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Abstract

1.	 Motion-activated	cameras	(“camera	traps”)	are	increasingly	used	in	ecological	and	
management	studies	 for	 remotely	observing	wildlife	and	are	amongst	 the	most	
powerful	tools	for	wildlife	research.	However,	studies	involving	camera	traps	re-
sult	in	millions	of	images	that	need	to	be	analysed,	typically	by	visually	observing	
each	image,	in	order	to	extract	data	that	can	be	used	in	ecological	analyses.

2.	 We	trained	machine	 learning	models	using	convolutional	neural	networks	with	 the	
ResNet-18	architecture	and	3,367,383	images	to	automatically	classify	wildlife	species	
from	camera	trap	images	obtained	from	five	states	across	the	United	States.	We	tested	
our	model	 on	 an	 independent	 subset	 of	 images	not	 seen	during	 training	 from	 the	
United	States	and	on	an	out-of-sample	(or	“out-of-distribution”	in	the	machine	learning	
literature)	dataset	of	ungulate	images	from	Canada.	We	also	tested	the	ability	of	our	
model	to	distinguish	empty	images	from	those	with	animals	in	another	out-of-sample	
dataset	from	Tanzania,	containing	a	faunal	community	that	was	novel	to	the	model.

3.	 The	trained	model	classified	approximately	2,000	images	per	minute	on	a	laptop	
computer	with	16	gigabytes	of	RAM.	The	trained	model	achieved	98%	accuracy	at	
identifying	species	in	the	United	States,	the	highest	accuracy	of	such	a	model	to	
date.	Out-of-sample	validation	from	Canada	achieved	82%	accuracy	and	correctly	
identified	94%	of	images	containing	an	animal	in	the	dataset	from	Tanzania.	We	
provide an r	 package	 (Machine	 Learning	 for	Wildlife	 Image	Classification)	 that	
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1  | INTRODUC TION

Camera	 traps	 are	 increasingly	 used	 to	 remotely	 observe	 wildlife	
over	large	geographical	areas	with	minimal	human	involvement	and	
have	made	considerable	contributions	to	ecology	(Howe,	Buckland,	
Després-	Einspenner,	&	Kühl,	2017;	O’Connell,	Nichols,	&	Karanth,	
2011;	Rovero,	Zimmermann,	Bersi,	&	Meek,	2013).	A	common	lim-
itation	 is	 these	 methods	 lead	 to	 a	 large	 accumulation	 of	 images	
which	must	be	first	classified	in	order	to	be	used	in	ecological	stud-
ies	 (Niedballa,	Sollmann,	Courtiol,	&	Wilting,	2016;	Swanson	et	al.,	
2015).	The	burden	of	manually	viewing	and	classifying	images	often	
constrains	studies	by	reducing	the	sampling	intensity	(e.g.,	number	
of	cameras	deployed),	limiting	the	geographical	extent	and	duration	
of	 studies.	 Recently,	machine	 learning	 has	 emerged	 as	 a	 potential	
solution	 for	 automatically	 classifying	 images	 from	 camera	 traps	
(Chen,	 Han,	 He,	 Kays,	 &	 Forrester,	 2014;	 Gomez	 Villa,	 Salazar,	 &	
Vargas,	2017;	Norouzzadeh	et	al.,	2018;	Swinnen,	Reijniers,	Breno,	
&	Leirs,	2014;	Yu	et	al.,	2013).

We	sought	to	develop	a	machine	learning	approach	that	can	be	
applied	across	study	sites	and	provide	software	that	ecologists	can	
use	 for	 identification	 of	wildlife	 in	 their	 own	 camera	 trap	 images.	
Using	over	 three	million	 identified	 images	of	wildlife	 from	camera	
traps	 from	five	 locations	across	 the	United	States,	we	trained	and	
tested	 deep	 learning	 models	 that	 automatically	 classify	 wildlife.	
We	 provide	 an	 r	 package	 (Machine	 Learning	 for	 Wildlife	 Image	
Classification	 [MLWIC])	 that	 allows	 researchers	 to	 classify	 camera	
trap	images	from	North	America	or	train	their	own	machine	learning	
models	to	classify	images.

2  | MATERIAL S AND METHODS

2.1 | Camera trap images

Species	in	camera	trap	images	from	five	locations	across	the	United	
States	(California,	Colorado,	Florida,	South	Carolina	and	Texas)	and	
one	location	from	Canada	(Saskatchewan)	were	identified	manually	
by	researchers	(see	Appendix	S1	for	a	description	of	each	field	loca-
tion).	Images	were	either	classified	by	a	single	wildlife	expert	or	eval-
uated	independently	by	two	researchers;	any	conflicts	were	decided	

by	a	third	observer	(Appendix	S1).	If	any	part	of	an	animal	(e.g.,	leg	
or	ear)	was	identified	as	being	present	in	an	image,	this	was	included	
as	an	image	of	the	species.	If	an	image	did	not	contain	any	animals,	it	
was	classified	as	empty.	The	images	from	Canada	were	not	used	for	
training,	but	were	used	as	an	out-	of-	sample	dataset	 for	validation.	
This	resulted	in	a	total	of	3,741,656	classified	images	that	included	
27	 species	 or	 groups	 (see	Table	1)	 across	 the	 study	 locations.	We	
present	 these	 images	 and	 their	 classifications	 for	 other	 scientists	
to	use	for	model	development	as	the	North	American	Camera	Trap	
Images	(NACTI)	dataset.	To	increase	processing	speed,	images	were	
resized	 to	 256	×	256	 pixels	 following	 the	 methods	 and	 using	 the	
Python	script	of	Norouzzadeh	et	al.	 (2018).	To	have	a	more	robust	
model,	 we	 randomly	 applied	 different	 label-	preserving	 transfor-
mations	 (cropping,	horizontal	 flipping,	and	brightness	and	contrast	
modifications),	 called	data	augmentation	 (Krizhevsky,	Sutskever,	&	
Hinton,	2012).

We	randomly	selected	90%	of	the	classified	images	for	each	spe-
cies	or	group	to	 train	 the	model	and	10%	of	 the	 images	 to	 test	 it.	
However,	we	wanted	to	evaluate	the	model’s	performance	for	each	
species	present	at	each	study	site,	so	we	used	conditional	sampling	
in	which	we	altered	training–testing	allocation	for	the	rare	situations	
(four	 total	 instances)	where	 there	were	 few	 classified	 images	of	 a	
species	at	a	site.	Specifically,	with	1–9	classified	images	for	a	species	
at	a	site	(two	instances),	we	used	all	of	these	images	for	testing	and	
none	for	training	(the	model	was	trained	using	only	images	of	these	
species	from	other	sites);	 for	site-	species	pairs	with	10–30	 images	
(two	instances),	50%	were	used	for	training	and	testing;	and	for	>30	
images	per	site	for	each	species,	90%	were	allocated	to	training	and	
10%	to	testing	(Appendices	S3–S7	show	the	number	of	training	and	
test	images	for	each	species	at	each	site).	This	resulted	in	3,367,383	
images	used	to	train	the	model	and	374,273	images	used	for	testing.

2.2 | Machine learning process

As	machine	learning	methods	are	new	to	many	ecologists,	we	pro-
vide	a	brief	 introduction	 in	a	supplement	 (Appendix	S2).	Following	
Norouzzadeh	 et	al.,	 we	 trained	 a	 deep	 convolutional	 neural	 net-
work	 (ResNet-	18)	 architecture	 (He,	 Zhang,	 Ren,	 &	 Sun,	 2016)	
using	 the	TensorFlow	 framework	 (Adabi	 et	al.,	 2016)	 using	Mount	

allows	the	users	to	(a)	use	the	trained	model	presented	here	and	(b)	train	their	own	
model	using	classified	images	of	wildlife	from	their	studies.

4.	 The	use	of	machine	learning	to	rapidly	and	accurately	classify	wildlife	in	camera	
trap	 images	can	facilitate	non-invasive	sampling	designs	 in	ecological	studies	by	
reducing	 the	burden	of	manually	 analysing	 images.	Our	r	 package	makes	 these	
methods	accessible	to	ecologists.

K E Y W O R D S

artificial	intelligence,	camera	trap,	convolutional	neural	network,	deep	neural	networks,	image	
classification,	machine	learning,	r	package,	remote	sensing
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Moran,	a	high	performance	computing	cluster	(Advanced	Research	
Computing	Center,	 2012).	We	 used	 the	 ReLU	 activation	 function,	
55	 epochs,	 a	 backpropagation	 algorithm	 of	 Stochastic	 Gradient	
Descent	with	Momentum	(Goodfellow,	Bengio,	&	Courville,	2016),	
and	the	learning	rate	(η)	and	weight	decay	varied	by	epoch	number	
as	described	in	Appendix	S8.

In	Appendix	S2,	we	describe	the	calculation	of	metrics	including	
accuracy,	recall,	precision	and	false-	positive	and	false-	negative	error	
rates.	Briefly,	recall	and	precision	are	measures	of	the	model’s	per-
formance	at	 correctly	 identifying	each	 species.	We	 fit	 generalized	
additive	models	(GAMs)	to	the	relationship	between	recall	and	the	
logarithm	(base	10)	of	the	number	of	images	used	to	train	the	model;	
see	Appendix	S9	for	a	description	of	this	model.	We	also	calculated	
the	recall	and	rates	of	error	specific	to	each	of	the	five	datasets	from	
which	images	were	acquired.

2.3 | Model validation

To	evaluate	how	 the	model	would	perform	 for	 a	 completely	 new	
study	 site	 in	 North	 America,	 we	 used	 a	 dataset	 of	 5,900	 classi-
fied	 images	 of	 ungulates	 (moose,	 cattle,	 elk	 and	 wild	 pigs)	 from	
Saskatchewan,	 Canada,	 by	 running	 the	 trained	 model	 on	 these	
images.	 We	 also	 evaluated	 the	 ability	 of	 the	 model	 to	 operate	

on	 images	 with	 a	 completely	 different	 species	 community	 (from	
Tanzania)	to	determine	the	model’s	ability	to	correctly	classify	im-
ages	as	having	an	animal	or	being	empty	when	encountering	new	
species	 that	 it	 has	 not	 been	 trained	 to	 recognize.	 This	was	 done	
using	 3.2	million	 classified	 images	 from	 the	 Snapshot	 Serengeti	
dataset	(Swanson	et	al.,	2015).

3  | RESULTS

Our	model	 performed	well,	 achieving	 97.6%	 accuracy	 of	 identi-
fying	the	correct	species	with	the	top	guess.	The	top-	5	accuracy	
was	>99.9%.	Figure	1	provides	examples	of	image	classification	by	
the	model.	 The	model	 confidence	 in	 the	 correct	 answer	 varied,	
but	was	mostly	>95%;	see	Figure	2	for	confidences	for	each	image	
for	three	example	species.	 In	Appendix	S10,	we	present	a	confu-
sion	matrix	comparing	the	classifications	by	the	model	with	those	
from	manual	classification.	Supporting	a	similar	finding	for	camera	
trap	 images	 in	Norouzzadeh	et	al.	 (2018),	 and	a	general	 trend	 in	
deep	 learning	 (Goodfellow	et	al.,	 2016),	 species	 and	 groups	 that	
had	more	 images	 available	 for	 training	were	 classified	more	 ac-
curately	(Figure	3,	Table	1).	GAMs	relating	the	number	of	training	
images	with	 recall	predicted	95%	recall	 could	be	achieved	when	

F IGURE  1 Examples	of	images	that	could	be	difficult	to	classify.	The	model	correctly	identifies	a	wild	pig	(a)	by	seeing	only	its	
hindquarters	and	tail	(right	side	of	image).	The	model	incorrectly	classifies	a	cattle	as	a	wild	pig	(b),	as	only	an	ear	is	visible	in	the	image;	note	
that	the	model	has	relatively	low	confidence	in	the	top	guess	for	this	image.	Nevertheless,	cattle	are	within	the	top-	5	guesses	for	this	image,	
so	while	it	is	incorrect,	it	counts	towards	the	top-	5	recall	for	cattle

Model Guess

Wild pig

Cattle

Empty

White-tailed deer

Moose

Confidence (%)

96.11

2.38

1.49

<0.1

<0.1

Model Guess

Wild pig

Cattle

Moose

Black bear

Bobcat

Confidence (%)

48.82

31.27

16.93

2.51

0.51

Answer from human classifiers: Wild pig Answer from human classifiers: Cattle

(a) (b)Correct classification by model Incorrect classification by model



     |  589Methods in Ecology and EvoluonTABAK eT Al.

approximately	 54,000	 training	 images	 were	 available	 for	 a	 spe-
cies	or	group.	However,	for	several	species	and	groups,	95%	recall	
was	achieved	with	fewer	than	50,000	images	(Figure	3).	We	found	
there	was	not	a	large	effect	of	daytime	versus	night-	time	on	accu-
racy	in	the	model	as	daytime	accuracy	was	98.2%	and	night-	time	
accuracy	was	96.6%.	The	top-	5	accuracies	 for	both	times	of	day	
were	 ≥99.9%.	When	we	 subsetted	 the	 testing	 dataset	 by	 study	
site,	we	 found	 that	 site-	specific	 accuracies	 ranged	 from	 90%	 to	
99%	(Appendices	S3–S7).

When	 we	 conducted	 out-	of-	sample	 validation	 by	 using	 our	
model	 to	evaluate	 images	of	ungulates	 from	Canada,	we	achieved	
an	overall	accuracy	of	81.8%	with	a	top-	5	accuracy	of	90.9%.	When	
we	tested	the	ability	of	our	model	to	accurately	predict	the	presence	
or	absence	of	an	animal	in	the	image	using	the	Serengeti	Snapshot	

dataset,	 we	 found	 that	 85.1%	were	 classified	 correctly	 as	 empty,	
while	94.3%	of	images	containing	an	animal	were	classified	as	con-
taining	an	animal.	Our	trained	model	was	capable	of	classifying	ap-
proximately	2,000	images	per	minute	on	a	Macintosh	laptop	with	16	
gigabytes	of	RAM.

4  | DISCUSSION

To	our	knowledge,	our	model	achieved	the	highest	accuracy	(97.6%)	
to	date	in	using	machine	learning	to	classify	wildlife	in	camera	trap	
images	(a	recent	paper	achieved	95%	accuracy;	Norouzzadeh	et	al.,	
2018).	This	model	performed	almost	as	well	during	the	night	as	dur-
ing	 the	 day	 (accuracy	=	97%	 and	 98%,	 respectively).	 We	 provide	
this	model	as	an	r	package	(MLWIC),	which	 is	especially	useful	for	
researchers	studying	the	species	and	groups	available	in	this	pack-
age	(Table	1)	in	North	America,	as	it	performed	well	(82%	accuracy)	
in	 classifying	 ungulates	 in	 an	 out-	of-	sample	 test	 of	 images	 from	
Canada.	 The	model	 can	 also	 be	 valuable	 for	 researchers	 studying	
other	 species	 by	 removing	 images	 without	 any	 animals	 from	 the	
dataset	before	beginning	manual	classification,	as	we	achieved	high	
accuracy	in	separating	empty	images	from	those	containing	animals	
in	a	dataset	from	Tanzania.	This	r	package	can	also	be	a	valuable	tool	
for	any	researchers	that	have	classified	images,	as	they	can	use	the	
package	to	train	their	own	model	that	can	then	classify	any	subse-
quent	images	collected.

The	 ability	 to	 rapidly	 identify	 millions	 of	 images	 from	 camera	
traps	can	fundamentally	change	the	way	ecologists	design	and	im-
plement	wildlife	studies.	The	burden	of	classifying	images	from	cam-
era	traps	has	led	ecologists	to	limit	the	duration	and	size	of	camera	
trap	studies	(Kelly	et	al.,	2008;	Scott	et	al.,	2018).	By	removing	this	
burden,	camera	traps	can	be	applied	in	more	studies	including	mon-
itoring	 invasive	or	 sensitive	 species,	 long-	term	ecological	 research	
and	small-	scale	occupancy	studies.
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