$\frac{1}{2}$	Machine learning vs. traditional regression analysis for fluid overload prediction in the ICU
3	Andrea Sikora, PharmD, MSCR, BCCCP, FCCM ¹
4	1120 15th Street, HM-118 Augusta, GA 30912
5	(706)-721-3826
6	sikora@uga.edu
7	¹ University of Georgia College of Pharmacy, Department of Clinical and Administrative Pharmacy,
8	Augusta, GA, USA
9	
10	Tianyi Zhang ²
11	Tianyi.zhang@uga.edu
12 13	² University of Georgia Franklin College of Arts and Sciences, Department of Statistics, Athens, GA, USA
14	David I Murphy MD PhD ³
15	david i murphy@emory.edu
16	³ Emory University, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Atlanta, GA, USA
17	
18	Susan E. Smith, Pharm D^1
19	Susan.smith@uga.edu
20	¹ University of Georgia College of Pharmacy, Department of Clinical and Administrative Pharmacy,
21	Augusta, GA, USA
22	
23	Brian Murray, PharmD ⁴
24	Brian.murray@unchealth.unc.edu
25	⁴ University of North Carolina Medical Center, Department of Pharmacy, Chapel Hill, NC, USA
26	
27	Rishikesan Kamaleswaran, PhD ^{3,0}
28	rkamaleswaran@emory.edu
29 20	^a Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA,
30	
31 32	Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
33	Xianyan Chen, PhD^2
34	xychen@uga.edu
35	² University of Georgia Franklin College of Arts and Sciences, Department of Statistics, Athens, GA, USA
36	
37	Mitchell S. Buckley, PharmD, FCCM ⁷
38	mitchellsbuckley@gmail.com
39	⁷ LaJolla Pharmaceuticals
40	0
41	Sandra Rowe, PharmD [°]
42	rowes@ohsu.edu
43	^o Oregon Health and Science University, Department of Pharmacy, Portland, OR, USA
44	11 W D $11 D$ $10 C$
45	John W. Devlin, PharmD, MCCM*****
40 47	J.devlin@northeastern.edu
4/ 10	¹⁰ Drigham and Women's Hospital Division of Dulmenary and Chitical Care Medicine, Destar, MA, USA
40 /0	biginani and women's nospital, Division of Punnonary and Cruical Care Medicine, Boston, MA, USA
- 50	On behalf of the MRC-ICU Investigator Team

2

- 51
- 52
- 53

55

54 **Conflicts of Interest:** The authors have no conflicts of interest.

56 **Funding:** Funding through Agency of Healthcare Research and Quality for Drs. Devlin, Murphy, Sikora,

- 57 Smith, and Kamaleswaran was provided through R21HS028485 and R01HS029009.
- 58
- 59 Acknowledgements: Data acquisition were supported by NC TraCS, funded by Grant Number
- 60 UL1TR002489 from the National Center for Advancing Translations Sciences at the National Institutes of
- 61 Health, and Data Analytics at the University of North Carolina Medical Center Department of Pharmacy.

3

62 ABSTRACT

63 64 **Background:** Fluid overload, while common in the ICU and associated with serious sequelae, is hard to 65 predict and may be influenced by ICU medication use. Machine learning (ML) approaches may offer 66 advantages over traditional regression techniques to predict it. We compared the ability of traditional 67 regression techniques and different ML-based modeling approaches to identify clinically meaningful fluid 68 overload predictors. 69 **Methods:** This was a retrospective, observational cohort study of adult patients admitted to an ICU \geq 72 70 hours between 10/1/2015 and 10/31/2020 with available fluid balance data. Models to predict fluid 71 overload (a positive fluid balance $\geq 10\%$ of the admission body weight) in the 48-72 hours after ICU 72 admission were created. Potential patient and medication fluid overload predictor variables (n=28) were 73 collected at either baseline or 24 hours after ICU admission. The optimal traditional logistic regression 74 model was created using backward selection. Supervised, classification-based ML models were trained 75 and optimized, including a meta-modeling approach. Area under the receiver operating characteristic 76 (AUROC), positive predictive value (PPV), and negative predictive value (NPV) were compared between 77 the traditional and ML fluid prediction models. 78 **Results:** A total of 49 of the 391 (12.5%) patients developed fluid overload. Among the ML models, the 79 XGBoost model had the highest performance (AUROC 0.78, PPV 0.27, NPV 0.94) for fluid overload 80 prediction. The XGBoost model performed similarly to the final traditional logistic regression model 81 (AUROC 0.70; PPV 0.20, NPV 0.94). Feature importance analysis revealed severity of illness scores and 82 medication-related data were the most important predictors of fluid overload. 83 **Conclusion:** In the context of our study, ML and traditional models appear to perform similarly to predict 84 fluid overload in the ICU. Baseline severity of illness and ICU medication regimen complexity are 85 important predictors of fluid overload. 86 **KEYWORDS:** critical care; fluid overload; prediction; medication regimen complexity; machine 87 learning

4

89 INTRODUCTION

90	Fluid overload, a frequent and unintended consequence of the resuscitation process in critically ill adults
91	may result in increased rates of acute kidney injury and invasive mechanical ventilation initiation,
92	prolonged intensive care unit (ICU) stay, and mortality (1, 2). Timely de-resuscitation to remove excess
93	fluid is associated with improved outcomes (3-6). While the predictors of volume responsiveness are
94	well-established (7, 8), the predictors for ICU fluid overload remain unclear (7, 8). Development of
95	rigorous fluid overload prediction algorithms could shorten the time to the implementation of fluid
96	overload mitigation strategies [e.g., concentration of intravenous (IV) fluid products, discontinuation of
97	maintenance fluids, administration of diuretics] and improve outcomes.
98	Non-diuretic ICU medication use may affect fluid overload risk; preliminary data suggests the
99	medication regimen complexity-ICU (MRC-ICU) score is associated with both fluid overload and fluid
100	balance (9). This score has also been shown to predict mortality and length of stay and also the
101	medication interventions needed to optimize a patient's pharmacotherapy regimen (10-17). Therefore,
102	quantifying patient-specific, medication-related data is likely an important consideration in the prediction
103	of fluid overload in critically adults (2, 18, 19).
104	Event prediction in the ICU remains a perennial area of research given the many challenges that
105	exist for clinicians to accurately predict clinical outcomes in the highly complex and dynamic critical care
106	environment (20, 21). Artificial intelligence and machine learning techniques have been proposed as a
107	method to improve ICU clinical outcome prediction given their unique ability to handle multi-
108	dimensional problems and identify novel patterns within the vast troves of continuously-generated patient
109	data (19, 22-24). However, to some ICU clinicians, the use of artificial intelligence/machine learning
110	approaches to predict clinical events may have a 'black-box effect,' which can ultimately preclude
111	implementation. The rigorous evaluation of whether artificial intelligence-based approaches predict
112	clinical events better than traditional regression models (or clinical expertise alone) remains a key
113	question in critical care practice (25-29).

In this study, we sought to compare the ability of machine learning approaches to traditional

114

5

115 regression models to predict fluid overload and the individual predictors for its occurrence in critically ill 116 adults. We hypothesized that advanced machine learning techniques perform better than traditional 117 regression models to predict fluid overload and that the predictors for fluid overload identified through 118 machine learning approaches may be different. 119 **METHODS** 120 We conducted a retrospective, observational study of adults admitted ICUs at the University of North 121 Carolina Health System (UNCHS), an integrated health system, who had fluid overload data available. 122 The protocol for this study was approved with waivers of informed consent and HIPAA authorization 123 granted by UNHCS Institutional Review Board (approval number: (Project00001541); approval date: 124 October 2021). Procedures followed in the study were in accordance with the ethical standards of the of 125 the UNHCS Institutional Review Board and the Helsinki Declaration of 1975, as most recently amended 126 (30). The reporting of this study adheres to the STrengthening and reporting of OBservational data in 127 Epidemiology statement (31). 128 **Population** 129 A random sample of 1,000 adults (\geq 18 years) admitted to an ICU at UNCHS between October 2015 and 130 October 2020 was generated. Patients on their index ICU admission with fluid balance data available for 131 the first 72 hours were included (Supplemental Digital Content (SDC) Figure 1). Patients were 132 excluded if the admission was not their index ICU admission. 133 **Data Collection and Outcomes** 134 De-identified UNCHS electronic health record (EHR) data (Epic Systems, Verona, WI) housed in the 135 Carolina Data Warehouse (CDW) was extracted by a trained CDW data analyst. The primary outcome 136 was the presence of fluid overload at the 48-72 hours (i.e., day 3) after ICU admission. Fluid overload 137 was defined as a positive fluid balance in milliliters (mL) greater than or equal to 10% of the patient's 138 admission body weight in kilograms (kg) (2, 32). For example, a patient with a body weight of 100kg at 139 ICU admission having a positive fluid balance at 72 hours of 12,000 mL (or 12kg) would be considered to

6

140 have fluid overload. A secondary outcome was the amount of fluid overload as a function of body weight.

- 141 For example, the aforementioned patient would have a fluid overload amount of 12%.
- 142 Following a literature review, and through investigator consensus, potential predictor variables
- 143 for fluid overload were defined (2, 33-36). A total of potential 28 predictors were identified: 1) *ICU*
- 144 *baseline*: $age \ge 65$ years, sex, admission to a medical (vs. surgical) ICU, primary ICU admission
- 145 diagnosis (i.e., cardiac, chronic kidney disease, heart failure, hepatic, pulmonary, sepsis, trauma), and
- 146 select co-morbidities (i.e., chronic kidney disease, heart failure); 2) 24 hours after ICU admission:
- 147 APACHE II and SOFA score (using worst values in the 24 hour period), use of supportive care devices
- 148 (i.e., renal replacement therapy, invasive mechanical ventilation), serum laboratory values (i.e., albumin
- 149 < 3 mg/dL, bicarbonate < 22 mEq/L or > 29 mEq/L, chloride \geq 110 mEq/L, creatinine \geq 1.5 mg/dL,
- 150 lactate $\geq 2 \text{ mmol/L}$, potassium $\geq 5.5 \text{ mEq/L}$, sodium $\geq 148 \text{ mEq/L}$ or < 134 mEq/L), fluid balance (mL),
- 151 and presence of acute kidney injury (as defined by need for renal replacement therapy or serum creatinine
- 152 greater than or equal two times baseline); 3) *Medication data at 24 hours*: MRC-ICU score, vasopressor
- 153 use in the first 24 hours, use of continuous medication infusions, and the number of continuous
- 154 medication infusions.
- 155 Data Analysis
- 156 Data Missingness

157 Due to the hypothesis-generating nature of our study and the lack of published data on ICU fluid overload

158 prediction, no attempt was made to estimate a study sample size. Multiple imputation (10) imputations

159 per variable was applied for all missing data (see **Supplemental Digital Content (SDC**)).

160 Machine Learning Models

161 We employed Random Forest, SVM and XGBoost for the task of modeling the presence of fluid overload

- 162 (37-39). During the model training on each of the ten imputed training sets, 5-fold cross validation was
- 163 applied for Random Forest, SVM and XGBoost to choose the hyperparameters for these machine learning
- 164 models. With the optimal hyperparameters, the models were fitted again on the corresponding imputed
- training set. Predictions for probability of fluid overload were made on each of the ten imputed testing

7

166 sets using the corresponding optimal model. For Random Forest, two hyperparameters were tuned 167 (number of trees and number of variables randomly sampled as candidates at each split). For SVM, linear 168 kernel and cost of constraints violation were tuned. For XGBoost, two hyperparameters were tuned 169 (maximum depth of a tree and maximum number of boosting iterations). For each model, there were ten 170 different imputed test sets that then generated ten different predictions. These predictions of the 171 probability for fluid overload were averaged as the final prediction. 172 For the degree of fluid overload, we built models with the amount of fluid overload at 72 hours. 173 Since this is a continuous variable, we employed their regression of the above machine learning models: 174 Random Forest regression, SVM regression, and XGBoost regression. For XGBoost, feature importance 175 was measured as the frequency a feature was used in the trees. For Random Forest, feature importance 176 was measured by mean decrease in node impurity. Because ten different models were used on each 177 imputed dataset, ten different feature importance lists were generated for each. A subsequent analysis 178 modeling fluid overload as a continuous variable (percent of net milliliters of fluid by body weight) 179 instead of dichotomous presence or absence of fluid overload) was performed (see SDC). 180 Traditional Regression Models 181 991After multiple imputation, each of the ten completed datasets was split into training data and testing 182 data using an 80:20 ratio. Subsequently, a full logistic regression model was built for the presence of fluid 183 overload for each of the ten complete training sets. We then applied backward elimination to select the 184 final model. The initial set of variables for the variable selection were determined by the significance of 185 variables in the ten full models. We built our linear regression models so that the degree of fluid overload 186 was similar to that of the ten completed training sets. In order to compare these models with the MRC-187 ICU only model, we also built logistic regression and linear regression models with MRC-ICU as the sole 188 predictor in the ten training sets. After model fitting, model fits were pooled using Rubin's method (40). 189 Using the pooled models, odds ratios (OR) and their 95% confidence intervals (CI) were reported.

190 **RESULTS**

191	A total of 49 (12.5%) of the 391 included patients had fluid overload on ICU day 3. The degree of
192	day 3 fluid overload was significantly greater in the fluid overload (vs non overload) patients (16.6% vs
193	2.2%, p < 0.01). Overall, the mean APACHE II score was 15.7 \pm 6.6, mean SOFA score was 8.3 \pm 3.3,
194	and MRC-ICU score was 11.8 ± 8.7 . A significantly greater proportion of fluid overload patients (vs.
195	those without) had an elevated serum lactate ≥ 2 mmol/L (32.7% vs. 14.9%, p = 0.01) and AKI (28.6%
196	vs. 10.5%, p < 0.001) at 24 hours and positive fluid balance (1,840 mL vs. 390 mL, p < 0.001) on ICU
197	day 3. All model covariates are summarized in Table 1. At ICU day 3, patients with fluid overload (vs
198	those without) were more likely to be dead (20.4% vs. 7.3%, $p = 0.01$), have AKI (34.7% vs. 15.8%, $p < 0.01$)
199	0.001), and remain on mechanical ventilation (12.7% vs. 4.2%, $p = 0.05$).
200	Among the machine learning models, XGBoost demonstrated the highest AUROC (0.78)
201	compared to SVM (0.69) and RF (0.76) and was associated with a PPV of 0.27 and NPV of 0.94.
202	Notably, all models tested at relatively poor PPV. In comparison, stepwise logistic regression had an
203	AUROC of 0.70, PPV 0.26, and NPV 0.94. Full results are reported in Table 2, and AUROC curves for
204	all models are provided in SDC Supplemental Figure 2. Results of the full logistic regression are
205	reported in SDC Supplemental Table 1 . Stepwise regression resulted in a more parsimonious model (7
206	variables vs. 31 variables) but demonstrated similar performance to the machine learning models (SDC
207	Supplementary Table 2). In the stepwise regression, presence of sepsis, male sex, the SOFA score at 24
208	hours, and the 24 hour serum sodium and bicarbonate comprised the stepwise regression model (Table 2).
209	In an analysis of MRC-ICU as a single predictor for fluid overload, the model had an AUROC of 0.74
210	(0.60-0.84), sensitivity 0.62 (0.35-0.85), specificity 0.70 (0.63-0.77), PPV 0.16 (0.08-0.27), and NPV
211	0.96 (0.90-0.98).
212	Feature importance graphs were plotted for XGBoost (Figure 1), RF (SDC Supplemental
213	Figure 3) and SVM (SDC 5 Supplemental Figure 4). Among the 10 different feature importance lists
214	generated for each model, differences between top features were noted. For example, for two of the
215	machine learning models, XGBoost (Figure 2) and RF, the top five most important features were fluid
216	balance at 24 hours, SOFA score at 24 hours, MRC-ICU at 24 hours, APACHE II at 24 hours, and the

217	number of continuous infusions at 24 hours. While the stepwise regression model found fluid balance at
218	24 hours and APACHE II at 24 hours to be top features, the SOFA score at 24 hours, the MRC-ICU at 24
219	hours and the number of continuous infusions were not found to be model features.
220	The full regression results for predicting the amount of fluid overload at 72 hours are reported in
221	SDC Supplemental Table 3. For stepwise regression, twelve variables were included with fluid balance,
222	laboratory values, and severity of illness being significant predictors (SDC Supplemental Table 4). All
223	models demonstrated similar performance as measured by MSE (SDC Supplemental Table 5). Feature
224	importance graphs are presented in SDC Supplemental Figures 5-7).
225	DISCUSSION
226	Although machine learning models have been shown to outperform traditional regression models in a
227	variety of settings (41, 42), the potential benefits of machine learning in critical care remain an open field
228	of exploration, in part due to a current lack of rigorous comparison in high quality ICU datasets (27, 43,
229	44). Our analysis represents the first published comparison of machine learning approaches with
230	traditional regression methods to predict fluid overload using a novel dataset with granular medication
231	data.
232	We report that machine learning and logistic regression analyses demonstrate a similar predictive
233	power to identify patients with fluid overload on day 3 of their ICU stay. Although use of machine
234	learning did not appear to improve predictive performance over regression analysis, it expanded the
235	number of variables critical to fluid overload prediction and highlights the importance of further artificial
236	intelligence-based exploration in this area. This analysis of individual predictors may help bedside
237	clinicians better understand how the machine learning models work and may help overcome their 'black
238	box' hesitancy to trust machine learning-generated results (45, 46). For example, feature importance
239	graphs for the machine learning analyses found complexity of the daily ICU medication regimen (i.e.,
240	MRC-ICU score), which includes the number of intravenous medication infusions (the primary method to
241	administer medications in this population and a primary source of fluids to a patient), to be an important

10

242 contributor to fluid overload. In comparison, in the traditional multivariable regression, the MRC-ICU 243 score was not associated with fluid overload. This may be because machine learning analyses better 244 account for severity of illness and the response of clinicians to respond to this severity by administering 245 more medication infusions leading to a more complex daily medication regimen; however, the methods 246 applied, including feature importance, preclude causal inference at this juncture. As such, our results 247 highlight the unique power of machine learning to identify complex relationships that can be further 248 elucidated via machine-learning based causal inference modeling and other designs aimed at causation (2, 249 18).

250 Optimizing fluid management (or fluid stewardship) has been previously defined by the ROSE 251 model of Resuscitation, Optimization, Stabilization, and dE-resuscitation (33). After an initial 24-48 hour 252 period characterized by overt volume resuscitation (e.g., a crystalloid bolus) and IV medication initiation 253 (e.g., antibiotics), and the associated fluid administration, the care priority shifts from volume 254 administration to volume removal. While comprehensive fluid stewardship management strategies 255 including reduced fluid use and diuretic administration can effectively reduce fluid overload and its 256 sequelae, they are often deployed too late (1, 2). Interstingly, some reports have indicated 'hidden fluids' 257 (defined as blood products, enteralnutrition, flushes, and intravenous medications) were significantly 258 associated with the development of fluid overload. While in critical illness many of these 'hidden fluids' 259 are necessary (e.g., blood products), given that intravenous medications account for over 40% of total 260 fluid intake in this analysis, interventions such as concentrating intravenous medications, employing oral 261 formulations when feasible, careful evaluation of maintenace fluids, and antibiotic de-escalation are 262 potoentially still viable even in high illness severity that can reduce this complication. However, weighing 263 risks and benefits associated with these interventions in context may yet be aided by more quantitative 264 prediction data (50, 51). Overall, de-resuscitation and fluid stewardship can be deceptively complex (47). 265 In a patient with shock, balancing the dueling forces of volume responsiveness assessment and timely 266 volume resuscitation with the risks associated with fluid overload represents a highly complex Goldilocks

11

scenario that requires clinicians to have high clinical precision, essentially pivoting 'on a dime', from a
strategy of aggressive volume expansion to one of rapid volume removal (34, 48, 49).

269 Despite the complexities of this decision process, limited prediction tools for fluid overload are 270 available to assist clinicians at the ICU bedside. As such, real-time recognition identifying when to make 271 the shift from resuscitation to de-resuscitation has the potential to improve bedside management. 272 However, to go beyond the hourly assessment of 'Ins and Outs' would require accurate prediction of 273 future fluid overload risk and the adverse events associated with it, in the time-dependent context of 274 intervention delivery (e.g., diuretics). In such a scenario, an algorithm would be able to accurately 275 interpret a septic patient who is 3 liters positive 24 hours after fluid resuscitation initiation as being in a 276 'green zone' (i.e., appropriately resuscitated). However, 24 hours later, if the same patient is 4 liters 277 positive while off vasopressors and with down-trending sepsis markers the algorithm could alert 278 clinicians that the patient is now in a 'yellow zone' where interventions like diuretic therapy and fluid 279 reductions are required to reduce acute kidney injury and intubation risk. This type of real-time predictive 280 capability could support continuous clinician decision-making but requires evaluation outside the scope of 281 our current study.

282 Fluid overload also presents an important test case for exploring and adapting artificial 283 intelligence methods to ICU problems, particularly those related to ICU medication use. Fluid overload 284 represents a uniquely *intervenable event* in the ICU. Intervenable events share three key characteristics: 285 they are *predictable*, *preventable*, and otherwise associated with *poor* outcomes. The results of our study, 286 and others, indicate that fluid overload can be *predicted* with modeling of some kind, especially given its 287 ability to be quantitatively defined (50-52). Fluid overload has been associated with poor outcomes 288 including acute kidney injury, delirium, poor respiratory outcomes, prolonged length of stay, and 289 potentially increasing mortality (2, 35, 53-56). Evidence demonstrates the timely recognition and 290 management of fluid overload is feasible and is associated with reduced mortality and time in the ICU (3, 291 57-60). Notably, fluid stewardship has been adapted by critical care pharmacists as key component of

12

292 comprehensive medication management (5, 6, 60). As such, these results may support other 293 investigations as they identify patients in whom it is safe to initiate de-resuscitation or importantly never 294 needed that degree of fluid volume initially and at the bedside may prompt clinicians to be more targeted 295 in therapies initiated or aggressive in curtailing early 'hidden' fluids to avoid the complications of fluid 296 overload and/or the need for a highly interventional period of de-resuscitation (e.g., diuretics, dialysis). 297 Artificial intelligence may be particularly well suited to bolster these efforts, and thus while feature 298 importance analyses cannot provide foundation for causal inference, they may guide such future 299 investigations. 300 Our study has limitations. Our patient sample may have been too small to demonstrate superiority

301 of the machine learning approaches compared to traditional regression, and no validation in a separate,
302 external dataset was undertaken at this juncture (61). Bias may exist due to which patients had fluid
303 balance data available. Other predictors for fluid overload not included in our models may exist (62). By
304 relying on prediction data derived in the first 24 hours of ICU admission, we did not fully capture the
305 dynamic nature of critical illness over the entire three day ICU period before fluid overload occurred.
306 Future time-dependent evaluations of changing features employing unsupervised learning techniques may

307 yield novel insights.

308 CONCLUSION

309 Fluid overload is an important, intervenable event in the ICU population. Incorporation of medication-

310 related variables and artificial intelligence has demonstrated promise to improve prediction that may

311 ultimately guide timely intervention and mitigation of this ICU complication; however, comparative

312 advantages over traditional modeling techniques may remain warranted.

313

315 **Declarations**

316

317 Ethical Approval318

The protocol for this study was approved with waivers of informed consent and HIPAA authorization
 granted by UNHCS Institutional Review Board (approval number: (Project00001541); approval date:
 October 2021).

322

323 Author Contributions

324

A.S. was responsible for project execution, design, and initial manuscript writing. J.D., D.M.,

326 and R.K. provided critical revisions of manuscript, data interpretation, and senior level oversight.

327 M.Y., T.Z, and X.C. handled data pre-processing and analysis (M.Y., T.Z.) and methodology

328 support and data interpretation (X.C., R.K.). B.M. served as site coordinator for all data

329 validation and procurement as well as manuscript revisions and data interpretation. S.S., M.B.,

and S.R. provided clinical interpretation, results interpretation, and manuscript revision.

331

332 Availability of data & materials

333

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

- 337
- 338
- 338 339
- 339 340
- 340 341

342	References				
343	1	Com ID Hawking WA Newcome AS at all Elvid stawardship of maintenance Introvenous			
344 345	1.	fluids. J Pharm Pract 2021:8971900211008261			
346					
347	2.	Hawkins WA, Smith SE, Newsome AS, et al: Fluid stewardship during critical illness: a			
348 349		call to action. <i>J Pharm Pract</i> 2020; 33(6):863-873			
350	3.	Bissell BD, Laine ME, Thompson Bastin ML, et al: Impact of protocolized diuresis for de-			
351		resuscitation in the intensive care unit. Crit Care 2020: 24(1):70			
352					
353	4.	Jones TW. Chase AM. Bruning R. et al: Early diuretics for de-resuscitation in septic			
354		patients with left ventricular dysfunction. <i>Clin Med Insights Cardiol</i> 2022:			
355		16.11795468221095875			
356		10.11//0/1002210/00/0			
357	5	Hawkins WA Butler SA Poirier N et al: From theory to bedside: implementation of fluid			
358	5.	stewardship in a medical ICU pharmacy practice Am I Health Syst Pharm 2022 Jun			
359		7.79(12).984-992			
360		7,79(12).901 992.			
361	6	Bissell BD Donaldson IC Morris PE et al: A narrative review of pharmacologic de-			
362	0.	resuscitation in the critically ill <i>L Crit Care</i> 2020: 59:156-162			
363		resuscitation in the entitedity in: 5 ent eare 2020, 59:150-102			
364	7	Messmer AS Moser M Zuercher P et al: Fluid overload phenotypes in critical illness-a			
365	/.	machine learning approach I Clin Med 2022: 11(2)			
366					
367	8	Zhang Z. Ho KM. Hong Y. Machine learning for the prediction of volume responsiveness			
368	0.	in patients with oliguric acute kidney injury in critical care. <i>Crit Care</i> 2019: 23(1):112			
369					
370	9.	Olney WJ, Chase AM, Hannah SA, et al: Medication regimen complexity score as an			
371		indicator of fluid balance in critically ill Patients. <i>J Pharm Pract</i> 2021:897190021999792			
372					
373	10.	Sikora A. Avvala D. Rech MA, et al: Impact of pharmacists to improve patient care in the			
374		critically ill: a large multicenter analysis using meaningful metrics with the medication			
375		regimen complexity-ICU (MRC-ICU) score. Crit Care Med 2022: 50(9):1318-1328			
376					
377	11.	Newsome AS, Smith SE, Olney WJ, et al: Multicenter validation of a novel medication-			
378		regimen complexity scoring tool Am I Health Syst Pharm 2020: 77(6):474-478			
379					
380	12	Newsome AS. Anderson D. Gwynn ME. et al. Characterization of changes in medication			
381	12.	complexity using a modified scoring tool Am I Health Syst Pharm 2019:			
382		76(Supplement 4):S92-s95			
383		· · · · · · · · · · · · · · · · · · ·			
384	13.	Gwynn ME, Poisson MO, Waller JL, et al: Development and validation of a medication			
385		regimen complexity scoring tool for critically ill patients. Am J Health Syst Pharm 2019:			
386		76(Supplement_2):S34-s40			

15

387 Al-Mamun MA, Brothers T, Newsome AS: Development of Machine Learning Models to 388 Validate a Medication Regimen Complexity Scoring Tool for Critically III Patients. Ann 389 Pharmacother 2021; 55(4):421-429 390 391 Smith SE, Shelley R, Sikora A: Medication regimen complexity vs patient acuity for 392 predicting critical care pharmacist interventions. Am J Health Syst Pharm 2022; 393 79(8):651-655 394 305 Webb AJ, Rowe S, Newsome AS: A descriptive report of the rapid implementation of 396 automated MRC-ICU calculations in the EMR of an academic medical center. Am J 397 Health Syst Pharm 2022; 79(12):979-983 398 **39**9 Newsome AS, Smith SE, Olney WJ, et al: Medication regimen complexity is associated 400 with pharmacist interventions and drug-drug interactions: A use of the novel MRC-ICU 401 scoring tool. Journal of the American College of Clinical Pharmacy. 2020; 3(1):47-56 402 403 Sanchez P, Voisey JP, Xia T, et al: Causal machine learning for healthcare and precision 404 medicine. R Soc Open Sci 2022; 9(8):220638 405 **49**6 Iwase S, Nakada TA, Shimada T, et al: Prediction algorithm for ICU mortality and length 407 of stay using machine learning. Sci Rep 2022; 12(1):12912 408 **40**9 Beil M, Sviri S, Flaatten H, et al: On predictions in critical care: The individual 410 prognostication fallacy in elderly patients. J Crit Care 2021; 61:34-38 411 **4**12 Lovejoy CA, Buch V, Maruthappu M: Artificial intelligence in the intensive care unit. 413 Crit Care 2019; 23(1):7 414 **42**5 Gutierrez G: Artificial Intelligence in the Intensive Care Unit. Crit Care 2020; 24(1):101 416 **43**7 Goh KH, Wang L, Yeow AYK, et al: Artificial intelligence in sepsis early prediction and 418 diagnosis using unstructured data in healthcare. Nat Commun 2021; 12(1):711 419 **44**0 Hyland SL, Faltys M, Huser M, et al: Early prediction of circulatory failure in the 421 intensive care unit using machine learning. Nat Med 2020; 26(3):364-373 422 **43**3 DeGrave AJ, Janizek JD, Lee SI: AI for radiographic COVID-19 detection selects 424 shortcuts over signal. medRxiv 2020 425 **4**Ø6 Nguyen D, Ngo B, vanSonnenberg E: AI in the Intensive Care Unit: Up-to-Date Review. J 427 Intensive Care Med 2021; 36(10):1115-1123 428 **4**29 Yoon JH, Pinsky MR, Clermont G: Artificial Intelligence in Critical Care Medicine. Crit

430 *Care* 2022; 26(1):75

431 432 433 434	28.	Farion KJ, Wilk S, Michalowski W, et al: Comparing predictions made by a prediction model, clinical score, and physicians: pediatric asthma exacerbations in the emergency department. <i>Appl Clin Inform</i> 2013; 4(3):376-391
435 436 437 438	29.	Feng JZ, Wang Y, Peng J, et al: Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries. <i>J Crit Care</i> 2019; 54:110-116
439 440 441	30.	World Medical Association: World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. <i>JAMA</i> 2023: 312:2191-2194.
442 443 444 445	31.	Von Elm E AD, Egger M, et al: STROBE Initiative: Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. <i>BMJ</i> 2007; 335:806-808.
446 447 448 449	32.	Bouchard J, Soroko SB, Chertow GM, et al: Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. <i>Kidney Int</i> 2009; 76(4):422-427
450 451 452	33.	Carr JR, Hawkins WA, Newsome AS, et al: Fluid Stewardship of Maintenance Intravenous Fluids. <i>J Pharm Pract</i> 2022; 35(5):769-782
453 454 455 456	34.	Malbrain M, Van Regenmortel N, Saugel B, et al: Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy. <i>Ann Intensive Care</i> 2018; 8(1):66
450 457 458 459	35.	Claure-Del Granado R, Mehta RL: Fluid overload in the ICU: evaluation and management. <i>BMC Nephrol</i> 2016; 17(1):109
460 461	36.	O'Connor ME, Prowle JR: Fluid Overload. Crit Care Clin 2015; 31(4):803-821
462 463 464 465 466	37.	Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining [Internet]. New York, NY, USA: ACM; 2016. p. 785–94. Available from: http://doi.acm.org/10.1145/2939672.2939785
467 468	38.	Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995;20(3):273–97.
469 470 471	39.	Ho TK. Random decision forests. In: Proceedings of 3rd international conference on document analysis and recognition. 1995. p. 278–82.
472 473 474	40.	Rubin DB: Multiple imputation for nonresponse in surveys. Hoboken, N.J. ;, Wiley-Interscience, 2004
475 476	41.	Topol EJ: Deep medicine : how artificial intelligence can make healthcare human again. First edition. ed. New York, Basic Books,, 2019, p^pp 1 online resource

427 478	Kahneman D, Sibony O, Sunstein CR: Noise : a flaw in human judgment. First edition. Edition New York Little Brown Spark 2021
470	Edition. New Tork, Little, Drown Spark, 2021
480	D'Hondt F. Ashby TI. Chakroun I. et al: Identifying and evaluating barriers for the
481	implementation of machine learning in the intensive care unit. <i>Commun Med (Lond)</i> 2022;
482	2(1):162
483	
48 4 485	van de Sande D, van Genderen ME, Huiskens J, et al: Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit. <i>Intensive</i>
486 487	Care Med 2021; 47(7):750-760
488	Moss L. Corsar D. Shaw M. et al: Demystifying the Black Box: The Importance of
489	Interpretability of Predictive Models in Neurocritical Care. <i>Neurocrit Care</i> 2022;
490 491	37(Suppl 2):185-191
402	The Lancet Respiratory M: Opening the black box of machine learning. Lancet Respir
493	Med 2018; 6(11):801
494	Melhavia M. Martin C. Ostarmana M. Everything you need to be one should demonstration
495	Matorain M, Martin G, Ostermann M: Everything you need to know about deresuscitation.
490 497	Intensive Care Mea 2022; 48(12):1781-1780
498	Gelbart B. Serna Neto A. Stephens D. et al: Fluid Accumulation in Mechanically
499	Ventilated. Critically III Children: Retrospective Cohort Study of Prevalence and
500	Outcome. <i>Pediatr Crit Care Med</i> 2022; 23(12):990-998
501 #02	Netional Heart L. Dia d Institute Associate Descriptions Distance Gen durante Clinical Trials N
40 2 503	Wiedemann HP, et al: Comparison of two fluid-management strategies in acute lung
504	injury. N Engl J Med 2006; 354(24):2564-2575
505 506	Gamble KC Smith SF Bland CM et al: Hidden Fluids in Plain Sight: Identifying
507	Intravenous Medication Classes as Contributors to Intensive Care Unit Fluid Intake. Hosp
508	Pharm 2022: 57(2):230-236
509	
510	Branan T, Smith SE, Newsome AS, et al: Association of hidden fluid administration with
511	development of fluid overload reveals opportunities for targeted fluid minimization. SAGE
512	Open Med 2020; 8:2050312120979464
513	•
524	Mitchell KH, Carlbom D, Caldwell E, et al: Volume Overload: Prevalence, Risk Factors,
515	and Functional Outcome in Survivors of Septic Shock. Ann Am Thorac Soc 2015;
516	12(12):1837-1844
517	
538	Ouchi A, Sakuramoto H, Hoshino H, et al: Association between fluid overload and
519	delirium/coma in mechanically ventilated patients. Acute Med Surg 2020; 7(1):e508
520	
541	Murphy CV, Schramm GE, Doherty JA, et al: The importance of fluid management in
522	acute lung injury secondary to septic shock. <i>Chest</i> 2009; 136(1):102-109

523 524 525 526	55.	Boyd JH, Forbes J, Nakada TA, et al: Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. <i>Crit Care Med</i> 2011; 39(2):259-265
527 528 529 530	56.	Woodward CW, Lambert J, Ortiz-Soriano V, et al: Fluid Overload Associates With Major Adverse Kidney Events in Critically Ill Patients With Acute Kidney Injury Requiring Continuous Renal Replacement Therapy. <i>Crit Care Med</i> 2019; 47(9):e753-e760
531 532 533 534	57.	Hawkins WA, Butler SA, Poirier N, et al: From theory to bedside: Implementation of fluid stewardship in a medical ICU pharmacy practice. <i>Am J Health Syst Pharm</i> 2022; 79(12):984-992
535 536 537	58.	Silversides JA, Perner A, Malbrain M: Liberal versus restrictive fluid therapy in critically ill patients. <i>Intensive Care Med</i> 2019; 45(10):1440-1442
538 539 540	59.	Goldstein S, Bagshaw S, Cecconi M, et al: Pharmacological management of fluid overload. <i>Br J Anaesth</i> 2014; 113(5):756-763
541 542 543	60.	Silversides JA, McAuley DF, Blackwood B, et al: Fluid management and deresuscitation practices: A survey of critical care physicians. <i>J Intensive Care Soc</i> 2020; 21(2):111-118
544 545 546	61.	Burkov A: The hundred-page machine learning book. Quebec City, Canada, Andriy Burkov, 2019
547 548 549	62.	Qin X, Zhang W, Hu X, et al: A deep learning model to identify the fluid overload status in critically ill patients based on chest X-ray images. <i>Pol Arch Intern Med</i> 2023; 133(2)

- 550 Figure 1. Feature importance for presence of fluid overload prediction with XGBoost

Figure 2. Most common features for presence of fluid overload prediction with XGBoost imputations

$\gamma \gamma \gamma \gamma = 1$ HORE I (JULLY CONTAIL CHARGED IN 170 DOCTOR (JYCHOLAL WITHIN 72 HOLAN (JYCHOLAL WITHIN (JYCHOL	557	Table 1. Study coho	rt characteristics by pr	resence of fluid overload	within 72 hours	of ICU admissic
--	-----	---------------------	--------------------------	---------------------------	-----------------	-----------------

	All	Fluid Overload	No Fluid Overload	
	(n = 391)	(n = 49)	(n = 342)	p-value
ICU Baseline	(I
Age > 65 years	202 (51.7)	19 (38.8)	183 (53.5)	0.08
Male sex	213 (54.5)	23 (46.9)	190 (55.6)	0.33
Chronic comorbidities				
Chronic kidney disease	13 (3.3)	1 (2.0)	12 (3.5)	0.06
Heart failure	19 (4.9)	2 (4.1)	17 (4.9)	0.06
Admission to medical ICU	156 (39.9)	24 (48.9)	132 (38.6)	0.22
Primary ICU Admission Diagnosis	s	× /	· · · · ·	
Cardiac	81 (20.7)	3 (6.1)	78 (22.8)	0.06
Chronic kidney disease	13 (3.3)	1 (2.0)	12 (3.5)	
Hepatic	6 (1.5)	1 (2.0)	5 (1.5)	
Pulmonary	58 (14.8)	8 (16.3)	50 (14.6)	
Sepsis/septic shock	29 (7.4)	7 (14.3)	22 (6.4)	
Trauma	10 (2.6)	3 (6.1)	7 (2.0)	
24 hours after ICU admission	~ /	× /		
Severity of illness, mean (SD)				
APACHE II Score	15.7 (6.6)	17.5 (7.0)	15.4 (6.6)	0.06
SOFA Score	8.3 (3.3)	9.9 (4.6)	8.2 (3.1)	0.07
Supportive devices				
Any renal replacement therapy	5 (1.3)	1 (2.0)	4 (1.2)	1.00
Any mechanical ventilation	140 (35.8)	21 (42.9)	119 (34.8)	0.53
Serum laboratory values				
Albumin <3 mg/dL	88 (22.5)	18 (36.7)	70 (20.5)	0.02
Bicarbonate $< 22 \text{ mEq/L}$	74 (18.9)	14 (28.6)	60 (17.5)	0.16
Bicarbonate > 29 mEq/L	64 (16.4)	6 (12.2)	58 (16.9)	
Creatinine $\geq 1.5 \text{ mg/dL}$	28 (7.2)	7 (14.3)	21 (6.1)	0.02
Chloride $\geq 110 \text{ mEq/L}$	125 (31.9)	19 (38.8)	106 (30.9)	0.33
Potassium $\geq 5.5 \text{ mEq/L}$	19 (4.9)	5 (10.2)	14 (4.1)	0.12
Lactate $\geq 2 \text{ mmol/L}^{-1}$	67 (17.1)	16 (32.7)	51 (14.9)	0.01
Sodium \geq 148 mEq/L	22 (5.6)	6 (12.2)	16 (4.7)	0.01
Sodium <134 mEq/L	33 (8.4)	4 (8.1)	29 (8.5)	
Fluid balance (mL), mean (SD)	570 (1960)	1840 (301)	390 (168)	< 0.001
Acute kidney injury	50 (12.8)	14 (28.6)	26 (10.5)	< 0.001
Medications				
MRC-ICU, mean (SD)	11.8 (8.7)	13.4 (8.4)	11.5 (8.7)	0.06
Any vasopressor	119 (30.4)	16 (32.6)	103 (30.1)	0.85
Any continuous infusions	249 (63.6)	34 (69.3)	215 (62.8)	0.47
Infusions / patient, mean (SD)	2.29 (3.3)	1.98 (2.2)	2.33 (3.4)	0.35

Data are presented as n (%) unless otherwise stated

567 Table 2. Performance of presence of fluid overload prediction models, mean (confidence inter	rval)
---	-------

	AUROC	Sensitivity	Specificity	PPV	NPV	
Traditional regression	Traditional regression					
All variables	0.70 (0.53, 0.82)	0.43 (0.19, 0.70)	0.85 (0.79, 0.89)	0.20 (0.08, 0.37)	0.94 (0.89, 0.97)	
Stepwise Selected Regression	0.70 (0.52, 0.82)	0.43 (0.19, 0.70)	0.89 (0.84, 0.93)	0.26 (0.11, 0.47)	0.94 (0.90, 0.97)	
Supervised machine learning models						
Random Forest	0.76 (0.62, 0.86)	0.56 (0.29, 0.80)	0.8571 (0.80, 0.90)	0.25 (0.12, 0.43)	0.95 (0.91, 0.98)	
Support Vector Machine	0.69 (0.51, 0.82)	0.50 (0.24, 0.75)	0.82 (0.76, 0.88)	0.21 (0.09, 0.36)	0.94 (0.90, 0.97)	
XGBoost	0.78 (0.62, 0.87)	0.37 (0.15, 0.64)	0.91 (0.86, 0.94)	0.27 (0.10, 0.50)	0.94 (0.89, 0.97)	

AUROC: area under the receiver operating characteristic; PPV: positive predictive value; NPV: negative predictive

570 571 value