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ABSTRACT A steady rise has been observed in the percentage of elderly people who want and are still
able to contribute to society. Therefore, early retirement or exit from the labour market, due to health-
related issues, poses a significant problem. Nowadays, thanks to technological advances and various data
from different populations, the risk factors investigation and health issues screening are moving towards
automation. In the context of this work, a worker-centric, IoT enabled unobtrusive users health, well-
being and functional ability monitoring framework, empowered with AI tools, is proposed. Diabetes is a
high-prevalence chronic condition with harmful consequences for the quality of life and high mortality
rate for people worldwide, in both developed and developing countries. Hence, its severe impact on
humans’ life, e.g., personal, social, working, can be considerably reduced if early detection is possible,
but most research works in this field fail to provide a more personalized approach both in the modeling
and prediction process. In this direction, our designed system concerns diabetes risk prediction in which
specific components of the Knowledge Discovery in Database (KDD) process are applied, evaluated and
incorporated. Specifically, dataset creation, features selection and classification, using different Supervised
Machine Learning (ML) models are considered. The ensemble WeightedVotingLRRFs ML model is
proposed to improve the prediction of diabetes, scoring an Area Under the ROC Curve (AUC) of 0.884.
Concerning the weighted voting, the optimal weights are estimated by their corresponding Sensitivity and
AUC of the ML model based on a bi-objective genetic algorithm. Also, a comparative study is presented
among the Finnish Diabetes Risk Score (FINDRISC) and Leicester risk score systems and several ML
models, using inductive and transductive learning. The experiments were conducted using data extracted
from the English Longitudinal Study of Ageing (ELSA) database.

INDEX TERMS T2DM, long-term health risk prediction, machine learning, ensemble learning

I. INTRODUCTION

Diabetes, also known as diabetes mellitus (DM), is a chronic
disorder characterized by high blood glucose levels, due to
the inability of the pancreas to generate a sufficient quantity
of insulin (Diabetes Mellitus Type-1 (T1DM)) or the failure
of cells and tissues to utilize it (Diabetes Mellitus Type-2
(T2DM)) [1]. Apart from T1DM and T2DM, another type
is Gestational diabetes, which affects women and develops
during pregnancy. Since the prevalence of T2DM in ageing
population (i.e., elderly people) is rising [2], [3], the analysis
in the following sections focuses on such age group which
constitutes the participants in SmartWork. Some character-

istic signs and symptoms of high glucose include itching,
frequent fatigue, unexplained weight loss, excessive urina-
tion, dry mouth and increased hunger [4]. The prevention
and/or early diagnosis of diabetes is of high importance in
order to avoid or mitigate the serious lifetime complica-
tions including cardiovascular ailment, stroke, kidney failure,
ulcers in the foot, and eye complications etc [5], [6]. In
conventional healthcare, the patient demographic data, case
history, diagnostics and medication are manually managed
and maintained, which may lead to human errors and affect
patients suffering from chronic diseases. It is known that,
diabetes patients need to check their glucose level regularly
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or even continuously to make sure that their lifestyle (i.e.,
diet and physical activity) is the appropriate one to keep
glucose levels under control. There are many such medical
devices that facilitate the measuring of glucose levels from
the patients themselves.

Yet, the recent technological advances in networking,
namely mobile communications (e.g., 5G and beyond net-
working), Cloud Computing, Internet-of-Things (IoT), Arti-
ficial Intelligence (AI) and Machine Learning have increased
the number of internet-connected smart devices, such as
wearable sensors, and revolutionized the way the medical
industry operates. In fact, they paved the way to robust, fast
and smart systems, known as Internet of Medical Things
(IoMT), able to handle massive users data rapidly. IoMT with
smart sensors, smart devices and smart communication pro-
tocols facilitated the development of various smart systems
in the field of healthcare [7], [8], [9]. Such systems have
become essential as they are expected to eliminate human
intervention, thus significantly reducing human errors and
assisting medical experts in diagnosing the diseases easily,
remotely and accurately, by combining various data collected
from the monitoring devices over a sensor network with a
decision support system. In [10], authors conducted an ex-
tended literature review in different domains, such as clinical
decision support systems, wireless body area networks, cloud
computing and big data analytics, in which they identified
a positive impact in mobile healthcare for diabetes mellitus.
Recently, in [11], a smart healthcare framework for ambient
assisted living using IoMT and big data analytics techniques
was suggested.

In the special case of diabetes, smart devices measure the
glucose level of the patients and make it available in real-
time to the doctors through mobile or web applications. Au-
thors in [12] suggest a personalized recommendation system
to support diabetes management by the American Indians
patients themselves. Some other remote monitoring systems
for diabetic patients are mentioned in [13]. T2DM and other
chronic diseases monitoring can be enhanced with the im-
plementation of appropriate machine learning algorithms.
Machine learning and data mining methods constitute key
approach in T2DM research for extracting knowledge. The
severe social impact of T2DM renders it one of the main
priorities in medical research, which unavoidably generates
huge amounts of data. Hence, predictive analytics, machine
learning and data mining approaches in T2DM are of major
concern when it comes to diagnosis, management and other
related clinical aspects.

Machine learning approaches can be categorized as su-
pervised, semi-supervised and unsupervised learning. In the
context of this work, our focus is on supervised machine
learning methods with the aim to predict the risk of T2DM.
Supervised ML algorithms, and especially classification al-
gorithms, use a two-stage methodology for the pattern recog-
nition task. The first stage is dedicated to the develop-
ment/construction of the model using existing labeled train-
ing datasets, while the second stage involves the prediction

for new or unseen input datasets. During the training phase,
the annotated dataset, for which both the inputs (features)
and the outputs (classes) are known, is partitioned into two
sets (training and test), with the model being trained on the
training set and tested on the test set, and the performance of
the model being evaluated based on the correct predictions
made.

Predictive analytics [14], [15] is the process of learning
from historical data in order to make predictions about future
events. It is widely applicable to almost every domain, and
enhanced by the increasing availability of large volumes
of data. Statistical data analysis methods were the go-to
choice in predictive analytics, but when it comes to pattern
recognition in large data sets (e.g. dense time series), they are
consistently outperformed by ML algorithms, both in terms
of accuracy and scalability.

The individual risk of developing non-contiguous chronic
conditions is linked to controllable lifestyle behaviour. The
quantification of said risk is an important goal of prediction
analysis in healthcare [16], since, not only is it linked to
both the long-term well being of the individual, but is also
beneficial to social care systems. Recent research [17], [18]
has demonstrated that it is possible to use ML tools to predict
individual risk of hospitalization by only using data related
to socioeconomic features (age group, gender and race) and
behavioural data, without requiring clinical risk factors [19].
An extremely large number of ML algorithms and variations
exist, and there is no unique or widely applicable solution
for a specific domain or problem. As such, each particular
problem and prediction task requires performance evaluation
of multiple algorithms in order to identify the best performing
one [20].

Given that T2DM is a multifactorial chronic condition, it
requires adjustments in multiple aspects of a person’s daily
life in order to prevent it. For instance, alterations in dietary
habits and physical activity might be deemed necessary,
depending on their personal data. A person’s motivation is
important for the engagement and success of a digital health
personal intervention. It is highly unlikely that people, who
are used to a sedentary lifestyle, will suddenly adhere to
guidelines regarding physical activity and dietary restric-
tions, even if the digital health intervention systems dictates
it. Also, people, who do not need or want to change real-life
behaviour, will not use any application as intended. There-
fore, the motivation of the individual to be healthy, during
and outside working hours, is very relevant for SmartWork
System implementation. Previous studies performed in the
context of the SmartWork project were focused on assessing
individual/group motivation to be healthy (e.g. in the physical
activity domain) and various factors impacting on office
worker’s performance (e.g. sleep quality) [21], which are out
of the scope of the current work.

Motivated by the aforementioned challenges, the main
contributions of this work are summarized as follows:

• We describe the data-driven AI component of the Smart-
Work system, comprised of Personalized Predictive
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Models and Decision Support Tools. These sub-systems
implement long-term predictive models and data mining
techniques to provide probabilistic prediction of specific
risk indicators aiming at supporting decision making
and intervention for T2DM, among other chronic con-
ditions. A detailed description of the functional ability
modelling components and rules manager is elaborated
in Section 3.

• Although a multitude of potential prediction tasks for
several chronic diseases have been elaborated in the
system, the analysis here only concerns the long-term
T2DM risk prediction. For this case, various ML al-
gorithms are investigated for the selection of the best
performing model to be integrated in the SmartWork
system. In the scope of training the SmartWork predic-
tion models about T2DM (and other chronic diseases),
a subset of the ELSA longitudinal dataset is employed
to train the supervised algorithms for the assessment
of T2DM long-term risks. It is worth to mention that,
the generated dataset may contribute to the prognosis of
T2DM as we choose to monitor the features’ values of
users who, in reference waves, have not been diagnosed
with diabetes. Note that, the diabetic or non-diabetic
class label is indicated by the follow-up assessment after
2-years, as it is explained in Section 3.1.2.

• A comparative analysis of the trained models is per-
formed in relation to different performance metrics such
as AUC, Sensitivity (or Recall) and Specificity, to name
a few. Remark that, the sensitivity of the model is
quite important when comparing classification models,
as in T2DM case indicates the percentage of correctly
identified instances of diabetic class.

The remaining of this paper is structured as follows. In Sec-
tion II, we overview previous related studies. In Section III,
we introduce the proposed system architecture. In Section IV,
the design of the T2DM risk assessment system is described
in detail. In Section V, the system performance is evaluated.
Finally, concluding remarks and plans for our future work are
provided in Sections VI and VII.

II. RELATED WORK

As regards the T2DM risk prediction, there are several repre-
sentative works about the application of ML techniques and
moreover suggestions of derived risk scoring systems that
can be adopted on the early prognosis of diabetes. Further-
more, a number of intelligent systems have been developed
that enable the remote (continuous) monitoring for diabetic
patients, risk prediction and personalized health services,
based on the data collected from smart body sensors which
are given as input to ML models.

A. RISK SCORING AND MACHINE LEARNING IN T2DM

Up to date, an extensive research has been conducted from
the scientific community for diabetes detection. To this
end, several non-invasive risk score systems have been pro-
posed, such as FINDRISC, Latin America FINDRISC (LA-

FINDRISC) [22], Australian Type 2 Diabetes Risk Assess-
ment Tool (AUSDRISK) [23], Risk Test from American
Diabetes Association (ADA) [24], Leicester Practice Risk
Score [25], Test2Prevent , which proved to be an effective
screening tool to assess the risk of undiagnosed T2DM, espe-
cially in cases where confirmation tests data are not available.
However, a significant constraint is that most of them were
developed for particular populations and their performance
was not satisfactory when applied to other ones. Assum-
ing that fasting plasma glucose (FPG) or hemoglobin A1C
(hbA1c) testing or an oral glucose tolerance test (OGTT) data
is available, the diagnostic accuracy of the aforementioned
risk score systems can be verified [26]. Liu et al. in [18]
showed that the risk scoring systems can be combined with
other ML models, constructing ensemble learners, to improve
prediction performance.

Machine learning methods have gained popularity in the
research community for automating the risk prediction pro-
cess of T2DM, more accurately and with reduced medical
cost. Artificial neural networks (ANNs), Logistic Regression
(LR), Naive Bayes (NB), k-Nearest Neighbours (k-NN),
Random Forests (RFs), Decision Trees (DT), and Support
Vector Machines (SVMs), [27], [28] are the most popular al-
gorithms which can be utilized. Naz and Ahuja, in their work
[29], explore several of these models on the PIMA Indians
diabetes database, proposing a deep neural network (DNN)
able to achieve an accuracy of 98.07%. The classifiers can
be used either individually or as base classifiers for ensemble
(namely, stacking, voting, bagging etc.) algorithms [30], [31].
Ensemble learning aims to reduce bias and variance, and
thus, enhance the prediction performance.

The aforementioned models have been used in several
decision support systems for medical applications demon-
strating satisfactory predictive performance. The researchers,
in order to automate in an intelligent and effective way the
process of diabetes monitoring, resorted to solutions combin-
ing Information and Communication Technology (ICT) with
biomedicine. Such solutions are presented in the following
paragraphs.

B. SMART SYSTEMS IN DIABETES HEALTHCARE

In [32], an intelligent system consisting of smart devices
and sensors, and smartphones for monitoring diabetic pa-
tients, by means of machine learning algorithms, is elabo-
rated. The smart system collects data from body sensors and
makes diabetes diagnosis using several classification models
from supervised machine learning. As the experimental re-
sults show, the suggested algorithm, namely the sequential
minimal optimization (SMO), behaves better in terms of
classification accuracy, sensitivity and precision than other
well-known algorithms, i.e., Naive Bayes, J48 [33], ZeroR,
OneR, Logistic, Random Forests). Another intelligent system
is suggested in [34] for the remote monitoring of diabetic
patients health through smartphones and other smart portable

0https://www.idf.org/type-2-diabetes-risk-assessment/
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devices. They designed a small portable device capable of
measuring the blood glucose level for diabetics and body
temperature which could be connected with a smartphone
through a secure wireless mechanism.

Also, in [35] a smart health monitoring architecture is rec-
ommended for diabetic patients to monitor symptoms/signs
regarding blood sugar level, heart pulse, food intake, sleep
time and exercise. A sensors network is feeding continuously
the input of the system with data which are then utilized as in-
put to a neural network. The health risk levels range from low,
medium and high to extreme, depending on patient’s profile
and health historical data. Moreover, if a patients health status
is at high or extreme risk, an automatic notification (such
as, phone call and/or SMS) is being sent to his/her relative
with information about his/her location. Besides, in case of
very high risk, the system communicates with the nearest to
patient hospital.

The scientific work in [36] suggests several new wearable
devices, such as smart neck band, smart wrist band and a pair
of smart socks - to continuously monitor the health status of
diabetic patients. The sensors of these devices report patient’s
food intake, heart rate, skin moisture, ambient temperature,
walking patterns and weight gain/loss. With the help of
controllers, these devices transmit sensors data via Bluetooth
to the Mobile App. Machine Learning is employed to predict
the variations in patient health status and alert them.

Moreover, there are many proposals for remote health
monitoring of older persons [37], [38], [39]. Understanding
and improving age-friendly living and working environments
is an enormous challenge that today’s societies have only just
begun to approach. As the number of older people who are
active members of society and want to live independently
continues to rise, the importance of this research area con-
stantly increases. The overall objective of the SmartWork
system [40] is to support office workers remain profession-
ally active as they grow old, in a holistic way, by design-
ing, implementing and validating the system in real-world
settings.

III. THE SMARTWORK

In the core development of the system, a worker-centric
AI module [41] supports the sustainability of work skills,
combining unpretentious and ubiquitous sensing and flexible
worker-status aware job support. In addition, the careful and
systematic monitoring of personal health, lifestyle, cognitive
and emotional state of the worker makes it possible to de-
termine the likelihood of functional and cognitive decline.
By combining all aspects of the older workers’ profile, a
decision support system will enable triggering personalized
interventions in order to maintain the work ability of the user.
More specifically, the automatic creation and maintenance
of the personalized virtual user model considers adaptation
levels that consist of two layers: initialization of the user
profiles based on generic group modelling derived through
the observation of common patterns and characteristics of
populations (e.g. gender, age group chronic conditions), and

personalized models based on the monitored characteristics
of a specific user (e.g. stress, emotions, activity, nutrition
etc.). Based on the synchronous and asynchronous analysis
of the data collected by the Smartwork sensing system, the
initial user profiles are evolving to personalized user models.

It should be pointed out, here, that the problem of interest
in this work is to emphasize on Long-Term Health Risk
Assessment related to diabetes that statistically affects people
older than fifty, which may suffer from hypertension, high
cholesterol or heart disease as well.

A. SYSTEM ARCHITECTURE

Considering that the whole system is dynamically capturing
the evolving state of the worker and the context of work
and working environment (e.g. work task resources require-
ments), the office worker profile aspects are constantly moni-
tored and analyzed using various services and agents. In more
detail, the AI software tools package consists of a set of mod-
ules (Figure 1) dedicated to initialize the first user profiles,
match them to lifestyle and behavioral patterns, continuously
monitor, self-adapt and trigger interventions relevant for the
work and health self-management of the office worker. In
the following paragraphs, we will briefly elaborate on the
different modules whose results are fed on to the module
that performs Long-Term Health Risk Assessment in order
to derive a predictive score reflecting the overall risk of the
individual to experience the T2D chronic disease, which may
result in early exit from the market labor.

The User Profile Initialization process takes place at the
user’s first contact with the SmartWork system, and it con-
cerns collection of data regarding socio-demographic char-
acteristics and lifestyle attitudes of the user, such as age,
gender, marital status, education level, physical activity fre-
quency, drinking and smoking status, etc. The user’s history
of diagnosed chronic conditions, including diabetes, asthma,
high blood pressure, cholesterol and cardiovascular diseases
is also assessed. Once the profile is completed, based on this
initial data provided by the user, the prediction models are
used to initialize the Long-term Cognitive Capacity Assess-
ment and the Long-Term Health Risks Assessment modules.

Another important module is the Rules Manager Service
(RMS), which is the software package implementing the dif-
ferent sub-modules needed in order to systematically monitor
and activate the triggering of the SmartWork interventions
in respect to the primitive or derived virtual user model
data. The SmartWork continuously monitors a wide range of
variables regarding the users’ lifestyle, functional, cognitive
and work ability status, which represent input for the RMS,
either in the form of original raw data or as processed
information generated by the SmartWork pre-processing al-
gorithms, statistical analysis tools and ML-based prediction
models. Although a series of physiological parameters are
monitored, which are related to user’s health status, it is
important to mention that the SmartWork does not aim to
provide any diagnostics, treatment or cure, but rather aims
to provide the user with advice, guidance and suggestions
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FIGURE 1: AI Tools Software Modules and Interconnections.

that can lead behavioural changes aiming to improve his/her
overall health and work ability in alignment with the princi-
ples of professionally active and healthy ageing. The basic
sub-modules of the RMS are the Rules Manager Daemon,
the Run-Time Expression Evaluator and the Rules Manager
Control Interface. The Rules Manager Daemon (RMD) is the
main micro-service around which the RMS is designed. In
practice, the RMD acts as an integrated server that orches-
trates the real-time monitoring and evaluation of the user
model variables against specific rules in order to identify
the accomplishment of conditions that may trigger associated
interventions. At the core of the RMD micro-service algo-
rithm, the run-time Expression Evaluator performs logical
and arithmetic operations dynamically based on the virtual
user profile variables, thus evaluating the accomplishment
of triggering conditions in the defined rules, and providing
the RMS with a higher level of abstraction and the ability
to evaluate complex expressions based on the available input
variables.

The Rules Manager Control Interface (RMCI) is a web
application designed to provide a convenient solution for
the generation and management of intervention triggering
rule sets which are then passed to RMD micro-service to
populate the Rules Table. It is a multi-user environment, able
to administer different user privilege levels that can have
specific access on each virtual user profile dynamic rule set
settings. The RMS has a client-server architecture and the

RMCI was built as a stand-alone client application which
can be used by the end users through a web browser or as
a desktop application.

The next sections provide the necessary background
knowledge for the remainder of the paper. In following,
useful definitions and notations will be recorded under the
problem definition and formulation, with the most charac-
teristic being the dataset preparation and Machine Learning
components under the investigating issue.

IV. LONG-TERM DIABETES RISK ASSESSMENT

A. PROBLEM DEFINITION

Chronic diseases are diseases that cannot be cured but can
be controlled and thus they require continuous monitoring
and acute care to avoid critical conditions. Diabetes is a
chronic disease that occurs when the pancreas is no longer
able to produce insulin, or when the body cannot make good
use of the insulin it produces. Insulin is a hormone that lets
glucose from the consumed food pass from the blood stream
into the cells to produce energy. Not being able to produce
insulin or use it effectively leads to raised glucose levels in
the blood, also known as hyperglycemia. Over the long-term,
high glucose levels are associated with damage to the body
and failure of various organs and tissues. Although there is
more than one type of diabetes (e.g. type 1 diabetes, type 2
diabetes, gestational diabetes), prevalence of type 2 diabetes
amongst the older people is particularly high overall and in
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comparison with prevalence of other types of diabetes [42].
T2DM usually affects adults, but it can begin at any time in
people life. The main risk factors [43], [44], [45] that are
correlated to the occurrence of T2DM include:

• Age: is one of the most important risk factors for dia-
betes, as older people have a higher risk to get type 2
diabetes.

• Obesity/ High Body Mass Index (BMI): increased BMI,
and consequently obesity, is a top risk factor for type 2
diabetes.

• Impaired glucose tolerance, also known as prediabetes,
is a milder form of type 2 diabetes, which is usually
diagnosed with a simple blood test, and represents a
high risk for the individual to develop T2DM.

• Ethnicity/Race: prevalence of diabetes is overall higher
in the case of Hispanic/Latino Americans, African
Americans, Native Americans, Asian-Americans, Pa-
cific Islanders, and Alaska natives.

• Gender: male/female
• Gestational diabetes: this short-term condition that may

occur during pregnancy, raises a women’s chances of
getting type 2 diabetes later in life.

• Polycystic ovary syndrome (PCOS): women with poly-
cystic ovary syndrome have a higher risk to develop
T2DM.

• Family history: if a parent/sibling has diabetes, then risk
of getting type 2 diabetes is increased.

• Physical Activity: sedentary persons are at higher risk
of developing T2DM.

• Smoking: smoking is associated with a higher risk of
T2DM.

• High Blood Pressure (HBP): it is a high-risk factor for
developing T2DM.

• Alcohol: although moderate drinking is associated with
a lower risk of, excessive alcohol intake is associated
with an increased risk of type 2 diabetes.

Many studies aimed at long-term risk prediction for
diabetes, including also different regression models for
predicting glucose regulation for those already diagnosed
with prediabetes or type 2 diabetes. However, the main
goal of long-term diabetes risk prediction tools is to de-
velop and validate a diabetes risk assessment score for
healthy/undiagnosed participants based on main risk factors,
including socio/demographic data, lifestyle, and simple an-
thropometric measures.

In SmartWork, a long-term risk prediction model for
T2DM based on ML approaches is implemented, which takes
into account a large number of risk factors which are usually
employed by the screening tools used in medical practice, but
also some factors which have shown high correlation based
on our study with the ELSA dataset as shown in Tables 1 and
9. In order to test our model, we selected the FINDRISC [46],
Leicester [25] Diabetes Risk Scores to apply it in parallel
to the training and test dataset. The Leicester Practice Risk
Score was developed by researchers within the Diabetes

Research Centre at the University of Leicester and the score
identifies people who may be at high risk of developing
diabetes in the future (e.g. next 10 years) or currently having
undiagnosed T2DM or prediabetes, taking into account the
following risk factors: age, gender, BMI, ethnicity, family
history of diabetes and diagnosis of high blood pressure or
anti-hypertensive drugs use. In order to compare the results
of the FINDRISC and Leicester risk classification to the ML
prediction models, we fit Logistic Regression models to our
data and estimate the probability an instance to be classified
as "Diabetics" or “Yes” and "Non Diabetics" or "No".

The English Longitudinal Study of Ageing [47], which is
a rich resource of information on the dynamics of health,
social well being and economic circumstances in the English
population aged 50 and older, has currently reached wave 9
of longitudinal data collection (e.g. covering a period of 18
years) and it is designed to be used for the investigation of
a broad set of topics relevant to understanding the ageing
process. The database contains both objective and subjective
data related to health, disability, and healthy life expectancy,
with specific data being assessed by a nurse every four years.
In the scope of training the Smartwork prediction models,
the waves at which nurse collected data are available are of
particular interest, as these include physical examination and
performance data and blood tests (e.g. height and weight,
waist and hip circumference, blood pressure, lung function,
total and DHL-cholesterol, etc.). Note that, these waves are
considered reference waves in Smartwork.

B. METHODS

We assume a training set TR of size M , a test set TS
of size N and a categorical variable c which captures the
class label of an instance i in ELSA Database. Under
the investigating problem, it has two possible states, e.g.,
c = ”Diabetic”or”1” or c = ”NonDiabetic”or”0”.
The features vector of an instance i is denoted as f i =
(

fi1, fi2, . . . , fiF
)

.
Our aim is to achieve high sensitivity and Area Under

Curve through the supervised machine learning, meaning that
the Diabetic class can be predicted correctly. The proposed
methodology for T2DM prediction consists of the following
steps which are explained in detail below.

1) Data preprocessing

The raw data quality may be degraded either due to miss-
ing values and/or noisy and inconsistent data, so the final
results-predictions quality may be low as well. Therefore, is
necessary, processing, including redundant values reduction,
feature selection and discretization of data to make it more
appropriate for data mining and analysis.

In the proposed framework, missing or null values were
dropped, rather than imputed by the mean values of the
attributes as in [48], only for the specific features that are
used for the fitting of FINDRISC [46] and Leicester [25] risk
inspired models (see Section V), since it is impossible for the
logistic regression to reasonably deal with missing values.
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However, in case of ML all of the rest of the selected features
were considered as is, given that the missing values can be
handled by them.

Also, data is not always in appropriate form to be fed
into a machine learning algorithm, e.g. plain text feature
values may cause problems during the learning process, or
data may be represented in different scales. Hence, feature
transformation from one format to another is necessary. Some
relevant techniques include the standardization or Z-score
normalization which re-scales the attributes for achieving
standard normal distribution with zero mean and unit vari-
ance. Also, in this research work, several categorical and
ordinal features are considered, further details concerning the
ordering of the categories and the discretized values for each
one are shown in Table 9. Also, another reason for applying
features transformation is to reduce the dimension of the
features to boost the training stage or improve the accuracy
of a specific ML model.

2) Feature Selection

It is common knowledge that, the accuracy of the classifiers
improves with the increase of the attributes dimension until
the optimal number of features is reached. Adding more
features on the same sized training dataset can often lead to
classifier performance degradation, which is known as the
curse of dimensionality. Ultimately, this indicates that the
number of samples an ML model needs to achieve a given
level of accuracy should grow exponentially with respect to
the number of input features (i.e., dimensionality) to avoid
overfitting (inability to generalize). Feature selection consti-
tutes a core component in building accurate and reliable pre-
diction models in machine learning, as it can highly impact
the training of the selected model and thus, its performance.
Feature selection is defined as the process of identifying
the most relevant features in a dataset. This way the most
significant or relevant ones are considered, namely, these
ones which contribute much to the target variable, with the
aim to improve or boost the model accuracy. Such methods
can be classified as Filter, Wrapper and Embedded [49].

The Filter category includes information gain, chi-square
test, fisher score, correlation coefficient and variance thresh-
old. Among the traditional state-of-art filter methods, Pear-
son coefficient was selected. Its values vary between -1
(higher negative correlation) and 1 (higher positive cor-
relation) that indicate the linear dependency between two
features. Hence, if coefficient value is closer to 0 implies
weaker correlation, while zero coefficient value implies no
correlation. Pearson coefficient [50], denoted as pc, is defined
as:

pc =

∑M

i=1
(fim − f̄m)(fin − f̄n)

√

∑M

i=1
(fim − f̄m)2

∑

(fin − f̄n)2
(1)

where fim, finf̄im, f̄in denote features m,n and mean values
of them on dataset, respectively.

The feature selection depends on user defined threshold
value about pc. For example, in diabetes case, haemoglobin
help clinicians to estimate the average blood sugar levels over
a period of weeks or months thus, pc is expected to be close
to 1, implying that it is highly correlated with blood glucose.

From the Wrapper feature selection methods, a simple and
often used is the forward/backward stepwise selection [51].
The former refers to a search that begins with an empty set
of features and which are added one by one, while the latter
works conversely, i.e., it begins with all features which are
removed gradually, one by one. From the Wrapper methods,
stepwise backward with Naive Bayes, Logistic Regression
and Decision Tree ML models were investigated. Although it
is more accurate than the Filter methods, it is computationally
expensive, since it applies an iterative greedy search process.

Moreover, the Embedded methods include regularization
based techniques with L1 regularization or LASSO (Least
Absolute Shrinkage and Selection Operator) and L2 regular-
ization or Ridge be the most representative. These methods
have built-in penalization functions to reduce overfitting con-
trary to Ordinary Least Squares (OLS), which would overfit
the data [52]. From the Embedded methods, in the experi-
ments, LASSO method will be applied, due to its simplicity
(lower complexity) and better interpretability than Ridge.
Consider that, the aim of feature selection is not only to
improve the accuracy, but also to increase the interpretability
and reduce the complexity and training time of the ML
model.

The LASSO or penalized least squares regression with L1-
penalty function has the form of

Loss =
M
∑

j=1

(yi − a0 −
F
∑

i=1

aifji)
2 + λ

n
∑

i=1

|ai| (2)

where y is the output (target) variable for the prediction,
f1, f2, . . . , fF are the features that decides the value of
y, a0 is the bias, a1, a2, . . . , aF are the weights attached
to f1, f2, . . . , fF , respectively and λ is the regularization
parameter that controls the significance of the regularization
term.

The initial features, considered for the training of the ML-
based models, included over 100 variables collected from
those at the reference waves of ELSA dataset. Also, a group
of variables related to the FINDRISC [53] and Leicester
questionnaires were included such as, variables representing
gender, age, race, physical activity (at least 30 min during the
day), fruit and vegetable consumption as well as keeping a
track of medical history including the history of antihyper-
tensive drug treatment, history of high blood glucose levels.
To evaluate the performance of ML models, feature impor-
tance was established using some of the feature selection
techniques discussed in Section IV-B2. Moreover, Tables 1
and 9 describe the variables considered in the various feature
selection methods.

The features in relation to LASSO, Correlation and Greedy
Stepwise with Backward Selection under three different clas-
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TABLE 1: Features Information

Feature Name Feature Description Feature Name Feature Description
wstval Valid Mean Waist (cm) hlthlm Health problem limits work
chol Blood total cholesterol level

(mmol/l)
adlwa ADLs (bathe, dress, and eat)

fglu Glucose level (mmol/l) lbrfe Labor force status
sys Blood pressure systolic reading

(mmHg)
finea Fine motor index: picking up a 5p

coin, eating, and dressing activities
hbA1c Glycated haemoglobin level(%) physActive Is physically active
workl65 Self-reported probability of having

a work limiting health problem be-
fore age 65

raeducl Education level

dias Blood pressure diastolic reading
(mmHg)

AgeGroup Belonging age group

workat Self-reported probability of work-
ing full-time after a specific age

jphysa Level of physical effort at current
job

cfood1m Amount spent weekly on food con-
sumption outside house

jpress Work stress - under pressure due to
workload

liv10 Self-reported probability of living to
a specific age

hipe Ever had hip fracture

drinkde Days/week drinks cesd Mental health: the respondent’s
feelings much of the time over the
week prior to the interview

ldl LDL level (mmol/l) mstat Marital Status
cfoodi Amount spent weekly on food con-

sumption inside house
arthre Ever had arthritis

itot Total family income work Currently working for pay
everHighGlu Ever have high glucose fcntf Social activity - weekly contact with

friends
bmicat BMI category iadlza IADLs: using the phone, managing

money, taking medications, shop-
ping for groceries, preparing hot
meals

weight Weight in (Kg) Gender Belonging gender
estwt Nurse measured weight (Kg)-final

estimated
hchole Ever had high cholesterol

shlt Self-report of health rcntf Social activity - weekly contact with
relatives

trig Triglycerides level (mmol/l) psyche Ever had psychological problem
grossa Gross motor index: walking 100

yards, walking across a room,
climbing one flight of stairs, getting
in or out of bed, and bathing activi-
ties

smoken Smokes now

hdl HDL level (mmol/l) hearte Ever had heart problems
mobilb Mobility index: walking 100 yards,

walking across a room, climbing
one flight of stairs, and climbing
several flights of stairs activities

stroke Ever had stroke

HBP Ever had high blood pressure smokev Smoke ever
hemda Taking high blood pressure medica-

tion
cancre Ever had cancer

lgmusa Large muscle index: sitting for 2
hrs, getting up from a chair, stoop-
ing, kneeling or crouching, and
pushing or pulling large objects ac-
tivities

parkine Ever had Parkinson disease

adla ADLs: bathe, dress, eat, getting
in/out of bed, walking across a room

asthma Ever had asthma disease

relhite Reliability of standing height ac-
cording to nurse

catrctf Ever had cataracts

eatVegFru Tablespoons ate yesterday work2 Works at second job
lunge Ever had lung disease demene Ever had dementia
memrye Ever had memory problems
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sifiers are listed below:

• LASSO: wstval, chol, fglu, sys, hbA1c, workl65, dias,
workat, cfood1m, liv10, drinkde, ldl, cfoodi, itot

• Correlation: hba1c, everHighGlu , wstval, bmi, bmicat,
fglu, weight, estwt, shlt, trig , sys, grossa, hdl , mobilb,
HBP, sys, drinkde, hemda, lgmusa, adla, hlthlm, adlwa,
lbrfe, finea, physActive, raeduc, AgeGroup, ldl, chol,
drink, jphysa, jpress, hipe, liv10, cesd, mstat, arthre,
cfoodo1m, work, dias, fcntf, iadlza, Gender, hchole,
rcntf, psyche, smoken, hearte, stroke, smokev, can-
cre, parkine, asthma, relhite, catrctf, eatVegFru, work2,
lunge, demene, memrye

• Greedy Stepwise with Logistic Regression (GSW-

LR): cesd, HBP, AgeGroup, hchole, parkine, hipe, bmi-
cat, weight, physActive, drinkde, smoken, itot, cfoodi,
work, wstval, chol, trig, dias,sys, fglu, hba1c, everHigh-
Glu

• Greedy Stepwise with Naïve Bayes (GSW-NB): Race,
raeducl, mstat, HBP, AgeGroup, bmicat, physActive,
drinkde, smoken, fcntf, work, jphysa, wstval, chol, ldl,
trig, sys, fglu, hba1c, hemda, everHighGlu

• Greedy Stepwise with Decision Trees (GSW-DT):
mstat, hlthlm, adla, adlwa, lgmusa, finea, cesd, HBP,
cancre, lunge, hearte, stroke, psyche, arthre, asthma,
hchole, catrctf, bmi, bmicat, physActive, drink, drinkde,
smokev, smoken, cfoodi, cfoodo1m, rcntf, fcntf, work,
work2, jpress, workl65, estwt, wstval, hdl, ldl, sys, dias,
fglu, hba1c, hemda, everHighGlu

All selected ML models were trained with the same fea-
tures (i.e., risk factors) derived from the GSW-NB feature
selection method, excluding the irrelevant by the literature
features fcntf and work. As the feature selection process is
a highly empirical one, GSW-NB was selected as it shares
the most common variables with the rest selection methods,
which are also inline with the literature. In addition to these,
we also included the variables shlt, hlthlm, mobilb, lgmusa,
grossa, finea, hearte, psyche, itot, cfoodo1m, estwt, hdl,
dias, eatVegFru and Gender as these capture risk factors or
signs that are actually considered in diabetes detection by
the literature. The resulting feature set was constructed by
the above 34 features plus the ELSA derived class feature
rYdiabe which indicates if a subject is actually diabetic.

3) Machine Learning Models

Let recall that, in the context of this work, we investigate the
problem of T2DM prediction on ELSA database with various
machine learning models. As a first approach, the problem
is managed using single classifiers as independent entities.
Then, ensemble learning based on majority voting, either
weighted or not, and stacking is employed. All of them are
compared in order to evaluate the appropriate one for diabetes
prediction.

Some well-known classification methods, considered in
this work, are Naïve Bayes, Decision Trees [33], Random
Forests [54] and Logistic Regression [17], [55]. Finally two

FIGURE 2: Ensemble Learning with Voting.

of them, with similar success according to AUC and Sensitiv-
ity metrics, are utilized as base-learners and their outputs are
combined to define the final prediction score, adopting differ-
ent ensemble learning approaches, namely majority voting,
weighted voting and stacking. Here, it should be noted that,
the key difference between voting and stacking lies in the
final aggregation. Although in voting, appropriate weights
are utilized to combine the classifiers predictions, in stacking
the aggregation is performed by using a meta classifier. In
following, useful information about the adopted models will
be described.

a: Single Learning

1) Naive Bayes: It is a simple but powerful algorithm for
classification, since it is based on conditional probabil-
ity. It is an appropriate solution for unbalanced data and
missing values. It uses Bayes theorem to calculate the
posterior probability [56] as:

P (c|f) =
P (c)P (f |cj)

P (f)
, (3)

where c = 0, 1, P (c|f) is the Posterior Probability,
P (c) is the class Prior Probability, P (f |c) is the Like-
lihood and P (f) is the Predictor Prior Probability.

2) Decision Trees: They build classification model in the
form of tree structure by breaking dataset into smaller
subsets and simultaneously developing the associated
decision tree. The decision tree is a top-down structure
with one root node, and it splits the branches which
have parent–child relationship. The tree includes a root
node, some leaf nodes that represent any classes and
internal nodes representing test condition.
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3) Random Forests: It constitutes a classification method
that creates many decision trees on different instances
to perform prediction and regression. Each decision
tree in RFs will export its own classification result and
vote, and then the final output of the RFs will be the
one that most trees agree. Moreover, it has a significant
role in ensemble machine learning and is commonly
applied in various research areas, such as bio-medicine.
The final output is computed as

Ĉ =
1

R

R
∑

r=1

Ĉr(f), (4)

where Ĉ stands for the final tree prediction; R is the
total number of trees, r represents the index of the
current decision tree and f is the training instance.

4) Logistic Regression: It is a classification algorithm,
used for categorical variables in nature and especially
when the output of the data is binary. The diabetes
model has one binary output variable, in which p =
P (Y = 1) denotes the probability an instance to
belong in "Diabetics" class, so 1 − p = P (Y = 0)
stands for the probability an instance to belong in "Non
Diabetics" class. The linear relationship between log-
odds with base b and model parameters βi is as follows:

logb(
p

1− p
) = β0 + β1f1 + . . .+ βpfF (5)

b: Ensemble Learning

1) Majority Voting: Assuming a set of K ensemble
models the output of the ensemble, in simple majority
voting (Figure 2), can be outlined with the following
equation:

max
K
∑

k=1

Pk,c, (6)

where c = 0, 1. The classification, based on majority
voting, can be approached as either hard or soft voting.
The former (hard voting) sums the predictions for
each class label and predicts the class label with the
most votes. The latter (soft voting) sums the predicted
probabilities for each class label and predicts the class
label with the largest probability. Here, soft voting is
adopted. Nonetheless, since the base classifiers in an
ensemble may not perform equally well, it would be
more efficient to weight each classifier soft vote.As it
will be seen next, weighted majority voting is com-
pared with majority voting in terms T2DM long-term
risk prediction.

2) Weighted Majority Voting: Given w1, w2, , . . . , wK ,
where wk ≥ 0 and wk ≤ 1 for i = 1, 2, . . . ,K
that represent the weight with which the corresponding
classification model contributes to the final output, the

final prediction class for each test instance is done
based on the highest weighted soft votes.

max
K
∑

k=1

wkPk,c, (7)

where c = 0, 1 denotes the label of the correspond-
ing class. The main issue in weighting schemes is
how to appropriately determine the optimal weights
of the classifiers, which can strongly influence the
performance of the ensemble. In this study, the genetic
algorithm NSGA-II for multi-objective optimization
[57] is considered in order to determine the optimal
weights and construct a prediction model with high
both AUC and Sensitivity.

3) Stacking: It is an ensemble learning technique that
employs multiple classification ML models and com-
bines them in a meta-classifier. The base models are
trained based on a complete training set, then, the meta-
model is trained on the outputs of the base models as
features. In the base level, different learning algorithms
can be applied and, therefore, stacking ensembles are
often heterogeneous. Such an approach is considered
in this work. Specifically, the stacking ensemble will
consist of Random Forests and Logistic Regression as
base classifiers, whose predictions are combined by
Random Forests as a meta-classifier.

V. EXPERIMENTATION

A. TRAINING AND TEST DATASET

The training and test dataset for the T2DM risk prediction
models is a subset of the ELSA database, which consists of
reference waves 2, 4 and 6 as baseline and the respective
waves 3, 5, and 7 for the 2-years follow-up assessment.
Although the number of participants in ELSA waves selected
as reference one (namely waves 2, 4, and 6) is very large,
initially we drop out participants that already have diagnosed
diabetes at reference waves and participants that did not take
the interview at both, the reference and the corresponding
follow-up wave. In Tables 2,3, the distributions of selected
participants that satisfied the above criteria, per age group
are presented.

As shown in Table 2, the distributions of selected par-
ticipants, however, correspond to an unbalanced dataset, as
they do not relate to prevalence of diabetes for these age
groups, as they have been reported at country level and at
European level. The proportion of older people who have
diabetes increases with age: 9% of people aged 45 to 54
have diabetes, but for over 75s the percentage increases to
aproximately 24%. Taking into account these findings, we
balanced the dataset using random undersampling [58] in
order to reach a 9%, 12%, 15%, 18%, 21% and respectively
24% of participants with diabetes at the 2-years follow-up for
the selected age groups.

The demographics and some health-related characteristics
of the participants per age group and gender in the balanced
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TABLE 2: Distribution per age group of newly diagnosed diabetes at 2-years follow-up in the original dataset.

T2DM 50− 54 55− 59 60− 64 65− 69 70− 74 75+ Total

Ref Wave 2 No 473 1,181 916 852 659 894 4,975

F-up 3 Yes 3 17 23 16 19 14 92

Ref wave 4 No 695 1,236 1,362 953 879 931 6,056

F-up wave 5 Yes 9 23 27 23 17 21 120

Ref wave 6 No 389 927 1,209 1,107 806 1,140 5,578

F-up wave 7 Yes 6 13 34 19 14 24 110

All waves No 1,557 3,344 3,487 2,912 2,344 2,965 16,609

Yes 18 53 84 58 50 59 322

TABLE 3: Distribution per age group of newly diagnosed diabetes at 2-years follow-up in the balanced dataset.

T2DM 50− 54 55− 59 60− 64 65− 69 70− 74 75+ Total

Ref Wave 2 No 33 142 153 89 90 58 565

F-up 3 Yes 3 17 23 16 19 14 92

Ref wave 4 No 100 192 180 128 81 88 769

F-up wave 5 Yes 9 23 27 23 17 21 120

Ref wave 6 No 67 108 227 106 67 100 675

F-up wave 7 Yes 6 13 34 19 14 24 110

All waves No 200 442 560 323 238 246 2,009

Yes 18 53 84 58 50 59 322

dataset are summarized in Table 4. In addition, independent
group t-tests were run wherever applicable, comparing the
mean scores between the different groups. Of the 2009 par-
ticipants, 53.4% were women of whom 13.8% identified as
diabetic in the follow-up, the same indicator in males was
18.6%. Note that, 14.3% of participants had high education
and just 11.8% had physical effort at work. Focusing on
those who were diagnosed with diabetes in a follow-up wave,
29.2% are employed, 11.2% had physical effort at work,
79.8% stated that they were physically active and 64.0% were
diagnosed with high blood glucose at least once. Moreover,
concerning diabetics and irrespective of gender, they had
average BMI of 31.7 kg/m2 and waist size of 106.46 cm. P-
values showed that the difference between men and women
was statistically significant at the level of 0.93 for age and
0.69 for BMI. Also, the statistical significance in terms
of variables cholesterol, drinker and waist was at level of
zero, 0.0022 and 0.001 for food consumption outside home
and income variables, respectively. In comparison with non
diabetics, diabetics had higher overall means for age, BMI,
waist and income characteristics, and the differences were
significant at the 0 level for variables age, BMI, food outside
home, cholesterol, drinker and waist except income.

B. T2DM MODELING AND RESULTS

The different single and ensemble classification models that
were presented on the previous sections were compared in
a series of exhaustive experiments in order to identify the
most effective models regarding the classification of T2DM
on the constructed dataset of 2009 instances as depicted
in Table 3. Moreover, the comparisons included the four
benchmark models, the logistic regression models based on
the corresponding works of Leicester and FINDRISC score
systems and two neural network models utilizing the archi-
tectures discussed in [29]. Furthermore, an optimized voting
ensemble (WeightedVotingLRRFs) was also considered in
the comparisons and is discussed on the last paragraphs of
the section.

The experimentation methodology can be summarized by
the following steps:

• Data preprocessing as elaborated in Section IV-B.
• Divide the constructed dataset based on ELSA database

using the standard technique of stratified train-test split
procedure with 10-times random repeat, thus preserving
the class proportions of the original dataset and en-
suring that the sub-datasets are representative (random
samples) by the use of different seeds in the repeating

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3098691, IEEE Access

Fazakis et al.: Machine Learning Tools for Long-term Type 2 Diabetes Risk Prediction

TABLE 4: Overview of Demographic and Health-related Features.

Features Total Male Female P-value Non-Diabetic
(follow-up wave)

Diabetic (follow-
up wave)

P-value

Age (years) 64.04082
±.1793756

64.02241
±.2571762

64.0569
±.2500601

0.9236 63.60166
±.1937851

66.3416
±.4502968

0

Gender (N) 2009 937 1072 - 763(M) 924(F) 174(M) 148(F) -

BMI ( kg

m2
) 28.43476

±.1151526
28.48427
±.1486709

28.39149
±.172347

0.6878 27.80501
±.1173959

31.7341
±.312884

0

Food Outside
House
(money/week)

53.90977
±1.638046

59.65021
±2.700247

48.87676
±1.949294

0.001 55.8782
±1.822772

43.60625
±3.592217

0

Cholesterol
(mmol

L
)

5.806188
±.0299581

5.55391
±.0437444

6.026304
±.0396412

0 5.859203
±.0316898

5.496186
±.0854177

0

Ever had high
blood glucose
(N)

512 252 260 - 306 206 -

Drinking
(days/week)

2.62197
±.0566743

3.055006
±.083562

2.239806
±.0751508

0 2.785408
±.0619196

1.756494
±.1301927

0

Education
Level High (N)

287 166 121 - 262 25 -

Waist (cm) 97.01553
±.3045124

102.5559
±.3928172

92.1729
±.4012403

0 95.21257
±.3141611

106.4615
±.7563727

0

Married (N) 1473 715 659 - 1161 213 -

Physical Effort
at Work (N)

238 160 78 - 202 36 -

Employed (N) 775 420 355 - 681 94 -

Income
(Couple Level)

27141.72
±705.8337

29449.91
±1127.65

25129.23
±878.4182

0.0022 26827.44
±522.9635

28793.44
±3458.923

0.3075

Physically
Active (N)

1790 811 979 - 1533 257 -

process. The 70% and 30% of the data are chosen as
training dataset and testing dataset each time.

• Application of the selected ML models, single and
ensemble by either voting or stacking methods. These
models use the selected features as independent vari-
ables and the diabetes risk status as output variable.

• Performance measures estimation.

As regards the software tools that were employed for the
implementation of the compared models, the Java Weka [59]
library and the Python Statsmodels [60] were considered, as
they are both open-source, making it possible to integrate the
implemented models in the deployable solution in the context
of the SmartWork project.

A number of measures are recorded for evaluating the
performance of ML models. The most commonly used in
literature [61], [62], [63] which will be considered as well
in our analysis, are the following:

Sensitivity (True Positive Rate) corresponds to the pro-
portion of participants that have T2DM (e.g., positive data
instances) that are correctly considered as positive, with

respect to all positive participants.

Sensitivity =
TP

TP + FN
(8)

Specificity (True Negative Rate) corresponds to the pro-
portion of participants that don’t have T2DM (e.g.,negative
data instances) that are correctly considered as negative, with
respect to all negative participants.

Specificity =
TN

TN + FP
(9)

Positive Predictive Value (+PV) corresponds to the propor-
tion of participants that have T2DM (e.g., true data instances)
that are correctly considered as positive, with respect to all
positively predicted participants.

+PV =
TP

TP + FP
(10)

Negative Predictive Value (-PV) corresponds to the pro-
portion of participants that don’t have T2DM (e.g., negative
data instances) that are correctly considered as negative, with
respect to all negatively predicted participants.

−PV =
TN

TN + FN
(11)
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Positive Likelihood Ratio (+LR) is defined as the ratio of
the true positive rate (sensitivity) to the false positive rate
(1–specificity).

+LV =
Sensitivity

1− Specificity
(12)

Negative Likelihood Ratio (-LR) is defined as the ratio of
the false negative rate (1-sensitivity) to the true negative rate
(specificity).

−LV =
1− Sensitivity

Specificity
(13)

Likelihood ratios measure the certainty of the test about
a positive and negative diagnosis, correspondingly. Indicate
that, in previous equations TP:True Positive, TN:True Nega-
tive, FP:False Positive and FN:False Negative.

Another useful metric is Area Under Curve, which takes
values in the range [0, 1]. The higher its value, the better is the
ML model performance in distinguishing positive (Diabetics)
from negative (Non Diabetics) class instances. In best (ideal)
case where AUC equals 1, the ML model can perfectly
distinguish all positive (Diabetic) from negative (Non Dia-
betic) class instances. In worst case where AUC equals 0, the
classifier will predict all negatives as positives and vice versa.
Also, the Younden Index was considered in combination
with Receiver Operating Characteristic (ROC) analysis. This
metric summarises the performance of a diagnostic test, it is
defined for all points of a ROC curve, and its maximum value
may be used for the selection of the optimum cut-off point.

J = Sensitivity + Specificity − 1, J ∈ [0, 1]. (14)

The quantitative analysis of the two selected risk score
systems showed that the best performing, according to AUC
metric, is FindLogist with AUC equals 0.821 which proves
that it performs better than LeicLogist with AUC 0.788 by
3.3% in the constructed dataset. Although the sensitivity
and specificity of the selected risk score systems were not
considerable better than others (Table 5), if combined with
other existing ones, may improve the performance of the
ensemble methods.

Moreover, the use of single classifiers and ensemble meth-
ods, such as voting and stacking, could overcome the lim-
itations of risk score systems in order to build a single or
combined reliable T2DM risk assessment system. Figure 3
and Table 5 summarize the performance metrics values for
the diabetes prediction according to the adopted ML models
described in Section IV-B3. Also, in the same figure and
table, respectively, for the same metrics, the results of FindL-
ogist and LeicLogist models have been recorded. Note again
that, these systems apply Logistic Regression with specific
features less than those considered in the ML models.

To further investigate the performance of the ML mod-
els, we compare the Youden indices and AUCs. The re-
sults unveiled that the selected voting methods performed
not only the best but also considerably better than all the
ML models and the two selected score systems. Among

FIGURE 3: AUC-ROC behavior: Inductive Learning.

the different combination methods, the superiority of the
two voting methods against stacking was revealed. Voting
typically works well if the base classifiers perform the same
task and have comparable success, although stacking works
well for different types of first-level classifiers. A comparison
of sensitivities and specificities for different ML models can
be found in Table 5, while the exact hyperparameters of the
models can be seen in 6.

The significance of the classifiers’ AUCs was tested using
the Wald test statistic [64]. In detail, the discrimination
ability of each classifier is tested compared to a classifier
with random chance discrimination ability (TPR = FPR
i.e. AUC = 0.5). The utilized null hypothesis states that
AUC = 0.5 and the alternative hypothesis that AUC 6= 0.5.
The calculated p-values for all the models were equal to 0
(<0.05), thus clearly indicating that the calculated AUCs are
significant using a level a = 0.05, with the lower AUC
recorded being equal to 0.727.

Additionally, the receiver operating characteristic (ROC)
curves for the ML models and the score systems are sum-
marized in Figure 3. Focusing on the combination methods,
we again conclude that the voting algorithms with the se-
lected single models produced again the best performance
(prediction result) against stacking method. Here, it should
be pointed out that, the ROC curves produced by the voting
algorithms are similar and are also positioned above the rest
model curves.

As the results witness, Random Forests classifier is the best
performing among the rest single classifiers with Logistic
Regression’s performance being closer, than the rest models.
This lies in the fact that the Random Forests can learn a
non-linear decision boundary and thus can achieve higher
scores in all metrics. In other words, Logistic Regression
poorly segments the Diabetes and No Diabetes classes while
the Random Forests model learns a more flexible decision
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TABLE 5: Performance comparison of different prediction models (inductive results).

AUC Sensitivity Specificity +PV -PV +LR -LR Cut-
off

J P-
value

LeicLogist 0.788
(0.738,0.838)

0.784
(0.688,0.861)

0.688
(0.645,0.728)

0.325
(0.284,0.451)

0.943
(0.91,0.953)

2.509
(2.125,2.963)

0.315
(0.215,0.462)

0.151 0.471 0

FindLogist 0.821
(0.780,0.863)

0.742
(0.643,0.826)

0.747
(0.707,0.784)

0.360
(0.315,0.481)

0.938
(0.905,0.949)

2.934
(2.426,3.549)

0.345
(0.245,0.485)

0.176 0.489 0

Naive
Bayes

0.766
(0.719,0.814)

0.845
(0.758,0.911)

0.591
(0.547,0.634)

0.284
(0.249,0.425)

0.952
(0.919,0.96)

2.066
(1.806,2.365)

0.262
(0.163,0.419)

0.003 0.436 0

Decision
Trees

0.797
(0.747,0.847)

0.876
(0.794,0.934)

0.640
(0.597,0.682)

0.318
(0.280, 0.484)

0.964
(0.936, 0.97)

2.436
(2.122,2.797)

0.193
(0.113,0.329)

0.071 0.517 0

Logistic
Regression

0.863
(0.830,0.896)

0.794
(0.700,0.869)

0.787
(0.748,0.821)

0.416
(0.365,0.552)

0.952
(0.923,0.961)

3.719
(3.058,4.523)

0.262
(0.177,0.388)

0.175 0.580 0

Random
Forests

0.880
(0.844,0.916)

0.845
(0.758,0.911)

0.785
(0.746,0.820)

0.429
(0.378,0.584)

0.964
(0.938,0.971)

3.924
(3.256,4.730)

0.197
(0.123,0.315)

0.180 0.629 0

ANN 0.776
(0.725,0.827)

0.711
(0.610,0.799)

0.808
(0.771,0.842)

0.416
(0.363,0.534)

0.936
(0.903,0.949)

3.711
(2.980,4.620)

0.357
(0.261,0.489)

0.001 0.519 0

DNN 0.847
(0.811,0.882)

0.897
(0.819,0.949)

0.700
(0.658,0.739)

0.364
(0.321,0.553)

0.973
(0.948,0.977)

2.986
(2.572,3.466)

0.147
(0.082,0.266)

0.111 0.596 0

Stacking:
LR,RFs

0.833
(0.789,0.877)

0.773
(0.677,0.852)

0.792
(0.755,0.827)

0.417
(0.365,0.547)

0.948
(0.918,0.958)

3.726
(3.046,4.558)

0.286
(0.198,0.414)

0.190 0.566 0

Voting:
LR,RFs

0.881
(0.849,0.913)

0.794
(0.700,0.869)

0.840
(0.805,0.871)

0.487
(0.428,0.621)

0.955
(0.928,0.965)

4.959
(3.964,6.203)

0.245
(0.166,0.363)

0.242 0.634 0

Weighted
Voting:
LR,RFs

0.884
(0.850,0.918)

0.856
(0.770,0.919)

0.798
(0.761,0.833)

0.449
(0.395,0.608)

0.967
(0.942,0.973)

4.245
(3.504,5.142)

0.181
(0.111,0.294)

0.193 0.654 0

boundary for the discrimination of instances of the two
classes [65].

Among the three different ensembling approaches, the
weighted voting scheme boosts the performance of diabetes
prediction. The optimal weights are calculated by running the
NSGA-II algorithm on the constructed dataset. The optimiza-
tion procedure aims to maximize both AUC and Sensitivity.
The relevant Pareto Front behavior is depicted in Table 7.
Note that the sensitivities reported in the first column of
Table 7 were significantly lower than the final reported in
the inductive results table due to the fact that the Youden
criterion was not utilized during the optimization process,
and the default cut-off point of 0.5 probability was set. All
the weight sets were applied in the inductive experimentation
setup of WeightedVotingLRRFs using the Youden optimal
cut-off criterion (displayed in the last two columns of Table
7) and the weight set of [0.2733, 0.7266] was found to yield
the best performance results in terms of AUC and Sensitivity,
thus its performance was recorded in Table 5.

A more focused graphic analysis of the different evaluation
metrics for WeightedVotingLRRFs is found in Figure 4,
where its ROC curve, Sensitivity-Specificity and Distribution
graphs are presented. In the first graph, the specific Youden
optimal cut-off point is located on the ROC curve. In the sec-
ond graph, the sensitivity and specificity curves are depicted

showing the trade off for the different selections of cut-off
points. The next two graphs, give a good overview of how
well the Youden optimal cut-off point of 0.193 separates the
two classes.

In addition to the inductive experiments, transductive
learning [66] experiments were also employed. The aim of
this learning approach is to exploit patterns that are hidden
in the test samples by utilizing them as unlabeled data in
the training phase, thus taking advantage of the information
embedded in the test set by augmenting the training set [67],
[68]. During the transductive experimentation, the partition-
ing of the dataset was kept the same as in the inductive
experimentation, while the unlabeled set was used under a
common self-training wrapper algorithm using the different
prediction models that were compared in the inductive ex-
periments. The performance results are summarized in Table
8 and Figure 5, while the exact parameters utilized in the
self-training scheme can be found in Table 6. Similarly with
the work of Triguero et al. [69], the transductive self-training
wrapper uses as base classifiers the compared models which
are initially trained using the labeled set and are then used to
predict the labels of the unlabeled set in order to repeatedly
increase the labeled set, while in each iteration the base
model is being retrained. A confidence probability threshold
of 0.90 for the predicted labels is set to ensure that less
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TABLE 6: Models Hyperparameters.

Algorithm Parameters

Naive Bayes Kernel Estimator = None

Decision Trees Tree pruning = True
Confidence factor used for pruning = 0.25
Min. number of instances per leaf = 2
Min. description length correction = True

Random
Forests

Size of each bag = 100%
Maximum tree depth = Unlimited
Number of iterations = 100

ANN Input layer units = 66
Hidden layer units = 8 (x2)
Hidden and output layers type = Sigmoid
Hidden layers momentum = 0.2
Optimizer = SGD
Learning rate = 0.1
Epochs = 500

DNN Input layer units = 66
Hidden layer units = 50 (x2)
Hidden layers type = Rectifier
Hidden layers dropout = 10%
Hidden layers L1 = 0.00001
Hidden layers L2 = 0
Output layer type = Softmax
Optimizer = SGD
Learning rate = 0.1
Epochs = 500

Stacking Stacking models = LR, RFs
Meta-classifier = RFs
Number of execution slots = 1

Voting Voting models = LR, RFs
Combination rule = Avg. of Probabilities
Number of execution slots = 1

Weighted
Voting

Voting models = LR, RFs
Weights = 0.2733, 0.7266
Combination rule = Avg. of Probabilities
Number of execution slots = 1

Transductive
Self-training
Wrapper

Selection metric = Prediction probabilities
Confidence threshold = 0.90
Maximum iterations = 10

TABLE 7: Weighted Voting with NSGA-II algorithm.

Sensitivity AUC Weight LR Weight RFs Youden
Sensitivity

Cut-off

0.2989 0.88381 0.2733 0.7266 0.856 0.193

0.3402 0.88344 0.1276 0.8723 0.825 0.214

0.3298 0.88364 0.1325 0.8674 0.835 0.197

0.3195 0.88375 0.1373 0.8626 0.845 0.188

0.3195 0.88375 0.1387 0.8612 0.845 0.188

FIGURE 4: Analysis of the ROC curve, optimal cut-off and
distribution graphs for the WeightedVotingLRRFs model.

confident predictions are not integrated in the retraining of
the base model, and moreover the maximum iterations of
the self-training scheme are limited to 10. By comparing the
transductive AUCs against their inductive equivalents, it is
concluded that the logistic models, while do not significantly
decrease their performance, they gain no benefit from the
exploitation of the unlabeled data. The same stands true for
the single classifiers i.e. NB, DT and ANN. In contrast,
the more complex models such as the RFs, DNN and the
rest ensembles marginally improve their classification per-
formance. Specifically, the proposed WeightedVotingLRRFs
model scores an AUC transductive = 0.888 which is the highest
that was recorded, suggesting that strict selection of unla-
beled data (due to voting) can lead to possible performance
increase of the model.

VI. DISCUSSION

In this research, several strengths and limitations are high-
lighted. In terms of the former, to our knowledge, it is the
first to assess various ML models and provide participants
with personalized long-term risk prediction of T2DM oc-
currence and appropriate guidance regarding lifestyle inter-
ventions. Also, the research findings were derived from a
cross-sectional study on a representative English cohort (e.g.,
elderly office workers) with follow-up data; thus, we may
identify causal and temporal associations between elderly
lifestyle and T2DM.

Another positive aspect of this work is that, during the
balanced dataset creation, we drew instances of the initially
"Non-Diabetics" class from the reference waves, whose class
label was finally defined in the follow-up waves. This ap-
proach may give us a view of features behaviour for par-
ticipants diagnosed with T2DM in the follow-up examina-
tion, contributing to T2DM prognosis. Moreover, our study
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TABLE 8: Performance comparison of different prediction models (transductive self-training results).

AUC Sensitivity Specificity +PV -PV +LR -LR Cut-
off

J P-
value

LeicLogist 0.788
(0.739,0.838)

0.784
(0.688,0.861)

0.692
(0.649,0.732)

0.328
(0.287,0.454)

0.943
(0.91,0.953)

2.541
(2.15,3.004)

0.313
(0.213,0.459)

0.145 0.475 0

FindLogist 0.821
(0.780,0.863)

0.753
(0.655,0.835)

0.743
(0.703,0.781)

0.360
(0.315,0.482)

0.940
(0.907,0.951)

2.929
(2.43,3.532)

0.333
(0.234,0.473)

0.167 0.495 0

Naive
Bayes

0.727
(0.675,0.779)

0.825
(0.734,0.894)

0.561
(0.517,0.605)

0.265
(0.232,0.394)

0.944
(0.907,0.952)

1.88
(1.643,2.151)

0.312
(0.201,0.484)

0.001 0.386 0

Decision
Trees

0.788
(0.734,0.843)

0.856
(0.770,0.919)

0.644
(0.601,0.686)

0.316
(0.277,0.468)

0.959
(0.929,0.966)

2.405
(2.085,2.775)

0.224
(0.137,0.365)

0.059 0.499 0

Logistic
Regression

0.863
(0.830,0.896)

0.794
(0.7,0.869)

0.787
(0.748,0.821)

0.416
(0.365,0.552)

0.952
(0.923,0.961)

3.719
(3.058,4.523)

0.262
(0.177,0.388)

0.173 0.580 0

Random
Forests

0.886
(0.850,0.922)

0.866
(0.782,0.927)

0.796
(0.759,0.831)

0.449
(0.396,0.615)

0.969
(0.945,0.975)

4.254
(3.521,5.141)

0.168
(0.101,0.28)

0.175 0.662 0

ANN 0.763
(0.712,0.815)

0.701
(0.6,0.79)

0.8
(0.763,0.834)

0.402
(0.351,0.519)

0.933
(0.899,0.946)

3.512
(2.825,4.366)

0.374
(0.275,0.508)

0.001 0.501 0

DNN 0.852
(0.818,0.887)

0.887
(0.806,0.942)

0.719
(0.678,0.758)

0.377
(0.332,0.557)

0.971
(0.946,0.976)

3.159
(2.701,3.695)

0.158
(0.09,0.276)

0.089 0.606 0

Stacking:
LR,RFs

0.857
(0.817,0.898)

0.763
(0.666,0.843)

0.844
(0.809,0.874)

0.484
(0.424,0.611)

0.949
(0.92,0.96)

4.886
(3.879,6.156)

0.281
(0.196,0.402)

0.220 0.607 0

Voting:
LR,RFs

0.885
(0.853,0.916)

0.876
(0.794,0.934)

0.773
(0.734,0.809)

0.425
(0.375,0.598)

0.970
(0.947,0.976)

3.856
(3.230,4.603)

0.160
(0.094,0.272)

0.162 0.649 0

Weighted
Voting:
LR,RFs

0.888
(0.856,0.92)

0.825
(0.734,0.894)

0.846
(0.811,0.876)

0.506
(0.446,0.649)

0.962
(0.937,0.97)

5.35
(4.278,6.692)

0.207
(0.134,0.32)

0.212 0.670 0

FIGURE 5: AUC-ROC behavior:Transductive Learning.

revealed the importance of different risk factors in T2DM
prediction for elder persons. The results of feature selection
techniques coincided with the corresponding literature about
T2DM risk factors. The selected features for the ML models

training and testing are among the symptoms/factors that
doctors consider for quantifying long-term risk prediction or
identifying its occurrence.

Featurewise, all models were trained using the selected 35
features as described in section IV-B2 except the LeicLogist
and FindLogist models. Those two models were fitted using
the constructed dataset based on the feature sets according to
the original Leicester and FINDRISC score systems, exclud-
ing the feature that considers the family history of diabetes
as it was not available in the ELSA database. Both logistic
models where significant at a level of 0.05 and their analysis
(supplementary Figures S1 and S2) confirmed that almost
all the features from the original research works were still
significant on the constructed dataset. Unlike existing re-
searches [70], [71], for the training of the ML models, family
history of diabetes and women with gestational diabetes were
excluded from the features set. This may be a limitation
of this study since these factors are among the important
ones for T2DM risk prediction. Nevertheless, they were not
available in the current dataset.

Moreover, contrary to previous works of [48], [72], [73],
which use the Pima Indian Diabetes Dataset (PIDD) as
benchmark dataset for their experiments, in this study the
ELSA dataset is utilized, consisting of elder office workers’
data. Furthermore, Perveen et al. [33] examined the Canadian
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Primary Care Sentinel Surveillance Network (CPCSSN),
while Dalakleidi et al. [73] evaluated the suggested models
on Hippokration dataset, which was granted from the General
Hippokrateion Hospital of Athens.

As far as classification is concerned, k-NN, Decision
Trees, Random Forests, Naive Bayes [74], ANN and DNN
[75] are the most frequently applied for long-term risk pre-
diction of T2DM. The ANN and DNN topologies presented
in [29] were kept identical in order to draw useful comparison
results regarding the performance of neural networks on the
constructed dataset, with the exception of the insertion of
dropout [76] in the DNN topology to reduce overfitting.
The results were promising for the DNN model in both the
experimentation setups, but were still lacking an approximate
3.7% in terms of AUCinductive due to significant underperfor-
mance in terms of specificity. Considering the performance
results of the LeicLogist and FindLogist, the compared met-
rics suggest similar predictive ability with the rest single
classifiers (i.e. NB, DT, ANN). Although, LeicLogist and
FindLogist are based on logistic regression, they present far
lower AUCs than the LR model trained using the 35 features,
thus strengthening the argument that a more personalized
approach on the T2DM modeling and prediction can be
significantly better.

More to the point, in contrast with [48], Adaptive Boosting
(AdaBoost) and Extreme Gradient Boosting (XGBoost) are
left for future experimentation on the constructed dataset.
Also, in [48], the weighted ensembling of different ML
models is proposed where AUC is maximized during hyper-
parameter tuning using the grid search technique. However,
in our analysis, a bi-objective genetic algorithm is applied;
the optimal weights are estimated to maximize AUC and
Sensitivity of the ML based models simultaneously, under the
weigthed voting ensemble. To identify the best performing
model, different performance metrics such as sensitivity,
specificity and the receiver operating curves were analysed.

The proposed WeightedVotingLRRFs model provides a
mechanism of more confident prediction probabilities due
to the ensembling of its base models. It is known that an
ensemble, such as the proposed, can produce steadily better
predictive results than its counterparts under the condition
that its base classifiers are accurate and diverse [77]. Both
conditions hold true for the proposed model, while the ex-
perimentation results validate the assumption of increased
predictive ability for the WeightedVotingLRRFs.

To our knowledge, it is the first paper to assess T2DM
risk prediction on English cohort (namely, elder office work-
ers and T2DM) from ELSA database. There is a lack of
studies to fairly compare it with the previous research, in
terms of ML models performance. Previous works in the
same dataset mainly focus on diabetes risk factors analysis.
Specifically, in [78], the authors found that T2DM diagnosis
in older adults did not motivate them changing their health
behaviour, other than smoking. Moreover, Hacket et al. in
[79] demonstrated associations between sleep problems and
daily cortisol levels in response to stress in a part of people

with T2DM from ELSA. Moreover, the study in [80], aimed
to build a predictive model using RFs, Deep learning and
Linear models to accurately estimate health status based on
sociodemographic characteristics, in aging populations using
data from the ELSA database.

At this point, a limitation of this study is that the experi-
ments have been conducted with a fixed size dataset consisted
of a limited number of subjects amount to 2009, as shown
in Table 3. It is worth noting that the performance of a ML
model improves as the number of training samples increases,
as was also observed by the transductive experimentation
on the current dataset. To tackle this limitation, we aim to
conduct similar research from a big data viewpoint focusing
on more and different ML models, evaluating the impact of
data volume on their performance in terms of T2DM risk
prediction.

VII. CONCLUSIONS

In this study, we applied different ensemble algorithms to a
dataset constructed based on the ELSA database, combining
different families of ML models to predict the risk of T2DM,
taking into account lifestyle variables of elder office workers.
Moreover, an IoT enabled framework [81] was developed
that integrates the long-term T2DM risk prediction model. It
aims to provide personalized interventions according to the
users needs. Our empirical study showed that all investigated
ML algorithms could produce satisfactory prediction results
that are at significantly better than the existing simple score
systems. In particular, the voting method could significantly
increase the predictability in relation to any conventional risk
score system.

It is worth to note that, we chose a multi-objective opti-
mization based technique since it is more robust compared to
the single objective one and constructs more efficiently the
classifier ensemble (WeightedVotingLRRFs), as it optimizes
more than one classification quality measures i.e. AUC and
Sensitivity simultaneously, resulting in the highest compared
AUC inductive = 0.884.

To sum up, according to our experimental analysis and
results, ensemble methods constitute a useful tool for predict-
ing type 2 diabetes. Overall performance attained by the in-
vestigated techniques shows the effectiveness and superiority
of the multi-objective optimization based, weighted voting
ensemble method in relation to single classifiers and risk
score systems, while the better learning ability of Weighted-
VotingLRRFs against its rivals was observed using inductive
and transductive learning setups. Hence, embedding it in the
recommended system, lifestyle or medication interventions
can be implemented to participants at high risk in order to
prevent and/or delay diabetes occurrence.

As future work, at first, it would be beneficial to apply
different techniques for handling of missing values such
as [82] and experiment with even more feature selection
techniques. Moreover, it would be interesting to evaluate
the impact of dimentionality reduction with techniques such
as principal component analysis [83] in T2DM prediction
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performance under the ELSA-based constructed dataset. In
addition, the comparison of state of the art techniques such
as XGBoost, AdaBoost or high layer DNNs would prob-
ably provide better insights regarding the predictive limi-
tations of the constructed dataset. Finally, the exploitation
of semi-supervised and unsupserivsed methodologies in the
training process could also be proven beneficial, as was
also suggested by the AUC improvements observed during
the transductive experimentation. The previous argument is
strengthened by taking into account that there are plenty of
unlabeled instances in ELSA that could be incorporated in
the constructed dataset.
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TABLE 9: Features Information

Features Description ELSA Values Dataset Values
BMI Categories 1.underweight less than 18.5

2.normal weight from 18.5 to 25
3.pre-obesity from 25 to 29
4.obesity class 1 from 30 to 35
5.obesity class 2 from 35 to 40
6.obesity class 3 greater than 40

1-6

Self-report of health 1.Excellent
2.Very good
3.Good
4.Fair
5.Poor

1-5,NaN

Gross monitor index 0-none, 5-all 0,5,NaN
Mobility index 0-none, 4-all 0,4,NaN
Fine motor index 0-none, 3-all 0,3, NaN
Large muscle index 0-none, 4-all 0,4,NaN
ADLs 0-none, 5-all 0,5,NaN
HLTHLM 0:No, 1:Yes 0,1,NaN
ADLs 0-none, 3-all 0,3,NaN
Education level 1.less than secondary

2.upper secondary and vocat
3.tertiary

1-3,NaN

Level of physical effort at current job 1.Sedentary occupation
2.Standing occupation
3.Physical work
4.Heavy manual work

1-2,NaN

Work stress-under pressure due to
workload

1.strongly agree
2.agree
3.disagree
4.strongly disagree

1-4,NaN

Ever had hip fracture 0:No, 1:Yes 0,1,NaN
Mental health-the respondent’s feelings
much of the time over the week prior to
the interview

0:Negative, 8:Positive 0,8,NaN

Marital Status 1.married
2.partnered
3.separated
4.divorced
5.widowed
6.never married

1-6,NaN

Currently working for pay 0:No, 1:Yes 0,1,NaN
Social activity-weekly contact with
friends/relatives

0:No, 1:Yes 0,1,NaN

IADLs: using the phone, managing
money, taking medications, shopping
for groceries, preparing hot meals

0-none, 5-all 0,5,NaN

Ever had high cholesterol 0:No, 1:Yes 0,1,NaN
Ever had psychological problem 0:No, 1:Yes 0,1,NaN
Ever had heart problems 0:No, 1:Yes 0,1,NaN
Ever had asthma/cataracts/lung
disease/dementia/memory problems

0:No, 1:Yes 0,1,NaN

Ever had hip fracture/stroke/arthritis
/cancer/Parkinson

0:No, 1:Yes 0,1,NaN

Smoke ever or now 0:No, 1:Yes 0,1,NaN
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