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Abstract

Two fundamental problems of machine learning, misclassification minimization [10, 24, 18]
and feature selection, [25, 29, 14] are formulated as the minimization of a concave function on
a polyhedral set. Other formulations of these problems utilize linear programs with equilibrium
constraints [18, 1, 4, 3] which are generally intractable. In contrast, for the proposed concave
minimization formulation, a successive linearization algorithm without stepsize terminates after
a maximum average of 7 linear programs on problems with as many as 4192 points in 14-
dimensional space. The algorithm terminates at a stationary point or a global solution to the
problem. Preliminary numerical results indicate that the proposed approach is quite effective
and more efficient than other approaches.

1 Introduction
We shall consider the following two fundamental problems of machine learning;:

Problem 1.1 Mzisclassification Minimazation [2/, 18] Given two finite point sets A and B in
the n-dimensional real space R, construct a plane that minimizes the number of points of A falling
in one of the closed halfspaces determined by the plane and the number of points of B falling in the
other closed halfspace.

Problem 1.2 Feature Selection [}, 3] Given two finite point sets A and B in R", select a suffi-
ciently small number of dimensions of R such that a plane, constructed in the smaller dimensional
space, optimizes some separation criterion between the sets A and B.

We immediately note that the misclassification minimization problem is NP-complete [6, Propo-
sition 2]. But, effective methods for its solution have been proposed in [18] and implemented in
[1]. An approximate technique [6] has also been implemented. The formulation that we propose in
this work terminates in a finite number of linear programs (typically less than seven) at a vertex
solution or stationary point of the problem.

We outline the contents of the paper now. In Section 2 we give a precise mathematical formu-
lation of the misclassification minimization and feature selection problems and indicate how they
can be set up as linear programs with equilibrium constraints and indicate some of the difficulties
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attendant this formulation. We then introduce in Section 3 a simple concave exponential approxi-
mation of the step function, similar to the classical sigmoid function of neural networks [28, 11, 17],
but with the significant difference of concavity of the proposed approximation which is not shared
by the sigmoid function. This concavity is possible, because the step function is applied here to
nonnegative variables. This leads to a finite successive linearization algorithm (SLA) without a
stepsize procedure that is described in Section 4 of the paper. Section 5 gives very encouraging
results on numerical tests on the misclassification minimization and feature selection problems.
Section 6 gives a concluding summary of the paper.

A word about our notation now. For a vector & in the n-dimensional real space R™, z, will
denote the vector in R" with components (z4); := max{z;,0}, ¢« = 1,...,n. Similarly ., will
denote the vector in R™ with components (2.); := (2;)«, ¢ = 1,...,n, where (+), is the step function
defined as one for positive x; and zero otherwise, while |2| will denote a vector of absolute values
of components of xz. The base of the natural logarithm will be denoted by ¢ and for y € R™, 7Y
will denote a vector in R™ with component e™%, ¢ = 1,...,m. The norm || - ||, will denote the
p norm, 15 p<oo, while A € R™*" will signify a real m x n matrix. For such a matrix, A7 will

denote the transpose, and A4; will denote row ¢. For two vectors & and y in R", 2 1L y will denote

2Ty = 0. A vector of ones in a real space of arbitrary dimension will be denoted by e. The notation

arg mig f(z) will denote the set of minimizers of f(z) on the set S. Similarly arg vertex mig f(z)
zE ze

will denote the set of vertex minimizers of f(z) on the polyhedral set S. By a separating plane, with
respect to two given point sets A and B in R™, we shall mean a plane that attempts to separate R”
into two half spaces such that each open halfspace contains points mostly of A or B. The symbol
“:=7 defines a quantity appearing on its left by a quantity appearing on its right. For f : R* — R
which is differentiable at z, the notation V f(x) will represent the 1 x n gradient vector. R’} will
denote the nonnegative orthant.

2 The Misclassification Minimization and Feature Selection Prob-
lems

We consider two nonempty finite point sets A and B in R" consisting of m and & points respectively
that are represented by the matrices A € R™*" and B € RF*™. The objective of both problems
here is to construct a separating plane:

Pi=falze R, aTw =1}, 1)

where w € R"™, v € R, such that some error criterion is minimized. Thus in the exceptional case
when the convex hulls of A and B do not intersect, a single linear program [2] will generate a plane
P that strictly separates the sets A and B as follows:

AwZey+e, Bwley—e (2)
Our concern here is with the usually occurring case when no plane P exists satisfying (2). A
desirable objective for such a case [24, 18, 1, 6] is to minimize the number of points of A lying in
the complement of the closed halfspace reserved for it, that is, minimize the number of elements of

Ain:

{z|2Tw < v 41}, (3)



as well as the number of points of B lying in the complement of the closed halfspace reserved for
it, that is, minimize the number of elements of B in:

{o|efw>y -1} (4)

Thus, if we introduce the nonnegative slack variables y € R™ and z € R* and make use of the step
function (-)., the misclassification minimization problem can be stated as follows:

min {ely.+elz |y>2 —Awdey+e, y20, 22 Bw—ey—+e, 220} (5)
w7’y7y7z
Note that without the step function (-), in (5), the problem becomes a linear program (essentially
the robust linear program [2, Equation (2.11)], but without averaging over m and k), in which case
y and z of (5) become:

Y= (~Awter+e)y, 5= (Bu—ey+ o) (%)
Thus, problem (5) without the step function (-). is equivalent to:

( —Aw+ey+e )
Bw —ey+e N
The objective of (7) measures sums of distances (assuming each row of A and B has unit 2-norm)
of points of A in the open halfspace (3) from the plane 2Tw =~ 41 as well as points of B in the
open halfspace (4) from the plane 27w = v — 1. By contrast the objective of problem (5) is to
count the points of A contained in the open halfspace (3) and the points of B contained in the open

halfspace (4) and attempt to minimize the totality of such points. To show indeed that problem
(5) minimizes the total number of misclassified points we state the following simple lemma.

min
w7’y

(7)

1

Lemma 2.1 Let a € R™. Then

rEargmin{eTr*|rza,rz0}:>r*:a* (8)
Proof If r is a solution of the indicated minimization problem then forz=1,...,m:
) 0if a; £0 (a0
Ti)x = = (a7 )«
lifa; >0
d

By using this lemma on problem (5) we obtain the following proposition, which shows that any
solution of (5) (and we will show in Proposition 2.4 below that (5) is always solvable) generates a
plane that minimizes the number of misclassified points, that is points of A in (3) and points of B
in (4).

Proposition 2.2 Let (w,7,y, z) solve (5), then

Ty +elz, = min el (—Aw + ey + ), + ¢ (Bw — ey + ¢). (9)

w7’y



Proof For a fixed (w,~), let

yz —Awtey+e, yz0 }

. T T
(y(w77)7z(w77))eargrglzn{e Yo T €7 2 22Bw—ey+e 220

By Lemma 2.1 we have that

(y(w, 7)) = (—Aw + ey + €)
(2(w, 7))« = (Bw — ey + ¢)

Since (w, 7,9, z) solves (5) we have by (10)-(11) that

(11)

e’y + e’z =min e’ (—Aw + ey + €). + el (Bw — ey +¢). (12)

w7’y

a
To establish the existence of solution to problem (5) and to relate it to a linear program with
equilibrium constraints (LPEC) [18, 19, 16, 15], we state the following lemma.

Lemma 2.3 Let a € R™. Then

r=ay, u=ay < (ru)=argmin{elr|[0<r Lu—a20,05u L —r+e20} (13)

Proof The constraints of the minimization problem constitute the Karush-Kuhn-Tucker conditions
for the dual linear programs:

max {a’r |0 <rZe}, min{elu|u>a, u20} (14)

which are solved by:

0fora; <0
T‘i:< ri €[0,1]fora; =0 , u=ay (15)
1fora; >0

The objective function elr minimized in (13) renders the solution r of (15) unique by making r; = 0

for a; = 0, thus giving r = a.. 0
By using Lemma 2.3, problem (5) can be written in the following equivalent form as an LPEC:

OsrLu—yz0 0ssluv—220
Osul —r+ez0 0svl—-s+ez20
min elr+els (16)
WY Y2073 U,y SyU Y2 —Aw—l—e'y—l—e ; zsz—e'y—l—e
yz0 220

Since the nonempty (take w =0, vy =0, y=¢€, z=¢, r=¢, s=e¢€, u=e, v=e) feasible region
of (16) is the union of a finite number of polyhedral sets over which the linear objective function
el'r + els is bounded below by zero, it follows that el'r + eT's attains a minimum on each of these
polyhedral sets. The minimum of these minima is a solution of (16). Since (16) is equivalent to

(5), we have the following.

Proposition 2.4 The misclassification minimization problem (5) has a solution.



We turn our attention to our second problem, the feature selection problem. The problem
again is to separate the finite point sets A and B in R", but with the additional requirement of
using as few of the dimensions of R"™ as possible. If we take as our point of departure the robust
linear program [2, Equation (2.11)], which is very effective in discriminating between sets arising
from real world problems [21], and motivate our formulation by the perturbation results of linear
programming [20] to suppress as many of the coeflicients w of the separating plane {z | 27w = v}
as possible, we obtain the following problem for a suitably chosen A € [0,1]:

T T
min ¢ (1 —A) (ﬂ + 2) + xel'v,
m

WY,Y,2 k

Aw—ey+yze, —Bu+ey+z2ze,yz0, 220
(17)

—vzwswv

For A = 0, we obtain the robust linear program of [2]. For A = 1, all components of w are suppressed
yielding no useful result. For A sufficiently small, the program (17) selects those solutions of the
robust linear program, that is (17) with A = 0, that minimize e’ | w |, . This in effect suppresses
as many components of w as possible. Computationally, one obviously varies A until some “best”
value of (w,~) is obtained as evinced by a cross-validating procedure [30].

By using an identical technique to that used to establish the existence of a solution to problem
(5), we can similarly replace problem (17) by an LPEC and establish existence of a solution to it.
We thus can state the following result.

Proposition 2.5 The feature selection problem (17) has a solution to each A € [0, 1].

We turn our attention now to algorithmic considerations by first approximating the step function
(*)«, which appears in both problems (5) and (17), by a smooth concave approximation.

3 Concave Approximation of the Step Function

One of the most common and useful approximations in neural networks [28, 11] is the sigmoid
function approximation of the step function (. defined as

1
(¢, ) = Trea @

Here ¢ is the base of the natural logarithm. For moderate values of «, the sigmoid is a very adequate
approximation of the step function (.. A shortcoming of the sigmoid is that it is neither convex nor
concave. This prevents us from invoking some of the fundamental properties of these functions.
In the two applications of this paper, it turns out that the variables to which the step function is
applied are nonnegative: y and z in problem (5) and v in problem (17). Consequently, we propose
the following simpler concave approximation of the step function for nonnegative variables

>0 (18)

t(¢a):=1—72¢ a>0,(20 (19)

Two important consequences of this simpler concave approximation of the step function are: first,
an existence proof to both the smooth concave approximation of the misclassification minimization
problem (5) as well as to the smooth concave approximation of the feature selection problem (17)
(Proposition 3.1 below), and second, a finite termination theorem (Theorem 4.2 below) for the
successive linearization algorithm (SLA Algorithm 4.1 below). We now state the smooth approxi-
mations of the misclassification minimization and the feature selection problems.



3.1 Smooth Concave Misclassification Minimization Problem (5) Let o > 0.

min {m+k—ele ™ —ele™ | y> —Aw+ey+e,y20, 22Bw—ey—+e, 220} (20)
w7’y7y7z

We note immediately that the concave objective function is bounded below by zero on the set
R x Rf‘i'k which contains the feasible region. Furthermore, this lower bound is attained by
y =0, z = 0, and some infeasible (w,~) in general. The zero minimum is attained at a feasible
point if and only if the convex hulls of A and B do not intersect. Otherwise the minimized objective
of (20) approximates from below (for moderate values of «) the smallest number of misclassified
points by any plane 27w = ~.

3.2 Smooth Concave Feature Selection Problem (17) Let A € [0,1] and « > 0.

T, Aw—ey+yze,—Bw+ey+z2ze,y20,220

i 1- )\ eT_y €z A T .—av
Juin g (L= { —=+ ==+ A(n—e"e™) —vswsw

(21)
Again for this problem, the concave objective function is bounded below by zero on the feasible

region. For various values of the parameter A € [0, 1], emphasis of separation by the plane 27w = v

is balanced against suppression of as many coefficients of w as possible, with the term (n — eTe_a“)
giving an approximation (from below) to the number of nonzero coefficients of w.

By making use of [27, Corollary 32.3.3] which implies that a concave function, bounded from
below on a nonempty polyhedral set, attains its minimum on that set, we can state the following

existence results for the two smooth problems above.

Proposition 3.1 The smooth concave misclassification minimization problem (20) and the smooth
concave feature selection problem (21) have solutions.

We turn our attention to algorithmic considerations.

4 Successive Linearization of Polyhedral Concave Programs

By replacing the variables (w,~) by the nonnegative variables (w!, v!, (1) using the standard
transformation w = w' —e(l, v = 4! — (1, the smooth problems (20) and (21) can be transformed
to the following concave minimization problem:

min {f(z) | Ax <b, 220}, (22)

where f: R — R, is a differentiable, concave function bounded below on the nonempty polyhedral
feasible region of (22), A € RPX and b € RP. By [27, Corollary 32.3.4] it follows that f attains
its minimum at a vertex of the feasible region of (22). We now prescribe a simple finite successive
linearization algorithm (essentially a Frank-Wolfe algorithm [9] without a stepsize) for solving
(22) that appears to give good computational results. (See Section 5.) Other more complex
computational schemes for this problem are given in [13, 12].

4.1 Successive Linearization Algorithm (SLA) Start with a random z° € R”. Having 2’
determine z**1 as follows:



! € argvertex mingex Vf(2')(z — o)
= < > (23)
X={z| Az b, 220}

Stop if 2! € X and V f(2!) (2! — 2%) = 0.
Comment: The condition ! € X takes care of the possibility that 2° may not be in X.

We show below that this is a finite algorithm which generates a strictly decreasing finite sequence
{f(29)}, i = 1,2,...,4, which terminates at an 2 that is a stationary point that may also be a
global minimum solution.

Remark: SLA may be started from many different random starting points. This was not necessary
in the present applications.

4.2 SLA Finite Termination Theorem Let f be a differentiable concave function on R"™ that
is bounded below on X. The SLA generates a finite sequence of iterates {z!, z2,.. .,x;} of strictly
decreasing objective function values: f(z') > f(22) > ... > f(z'), such that 2’ satisfies the
minimum principle necessary optimality conditions

Vi) (e —2)20, YeeX. (24)

Proof We first show that SLA is well defined. By the concavity of f and its boundedness from
below on X, we have that

—o0 < xlg(f(x) — fa S f(x) = fa) SV (') (z —2"), Vo € X.

It follows for any z* € R", even for an infeasible ' such as 2°, that V f(2%)(z — 2') is bounded
below on X. Hence the linear program (23) is solvable and has a vertex solution z**'. It follows for
1=1,2,..., that

<0 (a)

—0 @y P

Vee X: Vfa')(z—a')2 ;rg)r} Vi) (e —2') = V) (T -2 <

We note immediately that because 2* € X for i = 1,2,..., it follows that V f(z')(z'*! — 2%) £0.

Hence only two cases, (a) or (b), can occur, as indicated above. When case (a) above occurs, the
algorithm does not stop at iteration 7, and we have from the concavity of f and the strict inequality
of case (a) that:

FET S f@) + V) (@ - af) < f(a)
Hence f(z'*t!) < f(2!), for i = 1,2,.... When case (b) occurs we then have that:

Ve € X: V(') (z—2') 20, (26)

and the algorithm terminates (provided 2' € X, which may not be the case if 2% = 2% ¢ X), and set

¢ = i. The point 2 thus satisfies the minimum principle necessary optimality conditions (26) with

2 = 2%, and 2° may be a global solution. Furthermore, since X has a finite number of vertices,

{f(2%)} is strictly decreasing and f(z) is bounded below on X, it follows that case (b) must occur

after a finite number of steps. O
We turn our attention to some computational results.



5 Numerical Tests

The proposed approach was tested numerically on publicly available databases from the University
of California Repository of Machine Learning Databases [22] as well as the Star/Galaxy database
collected by Odewahn [26]. For all the numerical results reported, the value of a used in the concave

m | Percent of Correctly Classified Points

Data Set k Time Seconds SPARCstation 20

n Average No. of LPs over 10 Runs
PMM | SLA
28 95.92 93.2
WBC Prognosis 119 10.65 0.86
32 3.0
239 98.57 97.6
WBCD 443 24.65 9.47
9 5.7
216 91.43 89.3
Cleveland Heart 81 17.46 2.69
14 4.3
225 98.42 97.0
lonosphere 126 27.26 | 10.30
34 4.0
145 74.85 714
Liver Disorders 200 18.51 1.09
6 5.5
268 80.55 78.3
Pima Diabetes 500 51.40 | 14.33
8 6.5
2082 96.52 96.1
Star/Galaxy(Dim) 2110 1122.70 | 779.89
14 5.9
1505 99.89 99.8
Star/Galaxy(Bright) | 957 266.13 | 69.48
14 3.2
626 69.12 66.6
Tic Tac Toe 332 46.45 6.44
9 3.3
168 98.82 96.9
Votes 267 14.76 1.56
16 3.4
Total Times 1599.97 | 896.11

Table 1: Comparison of Successive Linearization Algorithm (SLA) Algorithm 4.1 for
the Smooth Misclassification Minimization Problem (20) with the Parametric Mini-
mization Method (PMM) [18, 1]. SLA was coded in GAMS [5] utilizing the CPLEX
solver [7]. PMM was coded was coded in AMPL [8] utilizing the MINOS LP solver
[23].



exponential approximation ¢((,a) = 1 — €79 to the step function (., was five. This value of a
allows ¢((, @) to capture the essence of of the step function (. with sufficient smoothness to make
the proposed algorithm work effectively without overflow or underflow.

The first test consisted in applying the SLA 4.1 to the smooth misclassification minimiza-
tion problem (20). For this problem ten databases were used from the Irvine repository and the
Star/Galaxy database. Table 1 gives the percent of correctly separated points as well as CPU
times using an average of ten SLA runs on the smooth misclassification minimization problem (20).
These quantities are compared with those of a parametric minimization method (PMM) applied to
an LPEC associated with the misclassification minimization [18, 1]. Table 1 shows that the much
simpler SLA algorithm obtained a separation that was almost as good as the parametric method
for solving the LPEC at considerably less computing cost. fach problem was solved using no more
than a maximum average of 7 LLPs over ten runs. Average of solution times of the SLA over all
problems run was 56% of the average PMM solution times.

Our second test consisted of solving the smooth concave feature selection problem (21) by SLA
4.1. The test problem consisted of the Wisconsin Breast Cancer Database WBCD tested in the
above set of tests, with one modification. Two new random features, uniformly distributed on the
interval [0, 10] were added to the problem, so that the problem space was R'! instead of the original
R?. With A = 0.05 in problem (21), and by solving 6 successive linear programs, the SLA was able
to suppress the effect of the random components z1¢ and x11 by setting wy and wy; equal to zero, as
well as some other components: ws, w4, ws, wr, and wg. The resulting separation in R* correctly
separated 97.1% of the points, which is almost as good as the 97.6% correctness obtained above
without the feature selection option by solving the misclassification minimization problem (20) in
R?. This indicates that, for this problem, the stationary point obtained by the SLA algorithm in
R* for the smooth feature selection problem (21) is almost as good as the stationary point obtained
in R? for the smooth misclassification minimization problem (20). The key observation however, is
that the feature selection approach proposed here, not only gets rid of extraneous random features,
but also of unimportant features in the original problem.

6 Conclusion

We have formulated two important problems of machine learning: misclassification minimization
and feature selection as the minimization of a simple concave function on a polyhedral set that is
always solvable. A successive linearization algorithm that requires the solution of a few LPs in each
instance appears to be a very effective method of solution.
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