
Machine Learning via Polyhedral Concave MinimizationO. L. Mangasarian�Mathematical Programming Technical Report 95-20November 1995Dedicated to Klaus Ritter on the Occasion of his Sixtieth BirthdayAbstractTwo fundamental problems of machine learning, misclassi�cation minimization [10, 24, 18]and feature selection, [25, 29, 14] are formulated as the minimization of a concave function ona polyhedral set. Other formulations of these problems utilize linear programs with equilibriumconstraints [18, 1, 4, 3] which are generally intractable. In contrast, for the proposed concaveminimization formulation, a successive linearization algorithm without stepsize terminates aftera maximum average of 7 linear programs on problems with as many as 4192 points in 14-dimensional space. The algorithm terminates at a stationary point or a global solution to theproblem. Preliminary numerical results indicate that the proposed approach is quite e�ectiveand more e�cient than other approaches.1 IntroductionWe shall consider the following two fundamental problems of machine learning:Problem 1.1 Misclassi�cation Minimization [24, 18] Given two �nite point sets A and B inthe n-dimensional real space Rn, construct a plane that minimizes the number of points of A fallingin one of the closed halfspaces determined by the plane and the number of points of B falling in theother closed halfspace.Problem 1.2 Feature Selection [4, 3] Given two �nite point sets A and B in Rn; select a su�-ciently small number of dimensions of Rn such that a plane, constructed in the smaller dimensionalspace, optimizes some separation criterion between the sets A and B:We immediately note that the misclassi�cation minimization problem is NP-complete [6, Propo-sition 2]. But, e�ective methods for its solution have been proposed in [18] and implemented in[1]. An approximate technique [6] has also been implemented. The formulation that we propose inthis work terminates in a �nite number of linear programs (typically less than seven) at a vertexsolution or stationary point of the problem.We outline the contents of the paper now. In Section 2 we give a precise mathematical formu-lation of the misclassi�cation minimization and feature selection problems and indicate how theycan be set up as linear programs with equilibrium constraints and indicate some of the di�culties�Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, WI 53706, email:olvi@cs.wisc.edu. This material is based on research supported by Air Force O�ce of Scienti�c Research GrantF49620-94-1-0036 and National Science Foundation Grants CCR-9322479.1



attendant this formulation. We then introduce in Section 3 a simple concave exponential approxi-mation of the step function, similar to the classical sigmoid function of neural networks [28, 11, 17],but with the signi�cant di�erence of concavity of the proposed approximation which is not sharedby the sigmoid function. This concavity is possible, because the step function is applied here tononnegative variables. This leads to a �nite successive linearization algorithm (SLA) without astepsize procedure that is described in Section 4 of the paper. Section 5 gives very encouragingresults on numerical tests on the misclassi�cation minimization and feature selection problems.Section 6 gives a concluding summary of the paper.A word about our notation now. For a vector x in the n-dimensional real space Rn; x+ willdenote the vector in Rn with components (x+)i := max fxi; 0g; i = 1; : : : ; n: Similarly x� willdenote the vector in Rn with components (x�)i := (xi)�; i = 1; : : : ; n; where (�)� is the step functionde�ned as one for positive xi and zero otherwise, while jxj will denote a vector of absolute valuesof components of x: The base of the natural logarithm will be denoted by " and for y 2 Rm; "�ywill denote a vector in Rm with component "�yi ; i = 1; : : : ; m: The norm k � kp will denote thep norm, 1 <= p <=1; while A 2 Rm�n will signify a real m � n matrix. For such a matrix, AT willdenote the transpose, and Ai will denote row i: For two vectors x and y in Rn; x ? y will denotexTy = 0: A vector of ones in a real space of arbitrary dimension will be denoted by e. The notationargminx2S f(x) will denote the set of minimizers of f(x) on the set S: Similarly arg vertexminx2S f(x)will denote the set of vertex minimizers of f(x) on the polyhedral set S: By a separating plane, withrespect to two given point sets A and B in Rn, we shall mean a plane that attempts to separate Rninto two half spaces such that each open halfspace contains points mostly of A or B: The symbol\:=" de�nes a quantity appearing on its left by a quantity appearing on its right. For f : Rn �! Rwhich is di�erentiable at x, the notation rf(x) will represent the 1 � n gradient vector. Rn+ willdenote the nonnegative orthant.2 The Misclassi�cation Minimization and Feature Selection Prob-lemsWe consider two nonempty �nite point sets A and B in Rn consisting of m and k points respectivelythat are represented by the matrices A 2 Rm�n and B 2 Rk�n. The objective of both problemshere is to construct a separating plane:P := fx j x 2 Rn; xTw = 
g; (1)where w 2 Rn; 
 2 R, such that some error criterion is minimized. Thus in the exceptional casewhen the convex hulls of A and B do not intersect, a single linear program [2] will generate a planeP that strictly separates the sets A and B as follows:Aw >= e
 + e; Bw <= e
 � e (2)Our concern here is with the usually occurring case when no plane P exists satisfying (2). Adesirable objective for such a case [24, 18, 1, 6] is to minimize the number of points of A lying inthe complement of the closed halfspace reserved for it, that is, minimize the number of elements ofA in: fx j xTw < 
 + 1g; (3)2



as well as the number of points of B lying in the complement of the closed halfspace reserved forit, that is, minimize the number of elements of B in:fx j xTw > 
 � 1g (4)Thus, if we introduce the nonnegative slack variables y 2 Rm and z 2 Rk and make use of the stepfunction (�)�; the misclassi�cation minimization problem can be stated as follows:minw;
;y;zfeT y� + eT z� j y >= �Aw + e
 + e; y >= 0; z >= Bw � e
 + e; z >= 0g (5)Note that without the step function (�)� in (5), the problem becomes a linear program (essentiallythe robust linear program [2, Equation (2.11)], but without averaging over m and k), in which casey and z of (5) become: y = (�Aw + e
 + e)+; z = (Bw � e
 + e)+ (6)Thus, problem (5) without the step function (�)� is equivalent to:minw;
 




 �Aw + e
 + eBw � e
 + e !+




1 (7)The objective of (7) measures sums of distances (assuming each row of A and B has unit 2-norm)of points of A in the open halfspace (3) from the plane xTw = 
 + 1 as well as points of B in theopen halfspace (4) from the plane xTw = 
 � 1. By contrast the objective of problem (5) is tocount the points of A contained in the open halfspace (3) and the points of B contained in the openhalfspace (4) and attempt to minimize the totality of such points. To show indeed that problem(5) minimizes the total number of misclassi�ed points we state the following simple lemma.Lemma 2.1 Let a 2 Rm: Thenr 2 argminr feTr� j r >= a; r >= 0g ) r� = a� (8)Proof If r is a solution of the indicated minimization problem then for i = 1; : : : ; m :(ri)� = * 0 if ai <= 01 if ai > 0 = (ai)�By using this lemma on problem (5) we obtain the following proposition, which shows that anysolution of (5) (and we will show in Proposition 2.4 below that (5) is always solvable) generates aplane that minimizes the number of misclassi�ed points, that is points of A in (3) and points of Bin (4).Proposition 2.2 Let ( �w; �
; �y; �z) solve (5), theneT �y� + eT �z� = minw;
 eT (�Aw + e
 + e)� + eT (Bw � e
 + e)� (9)3



Proof For a �xed (w; 
); let(y(w; 
); z(w; 
)) 2 argminy;z 8<:eTy� + eT z� ������ y >= �Aw + e
 + e; y >= 0z >= Bw � e
 + e; z >= 0 9=; (10)By Lemma 2.1 we have that (y(w; 
))� = (�Aw + e
 + e)�(z(w; 
))� = (Bw � e
 + e)� (11)Since ( �w; �
; �y; �z) solves (5) we have by (10)-(11) thateT �y� + eT �z� = minw;
 eT (�Aw + e
 + e)� + eT (Bw � e
 + e)� (12)To establish the existence of solution to problem (5) and to relate it to a linear program withequilibrium constraints (LPEC) [18, 19, 16, 15], we state the following lemma.Lemma 2.3 Let a 2 Rm: Thenr = a�; u = a+ , (r; u) = argminr;u feTr j 0 � r ? u � a >= 0; 0 <= u ? �r + e >= 0g (13)Proof The constraints of the minimization problem constitute the Karush-Kuhn-Tucker conditionsfor the dual linear programs:maxr faT r j 0 � r <= eg; minu feTu j u >= a; u >= 0g (14)which are solved by: ri = * 0 for ai < 0ri 2 [0; 1] for ai = 01 for ai > 0 ; u = a+ (15)The objective function eTr minimized in (13) renders the solution r of (15) unique by making ri = 0for ai = 0; thus giving r = a�:By using Lemma 2.3, problem (5) can be written in the following equivalent form as an LPEC:minw;
;y;z;r;u;s;v8>>>>><>>>>>:eTr + eTs ����������� 0 <= r ? u� y >= 0 0 <= s ? v � z >= 00 <= u ? �r + e >= 0 0 <= v ? �s + e >= 0y >= �Aw + e
 + e ; z >=Bw � e
 + ey >= 0 z >= 0 9>>>>>=>>>>>; (16)Since the nonempty (take w = 0; 
 = 0; y = e; z = e; r = e; s = e; u = e; v = e) feasible regionof (16) is the union of a �nite number of polyhedral sets over which the linear objective functioneT r+ eTs is bounded below by zero, it follows that eTr+ eT s attains a minimum on each of thesepolyhedral sets. The minimum of these minima is a solution of (16). Since (16) is equivalent to(5), we have the following.Proposition 2.4 The misclassi�cation minimization problem (5) has a solution.4



We turn our attention to our second problem, the feature selection problem. The problemagain is to separate the �nite point sets A and B in Rn; but with the additional requirement ofusing as few of the dimensions of Rn as possible. If we take as our point of departure the robustlinear program [2, Equation (2.11)], which is very e�ective in discriminating between sets arisingfrom real world problems [21], and motivate our formulation by the perturbation results of linearprogramming [20] to suppress as many of the coe�cients w of the separating plane fx j xTw = 
gas possible, we obtain the following problem for a suitably chosen � 2 [0; 1] :minw;
;y;z8<:(1� �) eTym + eT zk !+ �eTv� ������ Aw � e
 + y >= e; �Bw + e
 + z >= e; y >= 0; z >= 0�v <= w <= v 9=; (17)For � = 0; we obtain the robust linear program of [2]. For � = 1; all components of w are suppressedyielding no useful result. For � su�ciently small, the program (17) selects those solutions of therobust linear program, that is (17) with � = 0, that minimize eT j w j� . This in e�ect suppressesas many components of w as possible. Computationally, one obviously varies � until some \best"value of (w; 
) is obtained as evinced by a cross-validating procedure [30].By using an identical technique to that used to establish the existence of a solution to problem(5), we can similarly replace problem (17) by an LPEC and establish existence of a solution to it.We thus can state the following result.Proposition 2.5 The feature selection problem (17) has a solution to each � 2 [0; 1]:We turn our attention now to algorithmic considerations by �rst approximating the step function(�)�, which appears in both problems (5) and (17), by a smooth concave approximation.3 Concave Approximation of the Step FunctionOne of the most common and useful approximations in neural networks [28, 11] is the sigmoidfunction approximation of the step function �� de�ned ass(�; �) := 11 + "��� ; � > 0 (18)Here " is the base of the natural logarithm. For moderate values of �; the sigmoid is a very adequateapproximation of the step function ��: A shortcoming of the sigmoid is that it is neither convex norconcave. This prevents us from invoking some of the fundamental properties of these functions.In the two applications of this paper, it turns out that the variables to which the step function isapplied are nonnegative: y and z in problem (5) and v in problem (17). Consequently, we proposethe following simpler concave approximation of the step function for nonnegative variablest(�; �) := 1� "��� � > 0; � >= 0 (19)Two important consequences of this simpler concave approximation of the step function are: �rst,an existence proof to both the smooth concave approximation of the misclassi�cation minimizationproblem (5) as well as to the smooth concave approximation of the feature selection problem (17)(Proposition 3.1 below), and second, a �nite termination theorem (Theorem 4.2 below) for thesuccessive linearization algorithm (SLA Algorithm 4.1 below). We now state the smooth approxi-mations of the misclassi�cation minimization and the feature selection problems.5



3.1 Smooth Concave Misclassi�cation Minimization Problem (5) Let � > 0:minw;
;y;zfm+ k � eT "��y � eT "��z j y >= � Aw + e
 + e; y >= 0; z >=Bw � e
 + e; z >= 0g (20)We note immediately that the concave objective function is bounded below by zero on the setRn+1 � Rm+k+ which contains the feasible region. Furthermore, this lower bound is attained byy = 0; z = 0; and some infeasible (w; 
) in general. The zero minimum is attained at a feasiblepoint if and only if the convex hulls of A and B do not intersect. Otherwise the minimized objectiveof (20) approximates from below (for moderate values of �) the smallest number of misclassi�edpoints by any plane xTw = 
:3.2 Smooth Concave Feature Selection Problem (17) Let � 2 [0; 1] and � > 0:minw;
;y;z8<:(1� �) eT ym + eT zk !+ �(n� eT "��v) ������ Aw � e
 + y >= e;�Bw + e
 + z >= e; y >= 0; z >= 0�v <= w <= v 9=;(21)Again for this problem, the concave objective function is bounded below by zero on the feasibleregion. For various values of the parameter � 2 [0; 1]; emphasis of separation by the plane xTw = 
is balanced against suppression of as many coe�cients of w as possible, with the term (n�eT "��v)giving an approximation (from below) to the number of nonzero coe�cients of w:By making use of [27, Corollary 32.3.3] which implies that a concave function, bounded frombelow on a nonempty polyhedral set, attains its minimum on that set, we can state the followingexistence results for the two smooth problems above.Proposition 3.1 The smooth concave misclassi�cation minimization problem (20) and the smoothconcave feature selection problem (21) have solutions.We turn our attention to algorithmic considerations.4 Successive Linearization of Polyhedral Concave ProgramsBy replacing the variables (w; 
) by the nonnegative variables (w1; 
1; �1) using the standardtransformation w = w1� e�1; 
 = 
1� �1; the smooth problems (20) and (21) can be transformedto the following concave minimization problem:minx ff(x) j Ax <= b; x >= 0g; (22)where f :R` ! R, is a di�erentiable, concave function bounded below on the nonempty polyhedralfeasible region of (22), A 2 Rp�` and b 2 Rp: By [27, Corollary 32.3.4] it follows that f attainsits minimum at a vertex of the feasible region of (22). We now prescribe a simple �nite successivelinearization algorithm (essentially a Frank-Wolfe algorithm [9] without a stepsize) for solving(22) that appears to give good computational results. (See Section 5.) Other more complexcomputational schemes for this problem are given in [13, 12].4.1 Successive Linearization Algorithm (SLA) Start with a random x0 2 Rn: Having xidetermine xi+1 as follows: 6



xi+1 2 arg vertexminx2X rf(xi)(x� xi)X = fx j Ax <= b; x >= 0g (23)Stop if xi 2 X and rf(xi)(xi+1 � xi) = 0:Comment: The condition xi 2 X takes care of the possibility that x0 may not be in X:We show below that this is a �nite algorithm which generates a strictly decreasing �nite sequenceff(xi)g; i = 1; 2; : : : ;�i; which terminates at an x�i that is a stationary point that may also be aglobal minimum solution.Remark: SLA may be started from many di�erent random starting points. This was not necessaryin the present applications.4.2 SLA Finite Termination Theorem Let f be a di�erentiable concave function on Rn thatis bounded below on X: The SLA generates a �nite sequence of iterates fx1; x2; : : : ; x�ig of strictlydecreasing objective function values: f(x1) > f(x2) > : : : > f(x�i); such that x�i satis�es theminimum principle necessary optimality conditionsrf(x�i)(x� x�i) >= 0; 8x 2 X: (24)Proof We �rst show that SLA is well de�ned. By the concavity of f and its boundedness frombelow on X , we have that�1 < infx2X f(x)� f(xi) <= f(x)� f(xi) <=rf(xi)(x� xi); 8x 2 X:It follows for any xi 2 Rn, even for an infeasible xi such as x0, that rf(xi)(x � xi) is boundedbelow on X: Hence the linear program (23) is solvable and has a vertex solution xi+1: It follows fori = 1; 2; : : : ; that8x 2 X : rf(xi)(x� xi) >= minx2X rf(xi)(x� xi) = rf(xi)(xi+1 � xi)* < 0 (a)= 0 (b) (25)We note immediately that because xi 2 X for i = 1; 2; : : : ; it follows that rf(xi)(xi+1 � xi) <= 0:Hence only two cases, (a) or (b), can occur, as indicated above. When case (a) above occurs, thealgorithm does not stop at iteration i, and we have from the concavity of f and the strict inequalityof case (a) that: f(xi+1) <= f(xi) +rf(xi)(xi+1 � xi) < f(xi)Hence f(xi+1) < f(xi); for i = 1; 2; : : : : When case (b) occurs we then have that:8x 2 X : rf(xi)(x� xi) >= 0; (26)and the algorithm terminates (provided xi 2 X; which may not be the case if xi = x0 62 X); and set�i = i: The point x�i thus satis�es the minimum principle necessary optimality conditions (26) withx�i = xi; and x�i may be a global solution. Furthermore, since X has a �nite number of vertices,ff(xi)g is strictly decreasing and f(x) is bounded below on X; it follows that case (b) must occurafter a �nite number of steps.We turn our attention to some computational results.7



5 Numerical TestsThe proposed approach was tested numerically on publicly available databases from the Universityof California Repository of Machine Learning Databases [22] as well as the Star/Galaxy databasecollected by Odewahn [26]. For all the numerical results reported, the value of � used in the concavem Percent of Correctly Classi�ed PointsData Set k Time Seconds SPARCstation 20n Average No. of LPs over 10 RunsPMM SLA28 95.92 93.2WBC Prognosis 119 10.65 0.8632 3.0239 98.57 97.6WBCD 443 24.65 9.479 5.7216 91.43 89.3Cleveland Heart 81 17.46 2.6914 4.3225 98.42 97.0Ionosphere 126 27.26 10.3034 4.0145 74.85 71.4Liver Disorders 200 18.51 1.096 5.5268 80.55 78.3Pima Diabetes 500 51.40 14.338 6.52082 96.52 96.1Star/Galaxy(Dim) 2110 1122.70 779.8914 5.91505 99.89 99.8Star/Galaxy(Bright) 957 266.13 69.4814 3.2626 69.12 66.6Tic Tac Toe 332 46.45 6.449 3.3168 98.82 96.9Votes 267 14.76 1.5616 3.4Total Times 1599.97 896.11Table 1: Comparison of Successive Linearization Algorithm (SLA) Algorithm 4.1 forthe Smooth Misclassi�cation Minimization Problem (20) with the Parametric Mini-mization Method (PMM) [18, 1]. SLA was coded in GAMS [5] utilizing the CPLEXsolver [7]. PMM was coded was coded in AMPL [8] utilizing the MINOS LP solver[23]. 8



exponential approximation t(�; �) = 1 � "��� to the step function ��, was �ve. This value of �allows t(�; �) to capture the essence of of the step function �� with su�cient smoothness to makethe proposed algorithm work e�ectively without over
ow or under
ow.The �rst test consisted in applying the SLA 4.1 to the smooth misclassi�cation minimiza-tion problem (20). For this problem ten databases were used from the Irvine repository and theStar/Galaxy database. Table 1 gives the percent of correctly separated points as well as CPUtimes using an average of ten SLA runs on the smooth misclassi�cation minimization problem (20).These quantities are compared with those of a parametric minimization method (PMM) applied toan LPEC associated with the misclassi�cation minimization [18, 1]. Table 1 shows that the muchsimpler SLA algorithm obtained a separation that was almost as good as the parametric methodfor solving the LPEC at considerably less computing cost. Each problem was solved using no morethan a maximum average of 7 LPs over ten runs. Average of solution times of the SLA over allproblems run was 56% of the average PMM solution times.Our second test consisted of solving the smooth concave feature selection problem (21) by SLA4.1. The test problem consisted of the Wisconsin Breast Cancer Database WBCD tested in theabove set of tests, with one modi�cation. Two new random features, uniformly distributed on theinterval [0; 10] were added to the problem, so that the problem space was R11 instead of the originalR9: With � = 0:05 in problem (21), and by solving 6 successive linear programs, the SLA was ableto suppress the e�ect of the random components x10 and x11 by setting w10 and w11 equal to zero, aswell as some other components: w3; w4; w5; w7; and w9. The resulting separation in R4 correctlyseparated 97.1% of the points, which is almost as good as the 97.6% correctness obtained abovewithout the feature selection option by solving the misclassi�cation minimization problem (20) inR9: This indicates that, for this problem, the stationary point obtained by the SLA algorithm inR4 for the smooth feature selection problem (21) is almost as good as the stationary point obtainedin R9 for the smooth misclassi�cation minimization problem (20). The key observation however, isthat the feature selection approach proposed here, not only gets rid of extraneous random features,but also of unimportant features in the original problem.6 ConclusionWe have formulated two important problems of machine learning: misclassi�cation minimizationand feature selection as the minimization of a simple concave function on a polyhedral set that isalways solvable. A successive linearization algorithm that requires the solution of a few LPs in eachinstance appears to be a very e�ective method of solution.AcknowledgementI am indebted to my Ph.D. student Paul S. Bradley for the numerical testing of the proposedalgorithm.
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