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Abstract

The 2019 novel coronavirus (renamed SARS-CoV-2, and generally referred to as the

COVID-19 virus) has spread to 184 countries with over 1.5 million confirmed cases. Such

major viral outbreaks demand early elucidation of taxonomic classification and origin of the

virus genomic sequence, for strategic planning, containment, and treatment. This paper

identifies an intrinsic COVID-19 virus genomic signature and uses it together with a machine

learning-based alignment-free approach for an ultra-fast, scalable, and highly accurate clas-

sification of whole COVID-19 virus genomes. The proposed method combines supervised

machine learning with digital signal processing (MLDSP) for genome analyses, augmented

by a decision tree approach to the machine learning component, and a Spearman’s rank

correlation coefficient analysis for result validation. These tools are used to analyze a large

dataset of over 5000 unique viral genomic sequences, totalling 61.8 million bp, including the

29 COVID-19 virus sequences available on January 27, 2020. Our results support a hypoth-

esis of a bat origin and classify the COVID-19 virus as Sarbecovirus, within Betacorona-

virus. Our method achieves 100% accurate classification of the COVID-19 virus sequences,

and discovers the most relevant relationships among over 5000 viral genomes within a few

minutes, ab initio, using raw DNA sequence data alone, and without any specialized biologi-

cal knowledge, training, gene or genome annotations. This suggests that, for novel viral and

pathogen genome sequences, this alignment-free whole-genome machine-learning

approach can provide a reliable real-time option for taxonomic classification.

Introduction

Coronaviruses are single-stranded positive-sense RNA viruses that are known to contain some

of the largest viral genomes, up to around 32 kbp in length [1–5]. After increases in the num-

ber of coronavirus genome sequences available following efforts to investigate the diversity in
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the wild, the family Coronaviridae now contains four genera (International Committee on

Taxonomy of Viruses, [6]). While those species that belong to the genera Alphacoronavirus

and Betacoronavirus can infect mammalian hosts, those in Gammacoronavirus and the

recently defined Deltacoronavirusmainly infect avian species [4, 7–9]. Phylogenetic studies

have revealed a complex evolutionary history, with coronaviruses thought to have ancient ori-

gins and recent crossover events that can lead to cross-species infection [8, 10–12]. Some of

the largest sources of diversity for coronaviruses belong to the strains that infect bats and

birds, providing a reservoir in wild animals for recombination and mutation that may enable

cross-species transmission into other mammals and humans [4, 7, 8, 10, 13].

Like other RNA viruses, coronavirus genomes are known to have genomic plasticity, and

this can be attributed to several major factors. RNA-dependent RNA polymerases (RdRp)

have high mutation rates, reaching from 1 in 1000 to 1 in 10000 nucleotides during replication

[7, 14, 15]. Coronaviruses are also known to use a template switching mechanism which can

contribute to high rates of homologous RNA recombination between their viral genomes [9,

16–20]. Furthermore, the large size of coronavirus genomes is thought to be able to accommo-

date mutations to genes [7]. These factors help contribute to the plasticity and diversity of

coronavirus genomes today.

The highly pathogenic human coronaviruses, Severe Acute Respiratory Syndrome corona-

virus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) belong to

lineage B (sub-genus Sarbecovirus) and lineage C (sub-genusMerbecovirus) of Betacorona-

virus, respectively [9, 21–23]. Both result from zoonotic transmission to humans and lead to

symptoms of viral pneumonia, including fever, breathing difficulties, and more [24, 25].

Recently, an unidentified pneumonia disease with similar symptoms caused an outbreak in

Wuhan and is thought to have started from a local fresh seafood market [26–30]. This was

later attributed to a novel coronavirus (the COVID-19 virus), and represents the third major

zoonotic human coronavirus of this century [31]: On February 28, 2020, the World Health

Organization set the COVID-19 risk assessment for regional and global levels to “Very High”

[32].

From analyses employing whole genome to viral protein-based comparisons, the COVID-

19 virus is thought to belong to lineage B (Sarbecovirus) of Betacoronavirus. From phylogenetic

analysis of the RdRp protein, spike proteins, and full genomes of the COVID-19 virus and

other coronaviruses, it was found that the COVID-19 virus is most closely related to two bat

SARS-like coronaviruses, bat-SL-CoVZXC21 and bat-SL-CoVZC45, found in Chinese horse-

shoe bats Rhinolophus sinicus [12, 33–37]. Along with the phylogenetic data, the genome orga-

nization of the COVID-19 virus was found to be typical of lineage B (Sarbecovirus)

Betacoronaviruses [33]. From phylogenetic analysis of full genome alignment and similarity

plots, it was found that the COVID-19 virus has the highest similarity to the bat coronavirus

RaTG13 [38]. Close associations to bat coronavirus RaTG13 and two bat SARS-like CoVs

(ZC45 and ZXC21) are also supported in alignment-based phylogenetic analyses [38]. Within

the COVID-19 virus sequences, over 99% sequence similarity and a lack of diversity within

these strains suggest a common lineage and source, with support for recent emergence of the

human strain [12, 31]. There is ongoing debate whether the COVID-19 virus arose following

recombination with previously identified bat and unknown coronaviruses [39] or arose inde-

pendently as a new lineage to infect humans [38]. In combination with the identification that

the angiotensin converting enzyme 2 (ACE2) protein is a receptor for COVID-19 virus, as it is

for SARS and other Sarbecovirus strains, the hypothesis that the COVID-19 virus originated

from bats is deemed very likely [12, 33, 35, 38, 40–44].

All analyses performed thus far have been alignment-based and rely on the annotations of

the viral genes. Though alignment-based methods have been successful in finding sequence
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similarities, their application can be challenging in many cases [45, 46]. It is realistically impos-

sible to analyze thousands of complete genomes using alignment-based methods due to the

heavy computation time. Moreover, the alignment demands the sequences to be continuously

homologous which is not always the case. Alignment-free methods [47–51] have been pro-

posed in the past as an alternative to address the limitations of the alignment-based methods.

Comparative genomics beyond alignment-based approaches have benefited from the compu-

tational power of machine learning. Machine learning-based alignment-free methods have

also been used successfully for a variety of problems including virus classification [49–51]. An

alignment-free approach [49] was proposed for subtype classification of HIV-1 genomes and

achieved*97% classification accuracy. MLDSP [50], with the use of a broad range of 1D

numerical representations of DNA sequences, has also achieved very high levels of classifica-

tion accuracy with viruses. Even rapidly evolving, plastic genomes of viruses such as Influenza

andDengue are classified down to the level of strain and subtype, respectively with 100% classi-

fication accuracy. MLDSP-GUI [51] provides an option to use 2D Chaos Game Representation

(CGR) [52] as numerical representation of DNA sequences. CGR’s have a longstanding use in

species classification with identification of biases in sequence composition [48, 51, 52].

MLDSP-GUI has shown 100% classification accuracy for Flavivirus genus to species classifica-

tion using 2D CGR as numerical representation [51]. MLDSP and MLDSP-GUI have demon-

strated the ability to identify the genomic signatures (a species-specific pattern known to be

pervasive throughout the genome) with species level accuracy that can be used for sequence

(dis)similarity analyses. In this study, we use MLDSP [50] and MLDSP-GUI [51] with CGR as

a numerical representation of DNA sequences to assess the classification of the COVID-19

virus from the perspective of machine learning-based alignment-free whole genome compari-

son of genomic signatures. Using MLDSP and MLDSP-GUI, we confirm that the COVID-19

virus belongs to the Betacoronavirus, while its genomic similarity to the sub-genus Sarbecov-

irus supports a possible bat origin.

This paper demonstrates howmachine learning using intrinsic genomic signatures can pro-

vide rapid alignment-free taxonomic classification of novel pathogens. Our method delivers

accurate classifications of the COVID-19 virus without a priori biological knowledge, by a

simultaneous processing of the geometric space of all relevant viral genomes. The main contri-

butions are:

• Identifying intrinsic viral genomic signatures, and utilizing them for a real-time and highly

accurate machine learning-based classification of novel pathogen sequences, such as the

COVID-19 virus;

• A general-purpose bare-bones approach, which uses raw DNA sequences alone and does not

have any requirements for gene or genome annotation;

• The use of a “decision tree” approach to supervised machine learning (paralleling taxonomic

ranks), for successive refinements of taxonomic classification.

• A comprehensive and “in minutes” analysis of a dataset of 5538 unique viral genomic

sequences, for a total of 61.8 million bp analyzed, with high classification accuracy scores at

all levels, from the highest to the lowest taxonomic rank;

• The use of Spearman’s rank correlation analysis to confirm our results and the relatedness of

the COVID-19 virus sequences to the known genera of the family Coronaviridae and the

known sub-genera of the genus Betacoronavirus.
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Materials andmethods

The Wuhan seafood market pneumonia virus (COVID-19 virus/SARS-CoV-2) isolate

Wuhan-Hu-1 complete reference genome of 29903 bp was downloaded from the National

Center for Biotechnology Information (NCBI) database on January 23, 2020. All of the avail-

able 28 sequences of COVID-19 virus and the bat Betacoronavirus RaTG13 from the GISAID

platform, and two additional sequences (bat-SL-CoVZC45, and bat-SL-CoVZXC21) from the

NCBI, were downloaded on January 27, 2019. All of the available viral sequences were down-

loaded from the Virus-Host DB (14688 sequences available on January 14, 2020). Virus-

Host DB covers the sequences from the NCBI RefSeq (release 96, September 9, 2019) and

GenBank (release 233.0, August 15, 2019). All sequences shorter than 2000 bp and longer

than 50000 bp were ignored to address possible issues arising from sequence length bias.

Accession numbers for all the sequences used in this study can be found in S1 File of S2 and

S3 Tables.

MLDSP [50] and MLDSP-GUI [51] were used as the machine learning-based alignment-

free methods for complete genome analyses. As MLDSP-GUI is an extension of the MLDSP

methodology, we will refer to the method hereafter as MLDSP-GUI. Each genomic sequence is

mapped into its respective genomic signal (a discrete numeric sequence) using a numerical

representation. For this study, we use a two-dimensional k-mer (oligomers of length k) based

numerical representation known as Chaos Game Representation (CGR) [52]. The k-mer value

7 is used for all the experiments. The value k = 7 achieved the highest accuracy scores for the

HIV-1 subtype classification [49] and this value could be relevant for other virus related analy-

ses. The magnitude spectra are then calculated by applying Discrete Fourier Transform (DFT)

to the genomic signals [50]. A pairwise distance matrix is then computed using the Pearson

Correlation Coefficient (PCC) [53] as a distance measure between magnitude spectra. The dis-

tance matrix is used to generate the 3DMolecular Distance Maps (MoDMap3D) [54] by

applying the classical Multi-Dimensional Scaling (MDS) [55]. MoDMap3D represents an esti-

mation of the relationship among sequences based on the genomic distances between the

sequences. The feature vectors are constructed from the columns of the distance matrix and

are used as an input to train six supervised-learning based classification models (Linear Dis-

criminant, Linear SVM, Quadratic SVM, Fine KNN, Subspace Discriminant, and Subspace

KNN) [50]. A 10-fold cross-validation is used to train, and test the classification models and

the average of 10 runs is reported as the classification accuracy. The trained machine learning

models are then used to test the COVID-19 virus sequences. The unweighted pair group

method with arithmetic mean (UPGMA) [56] and neighbor-joining [57] phylogenetic trees

are also computed using the pairwise distance matrix.

In this paper, MLDSP-GUI is augmented by a decision tree approach to the supervised

machine learning component and a Spearman’s rank correlation coefficient analysis for result

validation. The decision tree parallels the taxonomic classification levels, and is necessary so as

to minimize the number of calls to the supervised classifier module, as well as to maintain a

reasonable number of clusters during each supervised training session. For validation of

MLDSP-GUI results using CGR as a numerical representation, we use Spearman’s rank corre-

lation coefficient [58–61], as follows. The frequency of each k-mer is calculated in each

genome. Due to differences in genome length between species, proportional frequencies are

computed by dividing each k-mer frequency by the length of the respective sequence. To deter-

mine whether there is a correlation between k-mer frequencies in COVID-19 virus genomes

and specific taxonomic groups, a Spearman’s rank correlation coefficient test is conducted for

k = 1 to k = 7.
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Results

Table 1 provides the details of three datasets Test-1, Test-2, Test-3a and Test-3b used for analy-

ses with MLDSP-GUI. Each dataset’s composition (clusters with number of sequences), the

respective sequence length statistics, and results of MLDSP-GUI after applying 10-fold cross-

validation as classification accuracy scores are shown. The classification accuracy scores for all

six classification models are shown with their average, see Table 1.

As shown in Table 1, for the first test (Test-1), we organized the dataset of sequences into

12 clusters (11 families, and Riboviria realm). Only the families with at least 100 sequences

were considered. The Riboviria cluster contains all families that belong to the realm Riboviria.

Table 1. Classification accuracy scores of viral sequences at different levels of taxonomy.

Dataset Clusters Number of sequences Classification model Classification accuracy (in %)

Test-1:
11 families and Riboviria;
3273 sequences;
Maximum length: 49973
Minimum length: 2002
Median length: 7350
Mean length: 13173

Adenoviridae
Anelloviridae
Caudovirales
Geminiviridae
Genomoviridae
Microviridae
Ortervirales
Papillomaviridae
Parvoviridae
Polydnaviridae
Polyomaviridae
Riboviria

198
126
500
500
115
102
233
369
182
304
144
500

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

91.7
90.8
95
93.4
87.6
93.2
92

Test-2:
Riboviria families;
2779 sequences;
Maximum length: 31769
Minimum length: 2005
Median length: 7488
Mean length: 8607

Betaflexiviridae
Bromoviridae
Caliciviridae
Coronaviridae
Flaviviridae
Peribunyaviridae
Phenuiviridae
Picornaviridae
Potyviridae
Reoviridae
Rhabdoviridae
Secoviridae

121
122
403
210
222
166
107
437
196
470
192
133

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

91.2
89.2
93.1
90.3
89
90.4
90.5

Test-3a:
Coronaviridae;
208 sequences;
Maximum length: 31769
Minimum length: 9580
Median length: 29704
Mean length: 29256

Alphacoronavirus
Betacoronavirus
Deltacoronavirus
Gammacoronavirus

53
126
20
9

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

98.1
94.2
95.2
95.7
97.6
96.2
96.2

Test-3b:
Coronaviridae;
60 sequences;
Maximum length: 31429
Minimum length: 25402
Median length: 28475
Mean length: 28187

Alphacoronavirus
Betacoronavirus
Deltacoronavirus

20
20
20

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

100
93.3
93.3
95
95
95
95.3

All classifiers trained on Test-1, Test-2, Test-3a, and Test-3b datasets were used to predict the labels of 29 COVID-19 virus sequences. All classifiers predicted the correct

labels for all of the sequences (Riboviria when trained using Test-1, Coronaviridae when trained using Test-2, and Betacoronavirus when trained using Test-3a and Test-

3b).

https://doi.org/10.1371/journal.pone.0232391.t001
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For the clusters with more than 500 sequences, we selected 500 sequences at random. Our

method can handle all of the available 14668 sequences, but using imbalanced clusters, in

regard to the number of sequences, can introduce an unwanted bias. After filtering out the

sequences, our pre-processed dataset is left with 3273 sequences organized into 12 clusters

(Adenoviridae, Anelloviridae, Caudovirales, Geminiviridae, Genomoviridae,Microviridae,

Ortervirales, Papillomaviridae, Parvoviridae, Polydnaviridae, Polyomaviridae, and Riboviria).

We used MLDSP-GUI with CGR as the numerical representation at k = 7. The maximum clas-

sification accuracy of 94.9% is obtained using the Quadratic SVMmodel. The respective MoD-

Map3D is shown in Fig 1(a). All six classification models trained on 3273 sequences were used

to classify (predict the labels of) the 29 COVID-19 virus sequences. All of our machine learn-

ing-based models correctly predicted and confirmed the label as Riboviria for all 29 sequences

(Table 2).

Test-1 classified the COVID-19 virus as belonging to the realm Riboviria. The second test

(Test-2) is designed to classify the COVID-19 virus among the families of the Riboviria realm.

Fig 1. MoDMap3D of (a) 3273 viral sequences from Test-1 representing 11 viral families and realm Riboviria, (b)
2779 viral sequences from Test-2 classifying 12 viral families of realm Riboviria, (c) 208 Coronaviridae sequences
from Test-3a classified into genera.

https://doi.org/10.1371/journal.pone.0232391.g001

Table 2. Predicted taxonomic labels of 29 COVID-19 virus sequences.

Training dataset Testing dataset Classification models Prediction accuracy (%) Predicted label

Test-1 29 COVID-19
virus sequences

Linear Discriminant
Linear SVM
Quadratic SVM
Fine KNN
Subspace Discriminant
Subspace KNN

100
100
100
100
100
100

Riboviria
Riboviria
Riboviria
Riboviria
Riboviria
Riboviria

Test-2 29 COVID-19
virus sequences

Linear Discriminant
Linear SVM
Quadratic SVM
Fine KNN
Subspace Discriminant
Subspace KNN

100
100
100
100
100
100

Coronaviridae
Coronaviridae
Coronaviridae
Coronaviridae
Coronaviridae
Coronaviridae

Test-3(a\b) 29 COVID-19
virus sequences

Linear Discriminant
Linear SVM
Quadratic SVM
Fine KNN
Subspace Discriminant
Subspace KNN

100
100
100
100
100
100

Betacoronavirus
Betacoronavirus
Betacoronavirus
Betacoronavirus
Betacoronavirus
Betacoronavirus

https://doi.org/10.1371/journal.pone.0232391.t002
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We completed the dataset pre-processing using the same rules as in Test-1 and obtained a

dataset of 2779 sequences placed into the 12 families (Betaflexiviridae, Bromoviridae, Caliciviri-

dae, Coronaviridae, Flaviviridae, Peribunyaviridae, Phenuiviridae, Picornaviridae, Potyviridae,

Reoviridae, Rhabdoviridae, and Secoviridae), see Table 1. MLDSP-GUI with CGR at k = 7 as

the numerical representation was used for the classification of the dataset in Test-2. The maxi-

mum classification accuracy of 93.1% is obtained using the Quadratic SVMmodel. The respec-

tive MoDMap3D is shown in Fig 1(b). All six classification models trained on 2779 sequences

were used to classify (predict the label of) the 29 COVID-19 virus sequences. All of our

machine learning-based models predicted the label as Coronaviridae for all 29 sequences

(Table 2) with 100% classification accuracy. Test-2 correctly predicted the family of the

COVID-19 virus sequences as Coronaviridae. Test-3 performs the genus-level classification.

The third test (Test-3a) is designed to classify the COVID-19 virus sequences at the genus

level. We considered 208 Coronaviridae sequences available under four genera (Alphacorona-

virus, Betacoronavirus, Deltacoronavirus, Gammacoronavirus) (Table 1). MLDSP-GUI with

CGR at k = 7 as the numerical representation was used for the classification of the dataset in

Test-3a. The maximum classification accuracy of 98.1% is obtained using the Linear Discrimi-

nant model and the respective MoDMap3D is shown in Fig 1(c). All six classification models

trained on 208 sequences were used to classify (predict the label of) the 29 COVID-19 virus

sequences. All of our machine learning-based models predicted the label as Betacoronavirus

for all 29 sequences (Table 2). To verify that the correct prediction is not an artifact of possible

bias because of larger Betacoronavirus cluster, we did a secondary Test-3b with cluster size lim-

ited to the size of smallest cluster (after removing the Gammacoronavirus because it just had 9

sequences). The maximum classification accuracy of 100% is obtained using the Linear Dis-

criminant model for Test-3b. All six classification models trained on 60 sequences were used

to classify the 29 COVID-19 virus sequences. All of our machine learning-based models pre-

dicted the label as Betacoronavirus for all 29 sequences (Table 2). This secondary test showed

that the possible bias is not significant enough to have any impact on the classification

performance.

Given confirmation that the COVID-19 virus belongs to the Betacoronavirus genus, there

now is a question of its origin and relation to the other viruses of the same genus. To examine

this question, we preprocessed our dataset from our third test to keep the sub-clusters of the

Betacoronavirus with at least 10 sequences (Test-4). This gives 124 sequences placed into four

clusters (Embecovirus,Merbecovirus, Nobecovirus, Sarbecovirus) (Table 3). The maximum clas-

sification accuracy of 98.4% with CGR at k = 7 as the numerical representation is obtained

using the Quadratic SVMmodel. The respective MoDMap3D is shown in Fig 2(a). All six clas-

sifiers trained on 124 sequences predicted the label as Sarbecovirus, when used to predict the

labels of 29 COVID-19 virus sequences. For Test-5, we added the COVID-19 virus with 29

sequences as the fifth cluster, see Table 3. The maximum classification accuracy of 98.7% with

CGR at k = 7 as the numerical representation is obtained using the Subspace Discriminant

model. The respective MoDMap3D is shown in Fig 2(b). In the MoDMap3D plot from Test-5,

COVID-19 virus sequences are placed in a single distinct cluster, see Fig 2(b). As visually sug-

gested by the MoDMap3D (Fig 2(b)), the average inter-cluster distances confirm that the

COVID-19 virus sequences are closest to the Sarbecovirus (average distance 0.0556), followed

byMerbecovirus (0.0746), Embecovirus (0.0914), and Nobecovirus (0.0916). The three closest

sequences based on the average distances from all COVID-19 virus sequences are RaTG13

(0.0203), bat-SL-CoVZC45 (0.0418), and bat-SL-CoVZXC21 (0.0428).

For Test-6, we classified Sarbecovirus (47 sequences) and COVID-19 virus (29 sequences)

clusters and achieved separation of the two clusters visually apparent in the MoDMap3D, see

Fig 2(c). Quantitatively, using 10-fold cross-validation, all six of our classifiers report 100%
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classification accuracy. We generated phylogenetic trees (UPGMA and neighbor-joining)

based on all pairwise distances for the dataset in Test-6 that show the separation of the two

clusters and relationships within the clusters (Figs 3 and 4). As observed in Test-5, the phyloge-

netic trees show that the COVID-19 virus sequences are closer to the Betacoronavirus RaTG13

sequence collected from a bat host.

Fig 5 shows the Chaos Game Representation (CGR) plots of different sequences from the

four different genera (Alphacoronavirus, Betacoronavirus, Deltacoronavirus, Gammacorona-

virus) of the family Coronaviridae. The CGR plots visually suggest and the pairwise distances

confirm that the genomic signature of the COVID-19 virus Wuhan-Hu-1 (Fig 5(a)) is closer to

the genomic signature of the BetaCov-RaTG13 (Fig 5(b); distance: 0.0204), followed by the

Table 3. Genus to sub-genus classification accuracy scores of Betacoronavirus.

Dataset Clusters Number of sequences Classification model Classification accuracy (in %)

Test-4:
Betacoronavirus;
124 sequences;
Maximum length: 31526
Minimum length: 29107
Median length: 30155
Mean length: 30300

Embecovirus
Merbecovirus
Nobecovirus
Sarbecovirus

49
18
10
47

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

97.6
98.4
98.4
97.6
98.4
97.2
97.6

Test-5:
Betacoronavirus and
COVID-19 virus;
153 sequences;
Maximum length: 31526
Minimum length: 29107
Median length: 29891
Mean length: 30217

Embecovirus
Merbecovirus
Nobecovirus
Sarbecovirus
COVID-19 virus

49
18
10
47
29

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

98.6
97.4
97.4
97.4
98.7
96.1
97.5

Test-6:
Sarbecovirus and
COVID-19 virus;
76 sequences;
Maximum length: 30309
Minimum length: 29452
Median length: 29748
Mean length: 29772

Sarbecovirus
COVID-19 virus

47
29

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

100
100
100
100
100
100
100

https://doi.org/10.1371/journal.pone.0232391.t003

Fig 2. MoDMap3D of (a) 124 Betacoronavirus sequences from Test-4 classified into sub-genera, (b) 153 viral
sequences from Test-5 classified into 4 sub-genera and COVID-19 virus, (c) 76 viral sequences from Test 6
classified into Sarbecovirus and COVID-19 virus.

https://doi.org/10.1371/journal.pone.0232391.g002
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Fig 3. The UPGMA phylogenetic tree using the Pearson Correlation Coefficient generated pairwise distance matrix shows COVID-19 virus
(Red) sequences proximal to the bat Betacoronavirus RaTG13 (Blue) and bat SARS-like coronaviruses ZC45/ZXC21 (Green) in a distinct lineage
from the rest of Sarbecovirus sequences (Black).

https://doi.org/10.1371/journal.pone.0232391.g003
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Fig 4. The neighbor-joining phylogenetic tree using the Pearson Correlation Coefficient generated pairwise distance matrix shows COVID-19
virus (Red) sequences proximal to the bat Betacoronavirus RaTG13 (Blue) and bat SARS-like coronaviruses ZC45/ZXC21 (Green) in a distinct
lineage from the rest of Sarbecovirus sequences (Black).

https://doi.org/10.1371/journal.pone.0232391.g004
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genomic signatures of bat-SL-CoVZC45 (Fig 5(c); distance: 0.0417), bat-SL-CoVZXC21(Fig

5(d); distance: 0.0428), Alphacoronavirus /DQ811787 PRCV ISU-1 (Fig 5(e); distance: 0.0672),

Gammacoronavirus / Infectious bronchitis virus NGA /A116E7/2006/FN430415 (Fig 5(f); dis-

tance: 0.0791), and Deltacoronavirus / PDCoV / USA / Illinois121 /2014/KJ481931 (Fig 5(g);

distance: 0.0851).

The Spearman’s rank correlation coefficient tests were used to further confirm the MLDSP

findings. The first test in Fig 6 shows COVID-19 virus being compared to the four genera;

Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Deltacoronavirus. The COVID-19

virus showed the highest k-mer frequency correlation to Betacoronavirus at k = 7 (Table 4),

which is consistent with the MLDSP results in Test-3 (Table 2). The COVID-19 virus was then

compared to all sub-genera within the Betacoronavirus genus: Embecovirus,Merbecovirus,

Nobecovirs and Sarbecovirus seen in Fig 7. The Spearman’s rank test was again consistent with

the MLDSP results seen in Table 3, as the k-mer frequencies at k = 7 showed the highest corre-

lation to the sub-genus Sarbecovirus (Table 4). These tests confirm the findings in MLDSP and

are consistent with the COVID-19 virus as part of the sub-genus Sarbecovirus.

Discussion

Prior work elucidating the evolutionary history of the COVID-19 virus had suggested an ori-

gin from bats prior to zoonotic transmission [12, 33, 35, 38, 41, 62]. Most early cases of

Fig 5. Chaos Game Representation (CGR) plots at k = 7 of (a) COVID-19 virus / Wuhan seafood market pneumonia virus isolate Wuhan-Hu-1/
MN908947.3, (b)Betacoronavirus / CoV / Bat / Yunnan /RaTG13 / EPI_ISL_402131, (c)Betacoronavirus / Bat SARS-like coronavirus isolate bat-
SL-CoVZC45 / MG772933.1, (d)Betacoronavirus / Bat SARS-like coronavirus isolate bat-SL-CoVZXC21 / MG772934.1, (e)Alphacoronavirus /DQ811787
PRCV ISU−1, (f)Gammacoronavirus / Infectious bronchitis virus NGA /A116E7 /2006/ FN430415, and (g)Deltacoronavirus / PDCoV / USA /
Illinois121 /2014/KJ481931. Chaos plot vertices are assigned top left Cytosine, top right Guanine, bottom left Adenine and bottom right Thymine.

https://doi.org/10.1371/journal.pone.0232391.g005
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Fig 6. Hexbin scatterplots of the proportional k-mer (k = 7) frequencies of the COVID-19 virus sequences vs. the four
genera: (a) Alphacoronavirus, ρ = 0.7; (b) Betacoronavirus, ρ = 0.74; (c) Gammacoronavirus, ρ = 0.63 and (d)
Deltacoronavirus, ρ = 0.6. The color of each hexagonal bin in the plot represents the number of points (in natural logarithm
scale) overlapping at that position. All ρ values resulted in p-values<10−5 for the correlation test. By visually inspecting each
hexbin scatterplot, the degree of correlation is displayed by the variation in spread between the points. Hexagonal points that
are closer together and less dispersed as seen in (b) are more strongly correlated and have less deviation.

https://doi.org/10.1371/journal.pone.0232391.g006
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individuals infected with the COVID-19 virus had contact with the Huanan South China Sea-

food Market [26–31]. Human-to-human transmission is confirmed, further highlighting the

need for continued intervention [33, 62–64]. Still, the early COVID-19 virus genomes that

have been sequenced and uploaded are over 99% similar, suggesting these infections result

from a recent cross-species event [12, 31, 40].

These prior analyses relied upon alignment-based methods to identify relationships

between the COVID-19 virus and other coronaviruses with nucleotide and amino acid

sequence similarities. When analyzing the conserved replicase domains of ORF1ab for corona-

virus species classification, nearly 94% of amino acid residues were identical to SARS-CoV, yet

overall genome similarity was only around 70%, confirming that the COVID-19 virus was

genetically different [64]. Within the RdRp region, it was found that another bat coronavirus,

RaTG13, was the closest relative to the COVID-19 virus and formed a distinct lineage from

other bat SARS-like coronaviruses [38, 40]. Other groups found that two bat SARS-like coro-

naviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, were also closely related to the COVID-

19 virus [12, 33–37]. There is a consensus that these three bat viruses are most similar to the

COVID-19 virus, however, whether or not the COVID-19 virus arose from a recombination

event is still unknown [38–40].

Regardless of the stance on recombination, current consensus holds that the hypothesis of

the COVID-19 virus originating from bats is highly likely. Bats have been identified as a reser-

voir of mammalian viruses and cross-species transmission to other mammals, including

humans [4, 7, 8, 10, 13, 65–67]. Prior to intermediary cross-species infection, the coronaviruses

SARS-CoV and MERS-CoV were also thought to have originated in bats [24, 25, 34, 68–70].

Many novel SARS-like coronaviruses have been discovered in bats across China, and even in

European, African and other Asian countries [34, 71–77]. With widespread geographic cover-

age, SARS-like coronaviruses have likely been present in bats for a long period of time and

novel strains of these coronaviruses can arise through recombination [4]. Whether or not the

COVID-19 virus was transmitted directly from bats, or from intermediary hosts, is still

unknown, and will require identification of the COVID-19 virus in species other than humans,

notably from the wet market and surrounding area it is thought to have originated from [30].

While bats have been reported to have been sold at the Huanan market, at this time, it is still

unknown if there were intermediary hosts involved prior to transmission to humans [27, 31,

33, 39, 78]. Snakes had been proposed as an intermediary host for the COVID-19 virus based

on relative synonymous codon usage bias studies between viruses and their hosts [39], how-

ever, this claim has been disputed [79]. China CDC released information about environmental

sampling in the market and indicated that 33 of 585 samples had evidence of the COVID-19

Table 4. Spearman’s rank correlation coefficient (ρ) values from Figs 6 and 7, for which all p-values<10−5. The
strongest correlation value was found between Betacoronavirus and Sarbecovirus when using the data sets from Test 3a
from Table 2 and Test 4 from Table 3, respectively.

Dataset Comparison Groups COVID-19 virus vs. ρ value

Test-3a Alphacoronavirus 0.70

Betacoronavirus 0.74

Gammacoronavirus 0.63

Deltacoronavirus 0.60

Test-4 Embecovirus 0.59

Merbecovirus 0.64

Nobecovirus 0.54

Sarbecovirus 0.72

https://doi.org/10.1371/journal.pone.0232391.t004
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Fig 7. Hexbin scatterplots of the proportional k-mer (k = 7) frequencies of the COVID-19 virus sequences vs. the four sub-
genera: (a) Embecovirus, ρ = 0.59; (b)Merbecovirus, ρ = 0.64; (c) Nobecovirus, ρ = 0.54 and (d) Sarbecovirus, ρ = 0.72. The
color of each hexagonal bin in the plot represents the number of points (in natural logarithm scale) overlapping at that position.
All ρ values resulted in p-values<10−5 for the correlation test. By visually inspecting each hexbin scatterplot, the degree of
correlation is displayed by the variation in spread between the points. Hexagonal points that are closer together and less
dispersed as seen in (d) are more strongly correlated and have less deviation.

https://doi.org/10.1371/journal.pone.0232391.g007
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virus, with 31 of these positive samples taken from the location where wildlife booths were

concentrated, suggesting possible wildlife origin [80, 81]. Detection of SARS-CoV in Himalyan

palm civets and horseshoe bats identified 29 nucleotide sequences that helped trace the origins

of SARS-CoV isolates in humans to these intermediary species [13, 24, 38, 77]. Sampling addi-

tional animals at the market and wildlife in the surrounding area may help elucidate whether

intermediary species were involved or not, as was possible with the SARS-CoV.

Viral outbreaks like COVID-19 demand timely analysis of genomic sequences to guide the

research in the right direction. This problem being time-sensitive requires quick sequence sim-

ilarity comparison against thousands of known sequences to narrow down the candidates of

possible origin. Alignment-based methods are known to be time-consuming and can be chal-

lenging in cases where homologous sequence continuity cannot be ensured. It is challenging

(and sometimes impossible) for alignment-based methods to compare a large number of

sequences that are too different in their composition. Alignment-free methods have been used

successfully in the past to address the limitations of the alignment-based methods [48–51].

The alignment-free approach is quick and can handle a large number of sequences. Moreover,

even the sequences coming from different regions with different compositions can be easily

compared quantitatively, with equally meaningful results as when comparing homologous/

similar sequences. We use MLDSP-GUI (a variant of MLDSP with additional features), a

machine learning-based alignment-free method successfully used in the past for sequence

comparisons and analyses [50]. The main advantage alignment-free methodology offers is the

ability to analyze large datasets rapidly. In this study we confirm the taxonomy of the COVID-

19 virus and, more generally, propose a method to efficiently analyze and classify a novel

unclassified DNA sequence against the background of a large dataset. We namely use a “deci-

sion tree” approach (paralleling taxonomic ranks), and start with the highest taxonomic level,

train the classification models on the available complete genomes, test the novel unknown

sequences to predict the label among the labels of the training dataset, move to the next taxo-

nomic level, and repeat the whole process down to the lowest taxonomic label.

Test-1 starts at the highest available level and classifies the viral sequences to the 11 families

and Riboviria realm (Table 1). There is only one realm available in the viral taxonomy, so all of

the families that belong to the realm Riboviria are placed into a single cluster and a random

collection of 500 sequences are selected. No realm is defined for the remaining 11 families. The

objective is to train the classification models with the known viral genomes and then predict

the labels of the COVID-19 virus sequences. The maximum classification accuracy score of

95% was obtained using the Quadratic SVMmodel. This test demonstrates that MLDSP-GUI

can distinguish between different viral families. The trained models are then used to predict

the labels of 29 COVID-19 virus sequences. As expected, all classification models correctly pre-

dict that the COVID-19 virus sequences belong to the Riboviria realm, see Table 2. Test-2 is

composed of 12 families from the Riboviria, see Table 1, and the goal is to test if MLDSP-GUI

is sensitive enough to classify the sequences at the next lower taxonomic level. It should be

noted that as we move down the taxonomic levels, sequences become much more similar to

one another and the classification problem becomes challenging. MLDSP-GUI is still able to

distinguish between the sequences within the Riboviria realm with a maximum classification

accuracy of 91.1% obtained using the Linear Discriminant classification model. When the

COVID-19 virus sequences are tested using the models trained on Test-2, all of the models

correctly predict the COVID-19 virus sequences as Coronaviridae (Table 2). Test-3a moves

down another taxonomic level and classifies the Coronaviridae family to four genera (Alpha-

coronavirus, Betacoronavirus, Deltacoronavirus, Gammacoronavirus), see Table 1.

MLDSP-GUI distinguishes sequences at the genus level with a maximum classification accu-

racy score of 98%, obtained using the Linear Discriminant model. This is a very high accuracy

PLOS ONE Rapid classification of novel pathogens using machine learning: COVID-19 case study

PLOSONE | https://doi.org/10.1371/journal.pone.0232391 April 24, 2020 15 / 24

https://doi.org/10.1371/journal.pone.0232391


rate considering that no alignment is involved and the sequences are very similar. All trained

classification models correctly predict the COVID-19 virus as Betacoronavirus, see Table 2.

Test-3a has Betacoronavirus as the largest cluster and it can be argued that the higher accuracy

could be a result of this bias. To avoid bias, we did an additional test removing the smallest

cluster Gammacoronavirus and limiting the size of remaining three clusters to the size of the

cluster with the minimum number of sequences i.e. 20 with Test-3b. MLDSP-GUI obtains

100% classification accuracy for this additional test and still predicts all of the COVID-19 virus

sequences as Betacoronavirus. These tests confirm that the COVID-19 virus sequences are

from the genus Betacoronavirus.

Sequences become very similar at lower taxonomic levels (sub-genera and species). Test-4,

Test-5, and Test-6 investigate within the genus Betacoronavirus for sub-genus classification.

Test-4 is designed to classify Betacoronavirus into the four sub-genera (Embecovirus,Merbe-

covirus, Nobecovirus, Sarbecovirus), see Table 3. MLDSP-GUI distinguishes sequences at the

sub-genus level with a maximum classification accuracy score of 98.4%, obtained using the

Quadratic SVMmodel. All of the classification models trained on the dataset in Test-4 pre-

dicted the label of all 29 COVID-19 virus sequences as Sarbecovirus. This suggests substantial

similarity between the COVID-19 virus and the Sarbecovirus sequences. Test-5 and Test-6 (see

Table 3) are designed to verify that the COVID-19 virus sequences can be differentiated from

the known species in the Betacoronavirus genus. MLDSP-GUI achieved a maximum classifica-

tion score of 98.7% for Test-5 and 100% for Test-6 using Subspace Discriminant classification

model. This shows that although the COVID-19 virus and Sarbecovirus are closer on the basis

of genomic similarity (Test-4), they are still distinguishable from known species. Therefore,

these results suggest that the COVID-19 virus may represent a genetically distinct species of

Sarbecovirus. All the COVID-19 virus sequences are visually seen in MoDMap3D generated

from Test-5 (see Fig 2(b)) as a closely packed cluster and it supports a fact that there is 99%

similarity among these sequences [12, 31]. The MoDMap3D generated from the Test-5 (Fig 2

(b)) visually suggests and the average distances from COVID-19 virus sequences to all other

sequences confirm that the COVID-19 virus sequences are most proximal to the RaTG13 (dis-

tance: 0.0203), followed by the bat-SL-CoVZC45 (0.0418), and bat-SL-CoVZX21 (0.0428). To

confirm this proximity, UPGMA and neighbor-joining phylogenetic trees are computed from

the PCC-based pairwise distance matrix of sequences in Test-6, see Figs 3 and 4. Notably, the

UPGMAmodel assumes that all lineages are evolving at a constant rate (equal evolution rate

among branches). This method may produce unreliable results in cases where the genomes of

some lineages evolve more rapidly than those of the others. To further verify the phylogenetic

relationships, we also produced a phylogenetic tree using the neighbor-joining method that

allows different evolution rates among branches and obtained a highly similar output. The

phylogenetic trees placed the RaTG13 sequence closest to the COVID-19 virus sequences, fol-

lowed by the bat-SL-CoVZC45 and bat-SL-CoVZX21 sequences. This closer proximity repre-

sents the smaller genetic distances between these sequences and aligns with the visual

sequence relationships shown in the MoDMap3D of Fig 2(b).

We further confirm our results regarding the closeness of the COVID-19 virus with the

sequences from the Betacoronavirus genus (especially sub-genus Sarbecovirus) by a quantita-

tive analysis based on the Spearman’s rank correlation coefficient tests. Spearman’s rank corre-

lation coefficient [58–61] tests were applied to the frequencies of oligonucleotide segments,

adjusting for the total number of segments, to measure the degree and statistical significance

of correlation between two sets of genomic sequences. Spearman’s ρ value provides the degree

of correlation between the two groups and their k-mer frequencies. The COVID-19 virus was

compared to all genera under the Coronaviridae family and the k-mer frequencies showed the

strongest correlation to the genus Betacoronavirus, and more specifically Sarbecovirus. The
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Spearman’s rank tests corroborate that the COVID-19 virus is part of the Sarbecovirus sub-

genus, as shown by CGR and MLDSP. When analyzing sub-genera, it could be hard to classify

at lower k values due to the short oligonucleotide frequencies not capturing enough informa-

tion to highlight the distinctions. Therefore despite the Spearman’s rank correlation coefficient

providing results for k = 1 to k = 7, the higher k-mer lengths provided more accurate results,

and k = 7 was used.

Attributes of the COVID-19 virus genomic signature are consistent with previously

reported mechanisms of innate immunity operating in bats as a host reservoir for coronavi-

ruses. Vertebrate genomes are known to have an under-representation of CG dinucleotides in

their genomes, otherwise known as CG suppression [82, 83]. This feature is thought to have

been due to the accumulation of spontaneous deamination mutations of methyl-cytosines

over time [82]. As viruses are obligate parasites, evolution of viral genomes is intimately tied to

the biology of their hosts [84]. As host cells develop strategies such as RNA interference and

restriction-modification systems to prevent and limit viral infections, viruses will continue to

counteract these strategies [83–85]. Dinucleotide composition and biases are pervasive across

the genome and make up a part of the organism’s genomic signature [84]. These host genomes

have evolutionary pressures that shape the host genomic signature, such as the pressure to

eliminate CG dinucleotides within protein coding genes in humans [83]. Viral genomes have

been shown to mimic the same patterns of the hosts, including single-stranded positive-sense

RNA viruses, which suggests that many RNA viruses can evolve to mimic the same features of

their host’s genes and genomic signature [82–86]. As genomic composition, specifically in

mRNA, can be used as a way of discriminating self vs non-self RNA, the viral genomes are

likely shaped by the same pressures that influence the host genome [83]. One such pressure on

DNA and RNA is the APOBEC family of enzymes, members of which are known to cause G to

A mutations [86–88]. While these enzymes primarily work on DNA, it has been demonstrated

that these enzymes can also target RNA viral genomes [87]. The APOBEC enzymes therefore

have RNA editing capability and may help contribute to the innate defence system against var-

ious RNA viruses [86]. This could therefore have a direct impact on the genomic signature of

RNA viruses. Additional mammalian mechanisms for inhibiting viral RNA have been

highlighted for retroviruses with the actions of zinc-finger antiviral protein (ZAP) [82]. ZAP

targets CG dinucleotide sequences, and in vertebrate host cells with the CG suppression in

host genomes, this can serve as a mechanism for the distinction of self vs non-self RNA and

inhibitory consequences [82]. Coronaviruses have A/U rich and C/G poor genomes, which

over time may have been, in part, a product of cytidine deamination and selection against CG

dinucleotides [89–91]. This is consistent with the fact that bats serve as a reservoir for many

coronaviruses and that bats have been observed to have some of the largest and most diverse

arrays of APOBEC genes in mammals [67, 69]. The Spearman’s rank correlation data and the

patterns observed in the CGR images from Fig 5, of the coronavirus genomes, including the

COVID-19 virus identify patterns such as CG underepresentation, also present in vertebrate

and, importantly, bat host genomes.

With human-to-human transmission confirmed and concerns for asymptomatic transmis-

sion, there is a strong need for continued intervention to prevent the spread of the virus [32,

33, 62–64]. Due to the high amino acid similarities between the COVID-19 virus and SARS--

CoV main protease essential for viral replication and processing, anticoronaviral drugs target-

ing this protein and other potential drugs have been identified using virtual docking to the

protease for treatment of COVID-19 [29, 43, 44, 92–95]. The human ACE2 receptor has also

been identified as the potential receptor for the COVID-19 virus and represents a potential tar-

get for treatment [41, 42].
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MLDSP-GUI is an ultra-fast, alignment-free method as is evidenced by the time-perfor-

mance of MLDSP-GUI for Test-1 to Test-6 given in Fig 8. MLDSP-GUI took just 10.55 sec-

onds to compute a pairwise distance matrix (including reading sequences, computing

magnitude spectra using DFT, and calculating the distance matrix using PCC combined) for

the Test-1 (largest dataset used in this study with 3273 complete genomes). All of the tests

combined (Test-1 to Test-6) are doable in under 10 minutes including the computationally

heavy 10-fold cross-validation, and testing of the 29 COVID-19 virus sequences.

The results of our machine learning-based alignment-free analyses using MLDSP-GUI sup-

port the hypothesis of a bat origin for the COVID-19 virus and classify COVID-19 virus as

sub-genus Sarbecovirus, within Betacoronavirus.

Fig 8. Time performance of MLDSP-GUI for Test1 to Test-6 (in seconds).

https://doi.org/10.1371/journal.pone.0232391.g008
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Conclusion

This study provides an alignment-free method based on intrinsic genomic signatures that can

deliver highly-accurate real-time taxonomic predictions of yet unclassified new sequences, ab

initio, using raw DNA sequence data alone and without the need for gene or genome annota-

tion. We use this method to provide evidence for the taxonomic classification of the COVID-

19 virus as Sarbecovirus, within Betacoronavirus, as well as quantitative evidence supporting a

bat origin hypothesis. Our results are obtained through a comprehensive analysis of over 5000

unique viral sequences, through an alignment-free analysis of their two-dimensional genomic

signatures, combined with a “decision tree” use of supervised machine learning and confirmed

by Spearman’s rank correlation coefficient analyses. This study suggests that such alignment-

free approaches to comparative genomics can be used to complement alignment-based

approaches when timely taxonomic classification is of the essence, such as at critical periods

during novel viral outbreaks.
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