 126–148, 2017.

[11] H. Wu, “Developing vehicular data cloud services in the IoT
environment,” IEEE Transactions on Industrial Informatics,
vol. 10, no. 2, pp. 1587–1595, 2014.

[12] Z. E. Ahmed, M. K. Hasan, R. A. Saeed et al., “Optimizing
energy consumption for cloud internet of things,” Frontiers of
Physics, vol. 8, p. 358, 2020.

[13] M. K. Hasan, A. F. Ismail, A.-H. Abdalla, H. A. M. Ramli,
W. Hashim, and S. Islam, “+roughput maximization for the
cross-tier interference in heterogeneous network,” Advanced
Science Letters, vol. 22, no. 10, pp. 2785–2789, 2016.

[14] A. H. Sodhro, “Artificial Intelligence based QoS optimization
for multimedia communication in IoV systems,” Future
Generation Computer Systems, vol. 95, pp. 667–680, 2019.

[15] Y. Mao, “A survey on mobile edge computing: the commu-
nication perspective,” IEEE Communications Surveys & Tu-
torials, vol. 19, no. 4, pp. 2322–2358, 2017.

[16] J. Xu, “Joint service caching and task offloading for mobile
edge computing in dense networks,” in Proceedings of the
IEEE Conference on Computer Communications, Honolulu,
HI, USA, 2018.

[17] Y. Cao, “An EV charging management system concerning
drivers’ trip duration and mobility uncertainty,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
vol. 48, no. 4, pp. 596–607, 2016.

[18] S. Islam, A.-H. A. Hashim, M. H. Habaebi, and M. K. Hasan,
“Design and implementation of a multihoming-based scheme
to support mobility management in NEMO,” Wireless Per-
sonal Communications, vol. 5, no. 2, pp. 457–473, 2017.

[19] N. S. Nafi, M. K. Hasan, and A. H. Abdallah, “Traffic flow
model for vehicular network,” in Proceedings of the 2012
International Conference on Computer and Communication
Engineering (ICCCE), pp. 738–743, IEEE, Kuala Lumpur,
Malaysia, 2012.

[20] M. Abdallah, “Softwarization, virtualization, and machine
learning for intelligent and effective V2X communications,”
2006, https://arxiv.org/abs/2006.04595.

[21] Z. El-Rewini, “Cybersecurity challenges in vehicular com-
munications,” Vehicular Communications, vol. 23, 2020.

[22] H. M. Furqan, “Intelligent physical layer security approach for
V2X communication,” 2019, https://arxiv.org/abs/1905.
05075.

[23] T. Zhou, R. R. Choudhury, P. Ning, and K. Chakrabarty,
“P2DAP—Sybil attacks detection in vehicular ad hoc net-
works,” IEEE Journal on Selected Areas in Communications,
vol. 29, no. 3, pp. 582–594, 2011.

[24] S. So, “Physical layer plausibility checks for misbehavior
detection in V2X networks,” in Proceedings of the 12th
Conference on Security and Privacy in Wireless and Mobile
Networks, WiSec’19, Miami, FL, USA, May 2019.

[25] W. Li and H. Song, “ART: an attack-resistant trust man-
agement scheme for securing vehicular ad hoc networks,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 4, pp. 960–969, 2016.

[26] J.-P. Monteuuis, “My autonomous car is an elephant”: a
machine learning based detector for implausible dimension,”
in Proceedings of the Iird International Conference on Se-
curity of Smart Cities, Industrial Control System and Com-
munications (SSIC), Shanghai, China, 2018.

[27] M.-J. Kang, “Intrusion detection system using deep neural
network for in-vehicle network security,” PLoS ONE, vol. 11,
no. 6, Article ID e0155781, 2016.

[28] M. Akhtaruzzaman, M. K. Hasan, S. R. Kabir,
S. N. H. S. Abdullah, M. J. Sadeq, and E. Hossain, “HSIC
bottleneck based distributed deep learning model for load
forecasting in smart grid with a comprehensive survey,” IEEE
Access, vol. 8, pp. 222977–223008, 2020.

[29] S. Hu, “A fuzzy QoS optimization method with energy effi-
ciency for the internet of vehicles,” Advances in Networks,
vol. 4, no. 2, pp. 34–44, 2016.

[30] S. Islam, A. H. Aisha-Hassan, R. A. Saeed et al., “Mobility
management schemes in NEMO to achieve seamless handoff:
a qualitative and quantitative analysis,” Australian Journal of
Basic and Applied Sciences, vol. 5, no. 6, pp. 390–402, 2011.

[31] C.-F. Lai, “A buffer-aware QoS streaming approach for SDN-
enabled 5G vehicular networks,” IEEE Communications
Magazine, vol. 55, no. 8, pp. 68–73, 2017.

Security and Communication Networks 21

https://arxiv.org/abs/1912.05744
https://arxiv.org/abs/2006.04595
https://arxiv.org/abs/1905.05075
https://arxiv.org/abs/1905.05075


[32] R. A. Saeed, R. Mokhtar, and S. Khatun, “Spectrum sensing
and sharing for cognitive radio and advanced spectrum
management,” ICGST International Journal on Computer
Networks and Internet Research (CNIR), vol. 9, no. 2,
pp. 87–97, 2009.

[33] H. Park and Y. Lim, “Reinforcement learning for energy
optimization with 5G communications in vehicular social
networks,” Sensor, vol. 20, no. 8, p. 2361, 2020.

[34] E. Bozkaya and B. Canberk, “Software-defined management
model for energy-aware vehicular networks,” EAI Endorsed
Transactions onWireless Spectrum, vol. 3, no. 11, Article ID
152099, 2017.

[35] Y. Zhao, “A survey of networking applications applying the
software defined networking concept based on machine
learning,” IEEE Access, vol. 7, pp. 95397–95417, 2019.

[36] T. n. Nguyen, “+e challenges in ML-based security for SDN,”
in Proceedings of the 2nd Cyber Security in Networking
Conference (CSNet), Paris, France, 2018.

[37] K. F. Hasan, “Cognitive internet of vehicles: motivation,
layered architecture and security issues,” in Proceedings of the
International Conference on Sustainable Technologies for In-
dustry 4.0 (STI), Bangladesh, India, 2019.

[38] C. Chen, “A rear-end collision prediction scheme based on
deep learning in the internet of vehicles,” Journal of Parallel
and Distributed Computing, vol. 117, pp. 192–204, 2017.

[39] L. T. Tan and R. Q. Hu, “Mobility-aware edge caching and
computing in vehicle networks: a deep reinforcement
learning,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 11, pp. 10190–10203, 2018.

[40] Z. Chang, “Learn to cache: machine learning for network edge
caching in the big data era,” IEEE Wireless Communications,
vol. 25, no. 3, pp. 28–35, 2018.

[41] Z. Ning, “Deep reinforcement learning for vehicular edge
computing: an intelligent offloading system,” Transactions on
Intelligent Systems and Technology, vol. 10, no. 6, 2019.

[42] H. Zhang, “Deep reinforcement learning-based offloading
decision optimization in mobile edge computing,” in Pro-
ceedings of the IEEE Wireless Communications and Net-
working Conference(WCNC), Marrakesh, Morocco, 2019.

[43] J. Wang, “Vehicular edge computing: a deep reinforcement
learning approach,” IEEE Transactions on Vehicular Tech-
nology, vol. 68, no. 5, pp. 4192–4203, 2018.

[44] H. Ye, “Machine learning for vehicular networks: recent
advances and application examples,” IEEE Vehicular Tech-
nology Magazine, vol. 13, no. 2, 2018.

[45] W. K. Lai, “A machine learning system for routing decision-
making in Urban vehicular ad hoc networks,” International
Journal of Distributed Sensor Networks, vol. 11, no. 3, Article
ID 374391, 2015.

[46] K. Hamid, “Artificial intelligence and internet of things for
autonomous vehicles,” Nonlinear Approaches in Engineering
Applications, Springer, 2020.

[47] J. Li, Survey on Artificial Intelligence for Vehicles; Automotive
Innovation, Springer, Berlin, Germany, 2018.

[48] C.-Y. Fana, “Using machine learning to forecast patent
quality–take “vehicle networking” industry for example,”
Transdisciplinary Engineering: A Paradigm Shift, vol. 5, 2017.

[49] J. Gu, “Introduction to the special section on machine
learning-based internet of vehicles: theory, methodology, and
applications,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 5, 2019.

[50] M. Wang, “Machine learning for networking: workflow,
advances and opportunities,” IEEE Network, vol. 32, no. 2,
pp. 92–99, 2017.

[51] J. de Hoog, “Improving machine learning-based decision-

making through inclusion of data quality,” in Proceedings of

the BNAIC/BENELEARN Computer Science, Brussels, Bel-

gium, 2019.
[52] J. Zerillil, “Algorithmic decision-making and the control

problem,” Minds and Machines, vol. 29, pp. 555–578, 2019.
[53] M. Usama, “Unsupervised machine learning for networking:

techniques, applications and research challenges,” IEEE Ac-

cess, vol. 7, pp. 65579–65615, 2019.
[54] S. Petros, “A survey on machine-learning techniques for

UAV-based communications; MDPI,” Sensors, vol. 19, no. 23,

p. 5170, 2019.
[55] S. Mozaffari, “Deep learning-based vehicle behavior predic-

tion for autonomous driving applications: a review,” IEEE

Transactions on Intelligent Transportation Systems, pp. 1–15,

2019.
[56] X. Fan, “A deep learning approach for next location pre-

diction,” in Proceedings of the 2018 IEEE 22nd International

Conference on Computer Supported Cooperative Work in

Design, Nanjing, China, 2018.
[57] H. Jiang, “Trajectory prediction of vehicles based on deep

learning,” in Proceedings of the 4th International Conference

on Intelligent Transportation Engineering, Singapore, 2019.
[58] F. Hussain, “Machine learning for resource management in

cellular and IoT networks: potentials, current solutions, and

open challenges,” 2019, https://arxiv.org/abs/1907.08965.
[59] M. Chen, “Artificial neural networks-based machine learning

for wireless networks: a tutorial,” 2019, https://arxiv.org/abs/

1710.02913.
[60] H. Yang, “Intelligent resource management based on rein-

forcement learning for ultra-reliable andLow-latency IoV

communication networks,” IEEE Transactions on Vehicular

Technology, vol. 68, no. 5, pp. 4157–4169, 2019.
[61] R. Abduljabbar, “Applications of artificial intelligence in

transport: an overview,” Sustainability, vol. 11, no. 1, p. 189,

2019.
[62] Y. Xing, “Driver activity recognition for intelligent vehicles: a

deep learning approach,” IEEE Transactions on Vehicular

Technology, vol. 68, no. 6, pp. 5379–5390, 2019.
[63] S. Grigorescu, “A survey of deep learning techniques for

autonomous driving,” 2020, https://arxiv.org/abs/1910.07738.
[64] Z. Peng, “Vehicle safety improvement through deep learning

and mobile sensing,” IEEE Network, vol. 32, no. 4, pp. 28–33,

2018.
[65] M. Abdallah, “Machine learning techniques in ADAS: a re-

view,” in Proceedings of the International Conference on

Advances in Computing and Communication Engineering

(ICACCE-2018), Paris, France, 2018.
[66] J. E. Ball and Bo Tang, “Machine learning and embedded

computing in advanced driver assistance systems (ADAS),”

Electronics, vol. 8, no. 7, p. 748, 2019.
[67] F. Zantalis, G. Koulouras, S. Karabetsos, and D. Kandris, “A

review of machine learning and IoT in smart transportation,”

Future Internet, vol. 11, no. 4, p. 94, 2019.
[68] M. Veres and M. Moussa, “Deep learning for intelligent

transportation systems: a survey of emerging trends,” IEEE

Transactions on Intelligent Transportation Systems, vol. 21,

no. 8, pp. 3152–3168, 2019.
[69] A. J. Howard, “Distributed data analytics framework for smart

transportation,” in Proceedings of the IEEE 20th International

Conference on High Performance Computing and

Communications, Exeter, UK, 2018.

22 Security and Communication Networks

https://arxiv.org/abs/1907.08965
https://arxiv.org/abs/1710.02913
https://arxiv.org/abs/1710.02913
https://arxiv.org/abs/1910.07738


[70] I. Lana, “From data to actions in intelligent transportation
systems: a prescription of functional requirements for model
actionability,” 2020, https://arxiv.org/abs/2002.02210.

[71] H. Nakayama, A. Jamalipour, and N. Kato, “Network-based
traitor-tracing technique using traffic pattern,” IEEE Trans-
actions on Information Forensics and Security, vol. 5, no. 2,
pp. 300–313, 2010.

[72] R. van der Heijden, “Security architectures in V2Vand V2I
communication,” in Proceedings of the 20th Student Confer-
ence IT, pp. 1–10, Enschede, +e Netherlands, 2010.

[73] S. Kurosawa, H. Nakayama, N. Kato, A. Jamalipour, and
Y. Nemoto, “Detecting black hole attack on AODV-based
mobile ad hoc networks by dynamic learning method,” In-
ternational Journal of Network Security, vol. 5, no. 3,
pp. 338–346, 2007.

[74] Y.-S. Shiu, S. Chang, H.-C. Wu, S. Huang, and H.-H. Chen,
“Physical layer security in wireless networks: a tutorial,” IEEE
Wireless Communications, vol. 18, no. 2, pp. 66–74, 2011.

[75] H. Hasrouny, A. E. Samhat, C. Bassil, and A. Laouiti, “VANet
security challenges and solutions: a survey,” Vehicular
Communications, vol. 7, pp. 7–20, 2017.

[76] B. Kannhavong, H. Nakayama, Y. Nemoto, N. Kato, and
A. Jamalipour, “A survey of routing attacks in mobile ad hoc
networks,” IEEE Wireless Communications, vol. 14, no. 5,
pp. 85–91, 2007.

[77] H. Nishiyama, D. Fomo, Z. M. Fadlullah, and N. Kato, “Traffic
pattern-based content leakage detection for trusted content
delivery networks,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 25, no. 2, pp. 301–309, 2014.

[78] H. Nakayama, S. Kurosawa, A. Jamalipour, Y. Nemoto, and
N. Kato, “A dynamic anomaly detection scheme for AODV-
based mobile ad hoc networks,” IEEE Transactions on Ve-
hicular Technology, vol. 58, no. 5, pp. 2471–2481, 2009.

[79] N. Nurelmadina, M. K. Hasan, I. Memon et al., “A systematic
review on cognitive radio in low power wide area network for
industrial IoT applications,” Sustainability, vol. 13, no. 1,
p. 338, 2021.

[80] J. Liu, Q. Li, R. Sun, X. Du, and M. Guizani, “An efficient
anonymous authentication scheme for internet of vehicles,” in
Proceedings of the IEEE International Conference on Com-
munications (ICC), Kansas City, MO, USA, 2018.

[81] I. Memon, R. A. Shaikh, M. K. Hasan, R. Hassan, A. U. Haq,
and K. A. Zainol, “Protect mobile travelers information in
sensitive region based on fuzzy logic in IoT technology,”
Security and Communication Networks, vol. 2020, Article ID
8897098, , 2020.

[82] S. Islam, A.-H. Abdalla, and M. Kamrul Hasan, “Novel
multihoming-based flow mobility scheme for proxy NEMO
environment: a numerical approach to analyse handoff per-
formance,” Scienceasia, vol. 43S, no. 1, pp. 27–34, 2017.

[83] R. Hassan, F. Qamar, M. K. Hasan, A. H. M. Aman, and
A. S. Ahmed, “Internet of things and its applications: a
comprehensive survey,” Symmetry, vol. 12, no. 10, p. 1674,
2020.

[84] C. Zhang, K. Chen, X. Zeng et al., “Misbehavior detection
based on support vector machine and dempster-shafer theory
of evidence in VANETs,” IEEE Access, vol. 6, pp. 59860–
59870, 2018.

[85] Z. Meng, “Security enhanced internet of vehicles with Cloud⁃-
Fog⁃Dew computing,”ZTECommunications, vol.15, no. S2, 2017.

[86] L. Song, G. Sun, H. Yu, X. Du, and M. Guizani, “FBIA: a fog-
based identity authentication scheme for privacy preservation
in internet of vehicles,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 5, pp. 5403–5415, 2020.

[87] J. Yakubu, “Security challenges in fog computing environ-
ment: a systematic appraisal of current developments,”
Journal of Reliable Intelligent Environments, vol. 27,
pp. 467–483, 2019.

[88] J. Pan, “Key enabling technologies for secure and scalable
future Fog-IoTarchitecture: a survey,” 2018, https://arxiv.org/
abs/1806.06188.

[89] M. K. Hasan, A. F. Ismail, S. Islam,W. Hashim,M.M. Ahmed,
and I. Memon, “A novel HGBBDSA-CTI approach for
subcarrier allocation in heterogeneous network,” Telecom-
munication Systems, vol. 70, no. 2, pp. 245–262, 2019.

[90] S. Islam, O. O. Khalifa, A. A. Hashim et al., “Design and
evaluation of a multihoming-based mobility management
scheme to support inter technology handoff in PNEMO,”
Wireless Personal Communications, vol. 114, no. 2,
pp. 1133–1153, 2020.

[91] M. K. Hasan, M. M. Ahmed, A. H. A. Hashim, A. Razzaque,
S. Islam, and B. Pandey, “A novel artificial intelligence based
timing synchronization scheme for smart grid applications,”
Wireless Personal Communications, vol. 114, no. 2,
pp. 1067–1084, 2020.

[92] J. Stilgoe, “Machine learning, social learning and the gover-
nance of self-driving cars,” Social Studies of Science, vol. 48,
no. 1, pp. 25–56, 2018.

[93] O. S. Al-Heety, Z. Zakaria, M. Ismail, M. M. Shakir, S. Alani,
and H. Alsariera, “A comprehensive survey: benefits, services,
recent works, challenges, security, and use cases for SDN-
VANET,” IEEE Access, vol. 8, pp. 91028–91047, 2020.

[94] S. H. Alrubaee, M. Ismail, M. A. Altahrawi, and B. B. Burhan,
“Filter bank multi-carrier modulation technique for vehicle-
to-vehicle communication,” Journal of Communications,
vol. 15, no. 7, 2020.

[95] A. Ghazvini, S. N. H. S. Abdullah, M. Kamrul Hasan, and
D. Z. A. Bin Kasim, “Crime spatiotemporal prediction with
fused objective function in time delay neural network,” IEEE
Access, vol. 8, pp. 115167–115183, 2020.

[96] M. Z. Ibrahim and R. Hassan, “+e implementation of in-
ternet of things using test bed in the UKMnet environment,”
Asia-Pacific Journal of Information Technology & Multimedia,
vol. 8, no. 2, pp. 1–17, 2019.

[97] E. Adi, A. Anwar, Z. Baig, and S. Zeadally, “Machine learning
and data analytics for the IoT,” Neural Computing and Ap-
plications, vol. 32, no. 20, pp. 16205–16233, 2020.

[98] T. Yuan, “Harnessing machine learning for next-generation
intelligent transportation systems: a survey,” in Proceedings of
the Computational Intelligence, Communication Systems and
Networks (CICSyN), Tetova, Macedonia, 2019.

[99] Syed Junaid Nawaz, “Quantum machine learning for 6G
communication networks: state-of-the-art and vision for the
future,” IEEE Access, vol. 7, pp. 46317–46350, 2019.

Security and Communication Networks 23

https://arxiv.org/abs/2002.02210
https://arxiv.org/abs/1806.06188
https://arxiv.org/abs/1806.06188

