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ABSTRACT 62 
 63 
Background: Fluid overload, while common in the ICU and associated with serious sequelae, is hard to 64 

predict and may be influenced by ICU medication use. Machine learning (ML) approaches may offer 65 

advantages over traditional regression techniques to predict it. We compared the ability of traditional 66 

regression techniques and different ML-based modeling approaches to identify clinically meaningful fluid 67 

overload predictors. 68 

Methods: This was a retrospective, observational cohort study of adult patients admitted to an ICU ≥ 72 69 

hours between 10/1/2015 and 10/31/2020 with available fluid balance data. Models to predict fluid 70 

overload (a positive fluid balance ≥10% of the admission body weight) in the 48-72 hours after ICU 71 

admission were created. Potential patient and medication fluid overload predictor variables (n=28) were 72 

collected at either baseline or 24 hours after ICU admission. The optimal traditional logistic regression 73 

model was created using backward selection. Supervised, classification-based ML models were trained 74 

and optimized, including a meta-modeling approach. Area under the receiver operating characteristic 75 

(AUROC), positive predictive value (PPV), and negative predictive value (NPV) were compared between 76 

the traditional and ML fluid prediction models.  77 

Results: A total of 49 of the 391 (12.5%) patients developed fluid overload. Among the ML models, the 78 

XGBoost model had the highest performance (AUROC 0.78, PPV 0.27, NPV 0.94) for fluid overload 79 

prediction. The XGBoost model performed similarly to the final traditional logistic regression model 80 

(AUROC 0.70; PPV 0.20, NPV 0.94). Feature importance analysis revealed severity of illness scores and 81 

medication-related data were the most important predictors of fluid overload.  82 

Conclusion: In the context of our study, ML and traditional models appear to perform similarly to predict 83 

fluid overload in the ICU. Baseline severity of illness and ICU medication regimen complexity are 84 

important predictors of fluid overload.   85 

KEYWORDS: critical care; fluid overload; prediction; medication regimen complexity; machine 86 

learning 87 

  88 
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INTRODUCTION 89 

Fluid overload, a frequent and unintended consequence of the resuscitation process in critically ill adults 90 

may result in increased rates of acute kidney injury and invasive mechanical ventilation initiation, 91 

prolonged intensive care unit (ICU) stay, and mortality (1, 2). Timely de-resuscitation to remove excess 92 

fluid is associated with improved outcomes (3-6). While the predictors of volume responsiveness are 93 

well-established (7, 8), the predictors for ICU fluid overload remain unclear (7, 8). Development of 94 

rigorous fluid overload prediction algorithms could shorten the time to the implementation of fluid 95 

overload mitigation strategies [e.g., concentration of intravenous (IV) fluid products, discontinuation of 96 

maintenance fluids, administration of diuretics] and improve outcomes.  97 

 Non-diuretic ICU medication use may affect fluid overload risk; preliminary data suggests the 98 

medication regimen complexity-ICU (MRC-ICU) score is associated with both fluid overload and fluid 99 

balance (9). This score has also been shown to predict mortality and length of stay and also the 100 

medication interventions needed to optimize a patient’s pharmacotherapy regimen (10-17). Therefore, 101 

quantifying patient-specific, medication-related data is likely an important consideration in the prediction 102 

of fluid overload in critically adults (2, 18, 19). 103 

 Event prediction in the ICU remains a perennial area of research given the many challenges that 104 

exist for clinicians to accurately predict clinical outcomes in the highly complex and dynamic critical care 105 

environment (20, 21). Artificial intelligence and machine learning techniques have been proposed as a 106 

method to improve ICU clinical outcome prediction given their unique ability to handle multi-107 

dimensional problems and identify novel patterns within the vast troves of continuously-generated patient 108 

data (19, 22-24). However, to some ICU clinicians, the use of artificial intelligence/machine learning 109 

approaches to predict clinical events may have a ‘black-box effect,’ which can ultimately preclude 110 

implementation. The rigorous evaluation of whether artificial intelligence-based approaches predict 111 

clinical events better than traditional regression models (or clinical expertise alone) remains a key 112 

question in critical care practice (25-29).  113 
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 In this study, we sought to compare the ability of machine learning approaches to traditional 114 

regression models to predict fluid overload and the individual predictors for its occurrence in critically ill 115 

adults. We hypothesized that advanced machine learning techniques perform better than traditional 116 

regression models to predict fluid overload and that the predictors for fluid overload identified through 117 

machine learning approaches may be different.     118 

METHODS 119 

We conducted a retrospective, observational study of adults admitted ICUs at the University of North 120 

Carolina Health System (UNCHS), an integrated health system, who had fluid overload data available. 121 

The protocol for this study was approved with waivers of informed consent and HIPAA authorization 122 

granted by UNHCS Institutional Review Board  (approval number: (Project00001541); approval date: 123 

October 2021). Procedures followed in the study were in accordance with the ethical standards of the of 124 

the UNHCS Institutional Review Board and the Helsinki Declaration of 1975, as most recently amended 125 

(30). The reporting of this study adheres to the STrengthening and reporting of OBservational data in 126 

Epidemiology statement (31).  127 

Population 128 

A random sample of 1,000 adults (≥18 years) admitted to an ICU at UNCHS between October 2015 and 129 

October 2020 was generated. Patients on their index ICU admission with fluid balance data available for 130 

the first 72 hours were included (Supplemental Digital Content (SDC) Figure 1). Patients were 131 

excluded if the admission was not their index ICU admission.  132 

Data Collection and Outcomes  133 

De-identified UNCHS electronic health record (EHR) data (Epic Systems, Verona, WI) housed in the 134 

Carolina Data Warehouse (CDW) was extracted by a trained CDW data analyst. The primary outcome 135 

was the presence of fluid overload at the 48-72 hours (i.e., day 3) after ICU admission. Fluid overload 136 

was defined as a positive fluid balance in milliliters (mL) greater than or equal to 10% of the patient’s 137 

admission body weight in kilograms (kg) (2, 32). For example, a patient with a body weight of 100kg at 138 

ICU admission having a positive fluid balance at 72 hours of 12,000 mL (or 12kg) would be considered to 139 
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have fluid overload. A secondary outcome was the amount of fluid overload as a function of body weight. 140 

For example, the aforementioned patient would have a fluid overload amount of 12%.  141 

  Following a literature review, and through investigator consensus, potential predictor variables 142 

for fluid overload were defined (2, 33-36). A total of potential 28 predictors were identified: 1) ICU 143 

baseline: age ≥ 65 years, sex, admission to a medical (vs. surgical) ICU, primary ICU admission 144 

diagnosis (i.e., cardiac, chronic kidney disease, heart failure, hepatic, pulmonary, sepsis, trauma), and 145 

select co-morbidities (i.e., chronic kidney disease, heart failure); 2) 24 hours after ICU admission: 146 

APACHE II and SOFA score (using worst values in the 24 hour period), use of supportive care devices 147 

(i.e., renal replacement therapy,  invasive mechanical ventilation), serum laboratory values (i.e., albumin 148 

< 3 mg/dL, bicarbonate < 22 mEq/L or > 29 mEq/L, chloride ≥ 110 mEq/L, creatinine ≥ 1.5 mg/dL, 149 

lactate ≥ 2 mmol/L, potassium ≥ 5.5 mEq/L, sodium ≥ 148 mEq/L or < 134 mEq/L), fluid balance (mL), 150 

and presence of acute kidney injury (as defined by need for renal replacement therapy or serum creatinine 151 

greater than or equal two times baseline); 3) Medication data at 24 hours: MRC-ICU score, vasopressor 152 

use in the first 24 hours, use of continuous medication infusions, and the number of continuous 153 

medication infusions.  154 

Data Analysis  155 

Data Missingness 156 

Due to the hypothesis-generating nature of our study and the lack of published data on ICU fluid overload 157 

prediction, no attempt was made to estimate a study sample size. Multiple imputation (10) imputations 158 

per variable was applied for all missing data (see Supplemental Digital Content (SDC)).  159 

Machine Learning Models  160 

We employed Random Forest, SVM and XGBoost for the task of modeling the presence of fluid overload 161 

(37-39). During the model training on each of the ten imputed training sets, 5-fold cross validation was 162 

applied for Random Forest, SVM and XGBoost to choose the hyperparameters for these machine learning 163 

models. With the optimal hyperparameters, the models were fitted again on the corresponding imputed 164 

training set. Predictions for probability of fluid overload were made on each of the ten imputed testing 165 
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sets using the corresponding optimal model. For Random Forest, two hyperparameters were tuned 166 

(number of trees and number of variables randomly sampled as candidates at each split). For SVM, linear 167 

kernel and cost of constraints violation were tuned. For XGBoost, two hyperparameters were tuned 168 

(maximum depth of a tree and maximum number of boosting iterations). For each model, there were ten 169 

different imputed test sets that then generated ten different predictions. These predictions of the 170 

probability for fluid overload were averaged as the final prediction. 171 

For the degree of fluid overload, we built models with the amount of fluid overload at 72 hours. 172 

Since this is a continuous variable, we employed their regression of the above machine learning models: 173 

Random Forest regression, SVM regression, and XGBoost regression. For XGBoost, feature importance 174 

was measured as the frequency a feature was used in the trees. For Random Forest, feature importance 175 

was measured by mean decrease in node impurity. Because ten different models were used on each 176 

imputed dataset, ten different feature importance lists were generated for each. A subsequent analysis 177 

modeling fluid overload as a continuous variable (percent of net milliliters of fluid by body weight) 178 

instead of dichotomous presence or absence of fluid overload) was performed (see SDC).  179 

Traditional Regression Models  180 

991After multiple imputation, each of the ten completed datasets was split into training data and testing 181 

data using an 80:20 ratio. Subsequently, a full logistic regression model was built for the presence of fluid 182 

overload for each of the ten complete training sets. We then applied backward elimination to select the 183 

final model. The initial set of variables for the variable selection were determined by the significance of 184 

variables in the ten full models. We built our linear regression models so that the degree of fluid overload 185 

was similar to that of the ten completed training sets. In order to compare these models with the MRC-186 

ICU only model, we also built logistic regression and linear regression models with MRC-ICU as the sole 187 

predictor in the ten training sets. After model fitting, model fits were pooled using Rubin’s method (40). 188 

Using the pooled models, odds ratios (OR) and their 95% confidence intervals (CI) were reported. 189 

RESULTS 190 
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A total of 49 (12.5%) of the 391 included patients had fluid overload on ICU day 3. The degree of 191 

day 3 fluid overload was significantly greater in the fluid overload (vs non overload) patients (16.6% vs 192 

2.2%, p < 0.01). Overall, the mean APACHE II score was 15.7 ± 6.6, mean SOFA score was 8.3 ± 3.3, 193 

and MRC-ICU score was 11.8 ± 8.7. A significantly greater proportion of fluid overload patients (vs. 194 

those without) had an elevated serum lactate ≥ 2 mmol/L (32.7% vs. 14.9%, p = 0.01) and AKI (28.6% 195 

vs. 10.5%, p < 0.001) at 24 hours and positive fluid balance (1,840 mL vs. 390 mL, p < 0.001) on ICU 196 

day 3.  All model covariates are summarized in Table 1. At ICU day 3, patients with fluid overload (vs 197 

those without) were more likely to be dead (20.4% vs. 7.3%, p = 0.01), have AKI (34.7% vs. 15.8%, p < 198 

0.001), and remain on mechanical ventilation (12.7% vs. 4.2%, p = 0.05).  199 

Among the machine learning models, XGBoost demonstrated the highest AUROC (0.78) 200 

compared to SVM (0.69) and RF (0.76) and was associated with a PPV of 0.27 and NPV of 0.94. 201 

Notably, all models tested at relatively poor PPV. In comparison, stepwise logistic regression had an 202 

AUROC of 0.70, PPV 0.26, and NPV 0.94.  Full results are reported in Table 2, and AUROC curves for 203 

all models are provided in SDC Supplemental Figure 2. Results of the full logistic regression are 204 

reported in SDC Supplemental Table 1. Stepwise regression resulted in a more parsimonious model (7 205 

variables vs. 31 variables) but demonstrated similar performance to the machine learning models (SDC 206 

Supplementary Table 2). In the stepwise regression, presence of sepsis, male sex, the SOFA score at 24 207 

hours, and the 24 hour serum sodium and bicarbonate comprised the stepwise regression model (Table 2). 208 

In an analysis of MRC-ICU as a single predictor for fluid overload, the model had an AUROC of 0.74 209 

(0.60-0.84), sensitivity 0.62 (0.35-0.85), specificity 0.70 (0.63-0.77), PPV 0.16 (0.08-0.27), and NPV 210 

0.96 (0.90-0.98). 211 

 Feature importance graphs were plotted for XGBoost (Figure 1), RF (SDC Supplemental 212 

Figure 3) and SVM (SDC 5 Supplemental Figure 4). Among the 10 different feature importance lists 213 

generated for each model, differences between top features were noted. For example, for two of the 214 

machine learning models, XGBoost (Figure 2) and RF, the top five most important features were fluid 215 

balance at 24 hours, SOFA score at 24 hours, MRC-ICU at 24 hours, APACHE II at 24 hours, and the 216 
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number of continuous infusions at 24 hours. While the stepwise regression model found fluid balance at 217 

24 hours and APACHE II at 24 hours to be top features, the SOFA score at 24 hours, the MRC-ICU at 24 218 

hours and the number of continuous infusions were not found to be model features.  219 

The full regression results for predicting the amount of fluid overload at 72 hours are reported in 220 

SDC Supplemental Table 3. For stepwise regression, twelve variables were included with fluid balance, 221 

laboratory values, and severity of illness being significant predictors (SDC Supplemental Table 4). All 222 

models demonstrated similar performance as measured by MSE (SDC Supplemental Table 5). Feature 223 

importance graphs are presented in SDC Supplemental Figures 5-7).  224 

DISCUSSION 225 

Although machine learning models have been shown to outperform traditional regression models in a 226 

variety of settings (41, 42), the potential benefits of machine learning in critical care remain an open field 227 

of exploration, in part due to a current lack of rigorous comparison in high quality ICU datasets (27, 43, 228 

44). Our analysis represents the first published comparison of machine learning approaches with 229 

traditional regression methods to predict fluid overload using a novel dataset with granular medication 230 

data.   231 

 We report that machine learning and logistic regression analyses demonstrate a similar predictive 232 

power to identify patients with fluid overload on day 3 of their ICU stay. Although use of machine 233 

learning did not appear to improve predictive performance over regression analysis, it expanded the 234 

number of variables critical to fluid overload prediction and highlights the importance of further artificial 235 

intelligence-based exploration in this area. This analysis of individual predictors may help bedside 236 

clinicians better understand how the machine learning models work and may help overcome their ‘black 237 

box’ hesitancy to trust machine learning-generated results (45, 46). For example, feature importance 238 

graphs for the machine learning analyses found complexity of the daily ICU medication regimen (i.e., 239 

MRC-ICU score), which includes the number of intravenous medication infusions (the primary method to 240 

administer medications in this population and a primary source of fluids to a patient), to be an important 241 
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contributor to fluid overload. In comparison, in the traditional multivariable regression, the MRC-ICU 242 

score was not associated with fluid overload. This may be because machine learning analyses better 243 

account for severity of illness and the response of clinicians to respond to this severity by administering 244 

more medication infusions leading to a more complex daily medication regimen; however, the methods 245 

applied, including feature importance, preclude causal inference at this juncture. As such, our results 246 

highlight the unique power of machine learning to identify complex relationships that can be further 247 

elucidated via machine-learning based causal inference modeling and other designs aimed at causation (2, 248 

18).   249 

 Optimizing fluid management (or fluid stewardship) has been previously defined by the ROSE 250 

model of Resuscitation, Optimization, Stabilization, and dE-resuscitation (33). After an initial 24-48 hour 251 

period characterized by overt volume resuscitation (e.g., a crystalloid bolus) and IV medication initiation 252 

(e.g., antibiotics), and the associated fluid administration, the care priority shifts from volume 253 

administration to volume removal. While comprehensive fluid stewardship management strategies 254 

including reduced fluid use and diuretic administration can effectively reduce fluid overload and its 255 

sequelae, they are often deployed too late (1, 2). Interstingly, some reports have indicated ‘hidden fluids’ 256 

(defined as blood products, enteralnutrition, flushes, and intravenous medications) were significantly 257 

associated with the development of fluid overload. While in critical illness many of these ‘hidden fluids’ 258 

are necessary (e.g., blood products), given that intravenous medications account for over 40% of total 259 

fluid intake in this analysis, interventions such as concentrating intravenous medications, employing oral 260 

formulations when feasible, careful evaluation of maintenace fluids, and antibiotic de-escalation are 261 

potoentially still viable even in high illness severity that can reduce this complication. However, weighing 262 

risks and benefits associated with these interventions in context may yet be aided by more quantitative 263 

prediction data (50, 51). Overall, de-resuscitation and fluid stewardship can be deceptively complex (47). 264 

In a patient with shock, balancing the dueling forces of volume responsiveness assessment and timely 265 

volume resuscitation with the risks associated with fluid overload represents a highly complex Goldilocks 266 
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scenario that requires clinicians to have high clinical precision, essentially pivoting ‘on a dime’, from a 267 

strategy of aggressive volume expansion to one of rapid volume removal (34, 48, 49).  268 

 Despite the complexities of this decision process, limited prediction tools for fluid overload are 269 

available to assist clinicians at the ICU bedside. As such, real-time recognition identifying when to make 270 

the shift from resuscitation to de-resuscitation has the potential to improve bedside management. 271 

However, to go beyond the hourly assessment of ‘Ins and Outs’ would require accurate prediction of 272 

future fluid overload risk and the adverse events associated with it, in the time-dependent context of 273 

intervention delivery (e.g., diuretics). In such a scenario, an algorithm would be able to accurately 274 

interpret a septic patient who is 3 liters positive 24 hours after fluid resuscitation initiation as being in a 275 

‘green zone’ (i.e., appropriately resuscitated). However, 24 hours later, if the same patient is 4 liters 276 

positive while off vasopressors and with down-trending sepsis markers the algorithm could alert 277 

clinicians that the patient is now in a 'yellow zone' where interventions like diuretic therapy and fluid 278 

reductions are required to reduce acute kidney injury and intubation risk. This type of real-time predictive 279 

capability could support continuous clinician decision-making but requires evaluation outside the scope of 280 

our current study.   281 

 Fluid overload also presents an important test case for exploring and adapting artificial 282 

intelligence methods to ICU problems, particularly those related to ICU medication use. Fluid overload 283 

represents a uniquely intervenable event in the ICU. Intervenable events share three key characteristics: 284 

they are predictable, preventable, and otherwise associated with poor outcomes. The results of our study, 285 

and others, indicate that fluid overload can be predicted with modeling of some kind, especially given its 286 

ability to be quantitatively defined (50-52). Fluid overload has been associated with poor outcomes 287 

including acute kidney injury, delirium, poor respiratory outcomes, prolonged length of stay, and 288 

potentially increasing mortality (2, 35, 53-56). Evidence demonstrates the timely recognition and 289 

management of fluid overload is feasible and is associated with reduced mortality and time in the ICU (3, 290 

57-60). Notably, fluid stewardship has been adapted by critical care pharmacists as key component of 291 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.16.23291493doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.16.23291493


12 
 

comprehensive medication management (5, 6, 60). As such, these results may support other 292 

investigations as they identify patients in whom it is safe to initiate de-resuscitation or importantly never 293 

needed that degree of fluid volume initially and at the bedside may prompt clinicians to be more targeted 294 

in therapies initiated or aggressive in curtailing early ‘hidden’ fluids to avoid the complications of fluid 295 

overload and/or the need for a highly interventional period of de-resuscitation (e.g., diuretics, dialysis). 296 

Artificial intelligence may be particularly well suited to bolster these efforts, and thus while feature 297 

importance analyses cannot provide foundation for causal inference, they may guide such future 298 

investigations.  299 

 Our study has limitations. Our patient sample may have been too small to demonstrate superiority 300 

of the machine learning approaches compared to traditional regression, and no validation in a separate, 301 

external dataset was undertaken at this juncture (61). Bias may exist due to which patients had fluid 302 

balance data available. Other predictors for fluid overload not included in our models may exist (62). By 303 

relying on prediction data derived in the first 24 hours of ICU admission, we did not fully capture the 304 

dynamic nature of critical illness over the entire three day ICU period before fluid overload occurred. 305 

Future time-dependent evaluations of changing features employing unsupervised learning techniques may 306 

yield novel insights.  307 

CONCLUSION 308 

Fluid overload is an important, intervenable event in the ICU population. Incorporation of medication-309 

related variables and artificial intelligence has demonstrated promise to improve prediction that may 310 

ultimately guide timely intervention and mitigation of this ICU complication; however, comparative 311 

advantages over traditional modeling techniques may remain warranted.  312 

 313 

  314 
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Figure 1. Feature importance for presence of fluid overload prediction with XGBoost 550 
 551 
Figure 2. Most common features for presence of fluid overload prediction with XGBoost imputations 552 
 553 
 554 
 555 
  556 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.16.23291493doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.16.23291493


20 
 

Table 1. Study cohort characteristics by presence of fluid overload within 72 hours of ICU admission 557 
 All 

(n = 391) 
Fluid Overload 

(n = 49) 
No Fluid Overload 

(n = 342) 
 

p-value 
ICU Baseline 
Age ≥ 65 years 202 (51.7) 19 (38.8) 183 (53.5) 0.08 
Male sex 213 (54.5) 23 (46.9) 190 (55.6) 0.33 
Chronic comorbidities 
Chronic kidney disease 13 (3.3) 1 (2.0) 12 (3.5) 0.06 
Heart failure 19 (4.9) 2 (4.1) 17 (4.9) 0.06 

Admission to medical ICU 156 (39.9) 24 (48.9) 132 (38.6) 0.22 
Primary ICU Admission Diagnosis 
Cardiac 81 (20.7) 3 (6.1) 78 (22.8) 0.06 
Chronic kidney disease 13 (3.3) 1 (2.0) 12 (3.5) 
Hepatic 6 (1.5) 1 (2.0) 5 (1.5) 
Pulmonary 58 (14.8) 8 (16.3) 50 (14.6) 
Sepsis/septic shock 29 (7.4) 7 (14.3) 22 (6.4) 
Trauma 10 (2.6) 3 (6.1) 7 (2.0) 

24 hours after ICU admission 
Severity of illness, mean (SD) 
APACHE II Score  15.7 (6.6) 17.5 (7.0) 15.4 (6.6) 0.06 
SOFA Score 8.3 (3.3) 9.9 (4.6) 8.2 (3.1) 0.07 

Supportive devices 
Any renal replacement therapy 5 (1.3) 1 (2.0) 4 (1.2) 1.00 
Any mechanical ventilation 140 (35.8) 21 (42.9) 119 (34.8) 0.53 

Serum laboratory values 
Albumin <3 mg/dL 88 (22.5) 18 (36.7) 70 (20.5) 0.02 
Bicarbonate < 22 mEq/L 74 (18.9) 14 (28.6) 60 (17.5) 0.16 
Bicarbonate > 29 mEq/L 64 (16.4) 6 (12.2) 58 (16.9) 
Creatinine ≥ 1.5 mg/dL 28 (7.2) 7 (14.3) 21 (6.1) 0.02 
Chloride ≥ 110 mEq/L 125 (31.9) 19 (38.8) 106 (30.9) 0.33 
Potassium ≥ 5.5 mEq/L 19 (4.9) 5 (10.2) 14 (4.1) 0.12 
Lactate ≥ 2 mmol/L  67 (17.1) 16 (32.7) 51 (14.9) 0.01 
Sodium ≥ 148 mEq/L 22 (5.6) 6 (12.2) 16 (4.7) 0.01 
Sodium <134 mEq/L 33 (8.4) 4 (8.1) 29 (8.5)  

Fluid balance (mL), mean (SD) 570 (1960) 1840 (301) 390 (168) <0.001 
Acute kidney injury 50 (12.8) 14 (28.6) 26 (10.5) < 0.001 
Medications 
MRC-ICU, mean (SD) 11.8 (8.7) 13.4 (8.4) 11.5 (8.7) 0.06 
Any vasopressor 119 (30.4) 16 (32.6) 103 (30.1) 0.85 
Any continuous infusions 249 (63.6) 34 (69.3) 215 (62.8) 0.47 
Infusions / patient, mean (SD) 2.29 (3.3) 1.98 (2.2) 2.33 (3.4) 0.35 

Data are presented as n (%) unless otherwise stated 558 
 559 
 560 
 561 
 562 
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 564 
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Table 2. Performance of presence of fluid overload prediction models, mean (confidence interval) 567 
 568 
 AUROC Sensitivity Specificity PPV NPV 
Traditional regression  
All variables 0.70 (0.53, 0.82) 0.43 (0.19, 0.70) 0.85 (0.79, 0.89) 0.20 (0.08, 0.37) 0.94 (0.89, 0.97) 

Stepwise Selected 
Regression 0.70 (0.52, 0.82) 0.43 (0.19, 0.70) 0.89 (0.84, 0.93) 0.26 (0.11, 0.47) 0.94 (0.90, 0.97) 

Supervised machine learning models 

Random Forest 0.76 (0.62, 0.86) 0.56 (0.29, 0.80) 0.8571 (0.80, 0.90) 0.25 (0.12, 0.43) 0.95 (0.91, 0.98) 

Support Vector 
Machine 0.69 (0.51, 0.82) 0.50 (0.24, 0.75) 0.82 (0.76, 0.88) 0.21 (0.09, 0.36) 0.94 (0.90, 0.97) 

XGBoost 0.78 (0.62, 0.87) 0.37 (0.15, 0.64) 0.91 (0.86, 0.94) 0.27 (0.10, 0.50) 0.94 (0.89, 0.97) 

 569 
AUROC: area under the receiver operating characteristic; PPV: positive predictive value; NPV: negative predictive 570 
value  571 
 572 
 573 
 574 
 575 
 576 
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