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T
 he observation and description of the living brain 

has attracted a lot of research over the past centu-

ries. Many noninvasive imaging modalities have 

been developed, such as topographical techniques 

based on the electromagnetic field potential [i.e., 

electroencephalography (EEG) and magnetoencephalography 

(MEG)], and tomography approaches including positron emis-

sion tomography and magnetic resonance imaging (MRI). Here 

we will focus on functional MRI (fMRI) since it is widely 

deployed for clinical and cognitive neurosciences today, and it 

can reveal brain function due to neurovascular coupling (see 

“From Brain Images to fMRI Time Series”). It has led to a much 

better understanding of brain function, including the descrip-

tion of brain areas with very specialized functions such as face 

recognition. These neuroscientific insights have been made pos-

sible by important methodological advances in MR physics, sig-

nal processing, and mathematical modeling.

INTRODUCTION

A NETWORK PERSPECTIVE ON THE BRAIN

Early analysis of fMRI data looked for correlational evidence of 

brain regions being related to specific functions (known as 

functional segregation). However, it became obvious that the 

brain operates as a global complex system with many interac-

tions (functional integration). While a large body of work in the 

literature focuses on structural connectivity of the brain, that is, 

how white matter interconnects brain regions, some authors 

have attempted to model and characterize the brain as a net-

work using functional connectivity (i.e., temporal correlation 

between remote brain regions) [1]. This network-centric per-

spective has led to fundamental insights in terms of the organi-

zation of the healthy and diseased brain [2], how its resilient 
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network architecture allows it to withstand injury [3], and how 

evolutionary arguments can be advanced for the distributed 

information processing it performs [4].

This relatively recent trend towards formalizing integration 

and segregation of brain function borrowed many tools and 

concepts from statistical physics, graph theory, sociology, and 

statistics and led naturally to the adoption of graphs as an 

essential mathematical tool. Indeed, the popularity of graph-

based approaches in contemporary neuroscience is easily under-

stood: graphs offer a proper language to describe whole-brain 

patterns and interregional interactions. Besides, neuroimagery 

provides us with time series, associated with voxels, which 

reflect information processing by a brain region in time. These 

data have brought to light the dynamic nature of the brain, 

which follows complex temporal patterns. The complexity of 

fMRI data (including low signal-to-noise ratio, spatial correla-

tions, long-range temporal dependencies, and high dimension-

ality) and the importance of capturing spatiotemporal 

dependencies make it very desirable to find a level of abstraction 

at which inference can be performed. Graphs have the desirable 

property of being able to represent data at many spatial (and 

temporal) resolutions, meaning that the same mathematical 

models and algorithms can be applied at different spatial and 

temporal scales. Moreover, the semantics associated with a 

graph, i.e., the meaning of its nodes and edges, is flexible and 

can be chosen depending on the underlying application.

MACHINE LEARNING ON BRAIN GRAPHS

In parallel with the rise of interest in brain networks, there 

has been an increase in the use and development of 

FROM BRAIN IMAGES TO fMRI TIME SERIES

Neuronal clusters involved in brain activity consume more 

oxygen compared to their baseline state. Due to neurovascular 

coupling, blood flow and volume are increased and lead to a 

significant overcompensation of the oxygen demands, i.e., the 

ratio of oxygenated and deoxygenated haemoglobin is altered. 

Deoxygenated haemoglobin is paramagnetic and acts as an 

endogenous contrast agent since it alters the T2*-weighted MR 

images. This gives rise to the blood-oxygen-level-dependent 

(BOLD) signal, discovered in the 1990s, which has allowed MRI 

to become functional (fMRI) and to observe the brain at work.

MRI allows sampling a three-dimensional (3-D) volume of the 

brain at millimetric spatial resolution every 1–3 s (or faster with 

recent sequences). This way we obtain multivariate time series 

of brain activity. Raw fMRI signals suffer from low signal-to-

noise ratio and need to be processed heavily to be amenable to 

analysis. Several preexisting open source software packages 

allow reliable results to be obtained rapidly [S1]–[S3]. The main 

preprocessing steps, illustrated in Figure S1, are to realign the 

volumes to compensate for subject motion and ensure voxel-to-

voxel correspondence across time, coregister functional images 

to a high-resolution structural image, and normalize the 

data into a common reference space so that subjects can be 

compared and existing anatomical knowledge can be lever-

aged. Once this is achieved, representative time series can be 

extracted from different brain regions and serve as a basis for 

brain graph construction (see the sections “Vertices in Brain 

Space“ and “Vertex Time Series”).

We point out that this is only one possible pipeline, and there 

is not necessarily a consensus in the field [6]. Our guiding princi-

ple here is to avoid overprocessing the functional data. For 

example, we advocate avoiding upsampling the functional data 

to structural resolution, which in typical settings (1-mm isotro-

pic structural voxels, 3-mm isotropic functional voxels) would 

results in a close to 30-fold increase in the amount of data with 

no additional information gain. A principled choice of the opti-

mal preprocessing steps and their order for the application of 

interest can be guided by several objectives, for example, a 

pattern reproducibility/model generalizability compromise as 

advocated by the NPAIRS approach to pipeline evaluation [7].

REFERENCES
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[FIGS1] Overview of preprocessing for time series extraction from fMRI data, including atlas-based parcellation of the brain.
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machine-learning techniques in neuroscience [5]. Indeed, the 

high-dimensional nature of fMRI data hinders the application of 

many multivariate methods from classical statistics, prompting 

an increasing number of researchers to rely on regularization 

methods common in machine learning and signal processing in 

addition to well-established mass-univariate analysis tech-

niques. Furthermore, inference at the level on single subjects is 

gaining prominence, with many new developments in the field 

of neuroimaging marker development. Predictive modeling 

using machine-learning techniques are therefore particularly 

suitable to the field and are now commonly applied to cogni-

tive, clinical, affective, and social neuroscience. The interest for 

these techniques is evident in practitioners, and most neuroim-

aging conferences have special sessions on machine learning. 

Concurrently, workshops on the topic are regularly held 

at machine-learning conferences, and dedicated meetings 

are emerging.

The intersection of statistical machine-learning techniques 

and graph representations has been of interest for several years 

in fields such as computer vision, pattern recognition, and data 

mining [as evidenced by regular workshops such as graph-based 

representations in pattern recognition (GbR), structural and 

syntactic pattern recognition (SSPR), or mining and learning 

with graphs (MLG)] but has only relatively recently started to be 

exploited in the context of brain networks, and formalizing neu-

roscientific questions as graph classification problems is a very 

recent trend. We believe that applying machine-learning tech-

niques to brain connectivity data, for example, by following the 

scheme in Figure 1, has unique potential. Given the current 

appeal of graphs for brain data representation and the simulta-

neous enthusiasm for machine-learning approaches in the neu-

roimaging community, we expect this emerging approach to see 

increasing adoption. In particular, clinical applications were 

among the first to appear; in cognitive neuroscience, previously 

unseen relationships can be uncovered and the hypothesis of no 

effect can be more convincingly rejected. From a methodologi-

cal point of view, because BOLD fMRI data is particularly chal-

lenging to work with for the reasons mentioned previously, 

there is also large prospective advancement in signal processing 

and machine learning.

[FIG1] Overall scheme for predictive modeling with brain graphs. (a) Imaging data are first preprocessed, then the brain is divided 
into regions, and each region is assigned a regional representative time series. (b) A labeled simple graph is computed from the 
regional time series, where edge labels correspond to statistical dependency between brain regions, and brain regions are mapped to 
graph vertices. (c) The graph is embedded into a vector space, after which (d) statistical machine learning can be used. (e) Brain-space 
visualization of the discriminative pattern used by the classifier is critical for interpretation. (f) Statistics and confidence intervals can be 
obtained on inference results, allowing validation of the techniques when used, e.g., to elicit imaging markers in clinical applications.
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FROM IMAGING DATA TO CONNECTIVITY GRAPHS

With imaging data preprocessed, several additional steps are 

necessary to obtain “brain graphs.” In particular, a mapping 

between brain space and vertices must be defined, a representa-

tive time series per vertex chosen, and graph edges labeled. 

First, however, proper mathematical formalism has to be put 

in place.

MATHEMATICAL DEFINITION

Formally, a graph ( , )g V E=  consists of a finite set V  of vertices 

and a finite set of edges .E V V#3  We say there is an edge from 

vertex i to vertex j if ( , ) .i j E!  Graphs can be directed or undi-

rected. In the first case, the direction of an edge matters, while 

in the second case we assume that for each edge ( , )i j  there 

exists an edge ( , )j i  in the opposite 

direction, such that the direction 

of an edge is not important any 

longer. A slight generalization of 

this definition is achieved by mul-

tigraphs, where several edges 

, ,e e1 2 f all pointing from the same node i to the same node j 

can exist. Graphs that have at most one edge between any pair 

of nodes are also called simple graphs.

For the subject at hand, labeled simple graphs (where labels 

are defined over both vertices and edges and are members of the 

sets LV and LE, respectively) are expressive enough to represent 

many properties of interest in brain connectivity graphs. For a 

particular graph ,g  representing either a subject’s functional 

connectivity or a particular brain state, we can write [8] 

 ( , , , ),g V Eg g g ga b=  (1)

where Vg is the set of vertices, E g is the set of edges, and 

:V Lg g V"a  and : E Lg g E"b  are, respectively, the vertex label-

ing and edge labeling functions.

The labeling functions are essential to learning and inference 

on brain graphs—for example, by letting L RE =  we can obtain 

a scalar weight on each edge, which can encode the strength of 

the statistical dependency between brain regions, and provide 

more information than the fact that ( , ) .i j E g!  Likewise, 

L RV =
+ could be used to label vertices with graph-theoretical 

attributes such as the centrality of a vertex [9].

By further restricting the vertex set Vg to have a fixed order-

ing (to be a sequence), and all graphs in the class to have the 

same number of vertices (to have a fixed-cardinality vertex 

sequence, so , ),s V Rg6 =  a considerably simpler graph com-

parison and analysis problem results. In particular, when 

comparing two graphs, the vertex assignment problem, which 

has exponential complexity in the general case, is avoided. 

Graphs with unique node labels [8] benefit from the same sim-

plification. This allows the engineering effort to be spent on 

defining vertices, vertex labels, edges, and edge labels, as well as 

vector space embedding techniques. From a neuroscience per-

spective, having the same set of vertices for all subjects allows 

easier inter-subject comparisons and is a way of abstracting 

away the important individual anatomical variability that exists 

in human brains.

VERTICES IN BRAIN SPACE

Understanding inference results on brain graphs requires a link 

with the underlying neural substrate. Indeed, choosing how 

image voxels map to graph vertices will have a large influence 

on the meaning of the resulting graphs, and edges will repre-

sent interactions between these brain systems. Broadly speak-

ing, methods can be anatomy driven or data driven and yield 

contiguous or noncontiguous sets of voxels, which can have 

empty or nonempty intersections. Thus, each vertex v Vi g!  is 

mapped to a set of image voxels .V Vi 3  This choice also dic-

tates the graph size and the method that can be used to elicit 

edge labels.

Figure 2 shows three com-

monly used choices for map-

ping voxels to vertices. The first 

approach consists of assigning one 

vertex per voxel, leading to 

| | , | | ,VV N i Ng i6= =  where N  is the number of voxels. Because 

this approach is often used to study interactions between one 

particular region of the brain and the rest of the brain and uses 

temporal correlation to assess dependencies between voxel time 

courses it is often called seed-based correlation [10]. In this 

case we have , V Vi j i j+6 4=  and no spatially noncontiguous 

subsets exist.

The second approach consists of using anatomical knowl-

edge to divide the brain into R regions of contiguous voxels (see 

Figure S1 for an example of using a brain atlas for this) [3], 

[11]. In this case, there is one vertex per region | | ,V R Ng %=  

leading to smaller graphs than for seed-based approaches (typi-

cally in the low hundreds of vertices). We also have 

, ,V Vi j i j+6 4=  and regions are contiguous. A similar type of 

graph is obtained by localizing spherical regions of interest at 

coordinates reported in the literature.

The third commonly used approach is to use a data-driven 

procedure such as spatial independent component analysis 

(ICA) [12] or clustering [13] to define regions of interest. For 

example, an ICA decomposition could yield around 20 compo-

nents, and the voxels included in a thresholded spatial compo-

nent would serve as the spatial extent of a graph vertex. The 

temporal dependency between these components can then be 

examined [14]. This approach yields voxel sets that are spatially 

disjoint and overlapping—depending on thresholding, a voxel 

can be claimed by several spatial ICA components, which may 

considerably complicate interpretation if vertices are to be con-

sidered an abstraction of independent voxels. In a clustering 

approach, a suitable similarity measure between voxel time 

courses has to be defined (which may or may not be the same as 

used later to establish dependencies between clusters), and a 

consistency threshold is chosen above which voxels are said to 

belong to the same cluster. A representative voxel is then cho-

sen for each cluster, which could be the centroid time course. If 

the consistency threshold can be set arbitrarily high, then 

UNDERSTANDING INFERENCE 
RESULTS ON BRAIN GRAPHS REQUIRES 

A LINK WITH THE UNDERLYING 
NEURAL SUBSTRATE.
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clusters can degenerate to single voxels and the approach 

reverts to seed-based correlation.

In all three cases, it is generally possible to obtain the fixed-

cardinality vertex sequence property (see the section “Mathe-

matical Definition”): for seed correlation, normalization and 

realignment can ensure that this is the case; for atlas-based 

methods, using the same atlas for all subjects and cognitive 

states guarantees that the property holds; for data-driven meth-

ods such as ICA, a multisubject technique (e.g., group ICA [12]) 

can ensure that the spatial definition of voxels sets mapping to 

vertices is the same for all subjects and vertices, assuring the 

property holds there too.

VERTEX TIME SERIES

For each fMRI voxel, we obtain a time series that correspond to 

the BOLD signal recorded inside the voxel. Different strategies 

have been used in the recent literature to extract representative 

time series corresponding to regions in brain space and vertices 

in a graph (as per Figure 2). These strategies depend on the spa-

tial assignment of voxels to vertices.

With seed-based approaches, spatial smoothing is typically 

used as an attempt to improve the signal-to-noise ratio. The 

regional representative for each region (voxel) is then a linear 

mixture of the neighboring timecourses.

For atlas-based approaches, the two dominant approaches 

are to compute the temporal mean timecourse of all the 

voxels within a region [11], and to use this as a representative 

(an aggressive form of smoothing), or to use the first 

eigenvariate of the region as a representative. The former is 

optimal in terms of root mean-squared error, while the latter 

maximizes the explained variance. A generalization of these 

approaches is offered by canonical correlation analysis (CCA), 

where the weights of the voxels’ contribution to a regional rep-

resentative are optimized so that correlation between atlas 

regions is maximized [15]. In this case, the vertex time-series 

computation and edge label assignment (see section below) are 

a single step.

Finally, for the data-driven analysis using spatial ICA, the 

representative time series are computed directly from the 

functional data. Because spatial independence (rather than 
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[FIG2] Defining graph vertices in brain space, two-dimensional example. Part (a) shows the brain space parcellation. Gray dots 
correspond to voxel center of mass. Black divisions correspond to the brain space definition of a vertex, that is, identify members of 
each voxel set .Vi  Numbers indicate region identifier, corresponding to vertex labels. In part (b), the graphs corresponding to the spatial 
division  outlined above. Vertices are shown as black circles, and each vertex maps one-to-one to a spatial region. Edges are 
represented by blue lines, where line width is shown proportional to the edge weight (encoded as an edge label). From left to right: 
seed-based voxel-wise approach, atlas-based approach, and ICA-based approach.
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temporal independence) is sought in the decomposition, the 

representative time series may exhibit significant correlation 

with representative time series from other spatial components.

As first noted in EEG, the temporal dynamics observed while 

the brain is functioning usually can be divided in different fre-

quency bands that are related to the rhythms of the brain [16]. 

This can be done using bandpass filtering with Fourier basis 

functions or wavelet transforms. While the use of Fourier basis 

functions is dominant in the literature, the presence of long 

memory or /f1  properties in the cortical fMRI time series [17] 

make wavelets well suited in this context [18], [19]. In particu-

lar, the discrete wavelet transform (DWT) at scales 

, , ,j J1 2 f=  for the time series X is written as

 ,c dX , , , ,J k J k

k

j k j k

kj JZ Z

z }= +

! !#

/ //  (2)

where ( ) ( ),t t k2 2,
/

j k
j j2z z= -
- -  ( ) ( ),t t k2 2,

/
j k

j j2
} }= -

- -  c ,J k 

is the approximation coefficient at scale J located at time point 

,k  and d ,j k is the detail coefficient at scale j and time point .k  In 

practice, the mother wavelet function ( )$}  needs to have a suffi-

cient number of vanishing moments so that low-order polyno-

mial trends are removed (e.g., to deal with MRI magnet gradient 

heating effects during acquisition sessions). We opt for the 

redundant transform to afford shift-invariance, a useful prop-

erty because the haemodynamic lag is known to differ between 

brain regions. Specifically, we choose the commonly used 

redundant third degree Battle-Lemarié wavelet transform.

ASSIGNING EDGE LABELS TO THE GRAPH

In fMRI brain graphs, edge labels are typically taken to repre-

sent dependencies between the brain regions underlying the 

connected vertices. Many different techniques have been pro-

posed and continue to be proposed to estimate dependencies 

between brain regions, which can be organized along several 

axes, in particular measures yielding directed versus nondi-

rected graphs, the domain where the dependency is computed 

(frequency, time, phase), whether the dependency is linear or 

nonlinear, and whether a zero-lag or a lagged estimate of depen-

dency is used [20].

There has been much debate on the choice of adequate mea-

sure of dependence in fMRI, but the zero-lag Pearson product-

moment linear correlation is a popular choice. If the vertex time 

series has been decomposed using a wavelet transform, the 

scale-dependent correlation between two fMRI regional repre-

sentative time series X and Y in the wavelet domain [3], [21] is 

given by

 ( ) [ ( )]
(( ) ( ))

,j E j E
x x y y

y x
/

j
T

j j
T

j

j
T

j

1 2, ,X Y X Yt t= =t = G  (3)

where ( , , )d dx ,
( )

,
( )

j j j K1
X X
f=  (likewise for ),y j  and d ,

( )
j k
X

 are the wave-

let coefficients at scale j and time point k for X (likewise for ).Y  

The use of wavelets has the advantage of taking into account the 

long-memory properties of the fMRI time series and produce 

correlation estimation that is unbiased at each wavelet scale 

[19] with a known variance depending on the number of points 

in the time series at a given scale. (We provide a MATLAB imple-

mentation and useful related code at http://miplab.epfl.ch/richi-

ardi/software.php and an R implementation at http://

cran.r-project.org/web/packages/brainwaver/.) This means that 

using wavelets, as long as the number of vanishing moments is 

sufficiently large, there is no need to take into account any tem-

poral dependences between the time points in the fMRI time 

series. However, if centered, filtered time series instead of wave-

let coefficient time series are used in , ,x yj j  (3) corresponds 

directly to the Pearson product-moment correlation used in the 

majority of the fMRI literature.

For lagged correlation, we can redefine a circularly shifted 

version of the second wavelet coefficient time series as 

( , , , , , ),d d d dx ,
( )

,
( )

,
( )

,
( )

j j j K j j1 1
X X X X
f f= D D+  where D is an integer lag, 

and in the same way define a lagged version of a second filtered 

time series if no wavelet decomposition is used. The commonly 

applied “functional network connectivity” approach of Jafri and 

colleagues [14] can be computed in this way, with the time 

series X and Y obtained from an ICA decomposition. Although 

lagged measures of dependence are often used with EEG or 

MEG [22], they are comparatively less frequent with fMRI data 

mainly because of the low sampling rate and the hemodynamic 

response; consequently authors often use a very small or 

zero lag.

Partial correlation [23] is a variant that has been shown 

experimentally to yield good sensitivity in picking up existing 

correlations and offers robustness to various processing param-

eters [20]. The goal in partial correlation is to estimate the 

“direct” correlation between two regions while removing the 

influence of all other regions. Given a matrix of (filtered) 

regional time series ,X R
K R

!
#  one way of computing it is 

from the (possibly regularized) inverse P of the empirical 

covariance matrix of :X  with / ( ) ,XXP
T1 1

= =
- -  we can com-

pute each partial correlation between region i and j as 

( ) .P P P
/

ij ij ii jj
1 2

r =-
-  We are not aware of this approach being 

applied to wavelet coefficient time series.

Many other dependence measures exist, several of which are 

implemented in the Conn software [24] (http://www.nitrc.org/

projects/conn/), a full-featured toolbox to compute functional 

connectivity graphs (see, e.g., the review by Smith and col-

leagues [20]). To cite one frequency-domain measure yielding a 

directed graph and using lags, partial directed coherence [25], a 

popular method originally proposed on electrophysiological 

data computes edge directions in the frequency domain, and has 

been applied to fMRI [26]. However because of the haemody-

namic smoothing and quasi-Gaussian distribution of BOLD sig-

nals, measures yielding directed graphs and those based on fine 

frequency information must be used with caution [20]. In addi-

tion, several authors have reported that nonlinear measures of 

dependence such as mutual information may not be necessary 

for fMRI data [27].

After all dependencies have been computed and edge labels 

assigned, it is possible to perform hypothesis tests on the edge 

labels to assert whether they are significantly different 
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from zero. In wavelet correlation, the estimators of correlation 

are associated with variance [19], and it is then possible to 

construct hypothesis tests to select only edge labels greater than 

a given threshold [3]. More generally, the R R#  correlation 

matrix computed on all pairs of regions can be approximately 

Gaussianized using Fisher’s R-to-Z nonlinear transform, after 

which different hypothesis tests can be applied—typically a 

one-sample t-test with a multiple comparison correction such 

as false discovery rate. Edges 

labels that survive the hypothesis 

test are kept, and some authors 

then fix their label to one, yielding 

an unweighted graph. Edges 

whose labels do not survive are 

removed from the edge set, or 

their label is fixed to zero. This 

procedure can be seen as a filter-type feature selection 

approach in the subsequent learning procedure. If no threshold 

is applied, the result is an undirected complete graph with 

edge labels.

LEARNING AND INFERENCE ON BRAIN GRAPHS

The goal of inference on functional brain graphs is to classify 

and characterize changes in brain dynamics due to pathology, 

or due to a cognitive state change (within a single subject or 

across subjects), possibly related to experimental stimulation. A 

predictive modeling framework is therefore well suited, because 

being able to consistently form predictions from brain graphs of 

unseen subject samples or unseen cognitive state samples pro-

vides good evidence for the fact that the model captures pat-

terns with good generalization ability.

As with any other type of graphs used in machine learning, 

several algorithms can be used for predictive modeling with 

brain graphs. However, certain properties of brain graphs as 

defined here should guide the choice of algorithms. Most 

importantly, the fixed-cardinality vertex sequence property (see 

the section “Mathematical Definition”) means that no vertex 

correspondence problem has to be solved. Thus, algorithms 

designed for more general graphs that do not possess this prop-

erty may not be suitable as they may focus on changes in the 

vertex set. Second, brain graphs are noisy, and some graph-the-

oretical properties such as isomorphism or subgraph isomor-

phism are not necessarily useful to measure the (dis)similarity 

between graphs. Finally, interpretability of results is paramount, 

and a link with classical statistics is always appreciated in the 

neuroscience community, where such tools are in common use.

Satisfying these three key requirements, approaches based 

on graph embedding have started to appear in the neuroimag-

ing literature (including unwittingly). In graph embedding, one 

defines a mapping that associates each graph of a given graph 

population to a point in the n-dimensional real space. This 

relatively recent approach to learning with graphs has made 

available a very wide variety of statistical machine-learning 

algorithms [28]. The engineering effort is then spent on finding 

a vector space representation of graphs that is amenable to the 

learning task at hand. In the sequel, we will present several 

embeddings that have been or could be used to analyze 

brain graphs.

GRAPH AND VERTEX PROPERTIES AS FEATURES

From physical sciences to social sciences through biological sci-

ences, the representation of data with complex networks has 

attracted much interest. Although these representations can be 

used to visually summarize the 

information in two dimensions, it 

may be difficult to compare differ-

ent networks with more than 

around 100 vertices. Therefore, an 

important focus of analysis in 

neuroscience has been large-scale 

graph organization measures (not 

necessarily graph invariants), such as clustering coefficients, or 

graph efficiencies. These topological measures can be used to 

extract one or more features that characterize each vertex in a 

graph, or a graph as a whole. Several topological measures have 

been considered for neuroimaging data [1], [29], which have 

particular interpretation in terms of integration and segregation 

of brain activity. Many toolboxes exist to compute these proper-

ties on brain graphs, for example the BCT toolbox (https://sites.

google.com/a/brain-connectivity-toolbox.net/bct/) in MATLAB, 

or the iGraph and brainwaver packages using R. 

For example, the strength of a vertex i captures the number 

and weight of connections between i and other nodes of graph g

( , ) .S i ji g

j

R

1

b=

=

/

If edge labels are binary (unweighted graph), vertex strength 

corresponds to vertex degree. Another example of an often used 

property is the clustering coefficient, which can be regarded as 

a measure of information transfer or connectedness in the 

immediate neighborhood of each vertex [9]

Clust
| | (| | )

,
V V L1

1 1

,

i
g g jkj k Vi i

gi

=

-
!

/

where ( , , , )g E Vi g g g gi i a b=  is a subgraph of g defined by the set 

of nodes that are the immediate neighbors of the ith node, and 

L jk is the minimum path length between vertex j Vgi!  and 

vertex k Vgi!  in the subgraph.

Because vertices in brain graphs following our definition 

have a fixed ordering, these properties can be arranged into a 

vector, which can then be used for machine learning. Addition-

ally, computing the average or the median of one particular ver-

tex property over all vertices of a graph results in an abstract 

measure that characterizes the graph as a whole. Hence, apply-

ing this process to a number of properties eventually yields a 

feature vector that describes a particular graph. Thus, these 

graph- or vertex-level properties can be seen as the result of 

sophisticated feature extraction, and can systematically be used 

directly as input features to statistical machine-learning algo-

rithms [30], [31], or in a mass-univariate test setting (see, e.g., 

FROM PHYSICAL SCIENCES TO SOCIAL 
SCIENCES THROUGH BIOLOGICAL 

SCIENCES, THE REPRESENTATION OF 
DATA WITH COMPLEX NETWORKS HAS 

ATTRACTED MUCH INTEREST. 



 IEEE SIGNAL PROCESSING MAGAZINE [65] MAY 2013

[32]), which was the first approach used to discriminate 

between populations.

EDGE LABELS AND PROPERTIES AS FEATURES

Rather than presuming to know which topological property 

might be of interest to the discrimination task at hand, it may 

be advantageous to extract a simple representation of graphs, 

and let the learning algorithm find a function of the representa-

tion that yields the best discriminative performance. In this 

regard, one approach that has brought very competitive results 

experimentally is to model the edge label distributions, for 

example in an undirected graph, by using the lexicographically 

ordered entries of the upper-triangular part of the weighted 

adjacency matrix A (or sequence of edge labels) as a feature vec-

tor [33]–[36]. In this case the embedding is formed by 

( ) ( , ( , ), ) .g i j , { , , },i j R j i1f fz b=
f 2!

As a drawback, this procedure leads to high-dimensional fea-

ture vectors of order (| | )O V
2  and suffers from the curse of 

dimensionality. Hence, various feature selection techniques 

have been tried to address the 

problem [36], [37]. Mass-univari-

ate analysis of edge labels (e.g., 

using two-sample t-tests) is very 

common in the neuroimaging lit-

erature, and here the dimension-

ality problem translates directly 

into a multiple comparisons 

problem.

Midway between the direct 

edge label embedding mentioned 

above and graph properties, one can also define topological edge 

properties such as the edge betweenness, related to the number 

of geodesics (shortest paths) going through an edge, and form a 

similar high-dimensional embedding from these properties. 

Edge properties can yield interesting insight into how different 

“communities” of the network are connected together, although 

interpretation differs depending on the type of correlation mea-

sure used (e.g., partial versus full) as well as imaging modality. 

In particular, this type of measure might be most interesting for 

structural connectivity, where an edge can be mapped to a white 

matter fiber pathway. For example, a significant correlation 

between the edge betweenness of a white matter fiber tract and 

grasping skill in stroke patients has been observed [38].

SPECTRAL EMBEDDING

Another well-known and widely used family of graph embedding 

algorithms is spectral embedding. The main idea is to perform 

an eigendecomposition on the adjacency or the Laplacian 

matrix of a graph and then use the eigenvectors, possibly after 

application of some suitable dimensionality reduction algo-

rithms, to derive feature vectors that represent the given graphs 

in the new vector space [39].

In neuroimaging, the related eigenvector centrality is often 

used to characterize brain graphs (see, e.g., [40]), albeit only in 

group-level statistics, although recent work has sought to use 

singular value decomposition to generate embedding vectors 

from brain graphs [41].

KERNELS AND DISSIMILARITY TECHNIQUES

Another kind of graph embedding is dissimilarity embedding. 

The basic idea is to define a set of prototypical graphs , ,p pn1 f  

and measure the dissimilarity, or distance, of a given graph g to 

each of the prototypes. Thus, n distances ( , ), , ( , )d g p d g pn1 f  

are obtained, which can be concatenated to a vector 

( ) ( ( , ), , ( , ))g d g p d g pn1 fz =  that serves as the representation 

of g in the embedding space. One crucial question in this 

approach is the underlying graph dissimilarity function 

( , ) .d g gl  In [28], the authors have proposed to use the graph 

edit distance, which is a well-established concept in graph-based 

machine learning. Dissimilarity embedding has recently been 

applied to brain graphs with an adapted graph edit distance [35]. 

However, there is no guarantee other than empirical that this is 

a good choice, and the crucial aspect in dissimilarity algorithms 

is the design of a pairwise dissimilarity function. This concern is 

shared by kernel methods.

Kernel methods, originally 

designed to operate on feature 

vectors, can be extended so as to 

include symbolic data structure, 

in particular graphs [42]. The 

basic idea of using similarity 

between pairs of objects can be 

adapted to graphs in a straightfor-

ward way by using, for example, 

the number of common labels, 

common subgraphs, common walks, or similar common sub-

structures. This has become a very active area of research, with 

applications in diverse fields including computer vision, biology, 

or chemistry, and the relationship between seemingly different 

graph kernels is increasingly being understood and formalized 

[43]. While graph embedding methods allow one to get access 

to the full repository of machine-learning methods, graph ker-

nels are restricted to kernel machines. Interestingly, assembling 

the embedding vectors constructed by a dissimilarity embed-

ding procedure into a square matrix and normalizing it can 

yield a valid kernel matrix, that is, a positive semidefinite matrix 

(although certain dissimilarity measures may generate an indef-

inite kernel matrix) [44]. Even in the indefinite case, some sup-

port vector machine (SVM) solvers are able to converge 

and these dissimilarity functions can then also be used with 

SVM-type learning algorithms [45].

There are currently very rare applications of graph kernels to 

brain graphs [46], although given a suitable kernel, it is proba-

ble that this could yield competitive results.

APPLICATIONS

While the dominant approach for using graphs in neuroimaging 

consists of group-level statistics on graph and vertex properties, 

or statistics on edge labels, there has recently been some inter-

est in using graphs for predictive modeling. We will discuss only 
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a few papers here, but it is clear that the techniques presented 

for machine learning with brain graphs are useful in real appli-

cations, and that there is much room for improvement.

CLINICAL NEUROSCIENCE

Perhaps due to the large amount of evidence showing that brain 

graphs are affected by disease and that these alterations could 

form the basis for imaging biomarkers [2], the first application 

of machine learning for brain graphs has been in clinical neuro-

sciences. Indeed, the predictive nature of machine-learning 

tools makes them a perfect fit for diagnosis and prognosis of 

neurological diseases and disorders. It should be noted that data 

are often acquired in the “resting state,” meaning subjects are 

not asked to perform a specific action. In these circumstances, 

the mean activity level is typically statistically not different 

between groups (the absolute magnitude of the BOLD signal is 

meaningless), and computing a brain graph is a way to provide 

prior information to learning algorithms that the dependency 

structure between brain regions is of interest.

In what we believe to be the earliest use of machine learning 

on brain graphs in clinical neuroscience, an atlas was used to 

extract 22 brain regions, from which a brain graph was 

extracted by using a mean regional representative and linear 

correlation [33]. They then generated a feature space from each 

graph using direct embedding (see the section “Edge Labels and 

Properties as Features”), after which they used a PCA-based ver-

sion of Fisher linear discriminant analysis (FLDA) to predict 

patient or healthy control status. Significantly worse results are 

reported when a whole-brain graph is used. Adding several fea-

ture selection steps, [34] also used direct embedding to predict 

depression status. In a similar vein, [37] used univariate filter 

feature selection, and locally linear embedding (LLE) for dimen-

sionality reduction, before performing classification of schizo-

phrenic patients. Although these papers did not identify their 

technique as graph embedding, our own recent experiments 

confirm that the direct approach works well for other diseases 

with very heterogeneous presentation such as multiple sclerosis 

[47], with high sensitivity and specificity, by using a brain atlas 

containing 90 regions. Figure 3 shows a visualization of the dis-

criminative graph for this task (where we see that connections 

to and from the occipital lobe, whose religions are shown in yel-

low, have low discriminative weights, but that those in the tem-

poral lobe, in red, have high discriminative weights), as well as a 

low-dimensional representation of the discriminant function.

Other approaches have also been used, for example graphs 

properties (among other features) were used to classify schizo-

phrenic patients versus controls via Markov random field, SVM, 

and naïve Bayes’ classifiers [30]. Statistical testing was used to 

identify the set of edge labels that are significantly different 

between groups [48], from which summary indices were 

extracted by linear combination of edge label values. These 

summary indices were then used as input features to an FLDA 

classifier and allowed high sensitivity and specificity for classify-

ing Alzheimer’s disease patients versus controls and mild cogni-

tive impairment (MCI) patients (thought to be an early stage of 

Alzheimer’s) versus controls.
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[FIG3] (a) Discriminative graph for multiple sclerosis patients versus controls classification from brain graphs using an ensemble of 
functional tree classifiers. The feature space is obtained by direct edge label embedding, thus each edge can enter the decision 
function. We can compute how often edges are picked by the trees in the ensemble, and at which level, across all cross-validation 
folds, and obtain a measure of the relative importance of each edge in the discrimination task. Then, we can aggregate edge 
importance on the vertices to which they are connected. Here, the size of the spheres is proportional to the sum of edge discriminative 
importances, and the color represents the brain lobe. (b) Post-hoc index of discriminative connectivity alterations. This is obtained by a 
sum of edge labels (correlation value), each weighted by the (normalized) discriminative importance of the edge, and suggests that the 
high-dimensional discriminant function is learning a useful combination of edges. (Figure from [47]; reprinted with permission.) 
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While the patient versus control diagnosis based on brain 

graphs is interesting as a proof-of-concept and can bring new 

insights in the disease (i.e., to reveal disease-specific patterns of 

changes that remained undetected before), it is not yet an 

accepted tool for clinical practice. Further refinement of the 

methodology and greater availability of data sets are required to 

go towards differential diagnosis and identifying confounds or 

to predict fine-grained scales of clinical prognosis. Nevertheless, 

the clinical possibilities opened by such an approach are excit-

ing because it uses a simple, noninvasive test that requires very 

minimal patient collaboration, using MRI hardware that already 

exists in most hospitals.

Finally, it is also important to note that graphs computed by 

estimating brain connectivity may have very different structure 

depending on which imaging modality is used (indeed, this also 

applies to imaging parameters within a particular modality). 

For example, it was shown that very different graphs are 

obtained from MEG and fMRI data, even when the graph struc-

ture learning algorithm is the same [49]. This indicates that 

interpretation of brain graphs and their properties must always 

consider the limitations of the modality used, but also that mul-

timodal graph analysis methods might bring additional 

insight [50].

COGNITIVE NEUROSCIENCE

The application to cognitive neuroscience has focused on how 

brain regions interact during specific brain states. Predictive 

modeling on brain connectivity graphs has very recently also 

enabled brain state decoding, by which “inverse inference” can 

be performed: The current brain state of the subject is predicted 

from the connectivity pattern of the brain.

Our paper [36] was among the first to propose decoding 

brain states from brain graphs, i.e., we showed that rest and 

movie-watching can be classified with very high accuracy using 

ensembles of classifiers, both within frequency subbands and 

across frequency subbands, when direct edge label embedding is 

used. The same embedding approach (but with different classifi-

ers) was used in [51] with a linear SVM to show that the brain 

graph is significantly altered by visuomotor task preparation—

impressively, the task can be predicted before it even is per-

formed, because the brain “prepares” for the task by altering its 

connectivity. Reference [52] also used direct embedding and 

classification to classify sleep stages.

Recent work [53] showed that it is even possible to use brain 

graphs to discriminate between seemingly similar brain states, 

specifically, different conditions such as remembering events of 

the day, “singing” music internally, and performing mental 

arithmetic. Here, a data-driven approach (i.e., ICA) was used to 

define voxel sets corresponding to graph vertices.

Regression techniques have also been proposed—for exam-

ple, support vector regression (SVR) was used to predict age 

from resting-state brain scans [54]. Here, meta-analyses were 

used to define 160 regions of interest, yielding graphs with 

12,270 different edge labels. They first reduced dimensionality 

to 200 edges by using univariate filter feature selection (corre-

lation of edge label with age), on a separate data set. Then, a 

radial basis function kernel was used with an SVM solver to 

predict age from these 200 edges. Figure 4 illustrates the 
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results, including a brain-space map of the relatively more pre-

dictive edges.

VISUALIZATION

Visualizing the results of inference on brain graphs is 

challenging, but a consensus is slowly emerging for two-

dimensional (2-D) or 3-D view of the relative discriminative 

importance of edges and vertices (see Figure 4), where each 

edge is scaled in proportion to its 

relative importance in the dis-

criminant function of the classi-

fier or regression algorithm 

trained on the graph’s embedding 

(e.g., weight vector component for 

a linear SVM). A challenging 

aspect is that the regularization 

term added to the learning algo-

rithm may not yield a sparse weight vector, meaning that many 

graph edges may have nonzero weights. Given the high number 

of potential edges, this can lead to a confusing display. One 

attempt to address the issue is to plot each vertex’s “strength” in 

the discriminative graph to represent how much connections to 

and from this region of the brain contribute to the discrimina-

tion. Another approach adopted by some authors is to use class 

label permutation testing to see how significant the discrimina-

tive weight on each edge is [47]. However, this technique is 

mass-univariate and does not truly reflect the dependencies in 

the weight vector.

Specific tools have been written for brain graph visualiza-

tion, [e.g., Connectome Viewer (http://connectomeviewer.org/

viewer) or Brain Connectivity Toolbox (http://sites.google.com/

site/bctnet/visualization)] but network visualization tools from 

other fields, e.g., Graphviz (http://www.graphviz.org/), Gephi 

(http://gephi.org/), or Cytoscape (http://cytoscape.org), can 

also be used to provide a variety of 2-D layouts (e.g., force-

directed layouts).

OPEN ISSUES AND FUTURE TRENDS

LARGE GRAPHS

As schematized in Figure 2, the current atlas-based approaches 

typically result into about 100 regions, mapping to 100 vertices, 

while data-driven approaches typically produce graphs with 

around 20–30 vertices. Resolution and quality of functional MRI 

data will further increase with better acquisition sequences and 

higher magnetic field strengths, and, therefore, brain connec-

tivity graphs with many more vertices will be defined, based on 

more fine-grained structural or functional regions.

A general problem with graph representations is that num-

ber of edges grows like (| | ).O V
2  Typical contemporary algo-

rithms of “moderate” complexity applied in machine learning 

are of cubic time complexity (e.g., inversion of a general 

matrix). If we apply those algorithms to graphs, then we are fac-

ing a complexity that is not (| | ),O V
3  but (| | )O V

6  as soon as 

edge data is to be taken into account. For this reason, many 

state-of-the-art graph algorithms can deal only with graphs 

including some hundred up to a few thousand nodes at maxi-

mum. In particular, the well-performing direct edge label 

embedding technique is ill-equipped for dealing with anything 

other than small-scale graphs (around 100 vertices).

Potential ways out of the dilemma are currently a topic of 

intensive investigation. Possibly, one could resort to sparse 

graphs (where the number of edges is not (| | ),O V
2  but only 

(| |)O V  and use approximate algo-

rithms or regularization tech-

niques. However, using an -1, type 

regularizer might promote spar-

sity in a way that impedes inter-

pretation (e.g., what is the 

neuroscientific meaning of a dis-

criminant function based on a sin-

gle brain graph edge?). A recent 

effort in this direction was to use mixed-norm regularization to 

derive sparse models of functional connectivity followed by ver-

tex property computation and subsequent classification to dis-

criminate between MCI patients and healthy controls [55]. 

While experimental results are for a small number of vertices 

(116), they show an improvement over learning a full graph, 

which suggests that this could hold for larger graphs as well.

ROBUSTNESS OF STATISTICAL 

DEPENDENCY ESTIMATORS

The estimation of dependencies is difficult especially when 

the number of vertices is large in comparison to the number 

of points in time. Recent work [56] showed exactly the ratio 

between the number of vertices and the number of points in 

time so as to ensure the values of correlation are statistically 

truly different from zero. Moreover, in the context of fMRI acqui-

sition, estimates of dependencies between brain regions underly-

ing vertices are often biased by region size, noise with spatial 

characteristics, and physiological confounds [57]. Specific robust 

statistical procedures [58] and denoising procedures [59] are 

being developed to cope with such challenges. While physiologi-

cal denoising techniques are gaining acceptance and are rou-

tinely included in recent work, issues related to spatial statistics 

of regions are much less recognized.

BEYOND THE STEADY-STATE ASSUMPTION

To conclude, we should keep in mind that the human brain is a 

complex system with a high degree of adaptability, which is 

achieved by dynamical reorganization at different temporal 

scales. For instance, within a single run of fMRI, brain activity 

observed during “rest” shows a high degree of nonstationarity 

as it involves continuous switching between attention, memory 

recall, sensory awareness, and so on. This is the neurological 

reason that functional connectivity of resting state only 

becomes a stable measure as longer runs are considered (i.e., 

average behavior over several minutes). On larger timescales, 

brain network organization gets shaped and reconfigured by 

learning experiences, e.g., changes in network modularity have 

IT IS AN OPEN CHALLENGE TO ADAPT 
MACHINE-LEARNING TECHNIQUES AND 
DYNAMICAL MODELS IN PARTICULAR 
TO PROPERLY TAKE INTO ACCOUNT 
THE NONSTATIONARY BEHAVIOR 

OF THE BRAIN.
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been reported at the timescales of minutes and hours [60]. For 

those reasons, techniques that would properly consider nonsta-

tionarity of brain states should lead to more sensitive measures. 

Recent work in machine learning, for example, casting the 

problem as regularized high-dimensional covariance learning 

with nonindependent and identically distributed data [61], are 

of particular interest, provided modeling assumptions (i.e., 

slowly varying changes) are compatible with the experimental 

paradigm and existing neurophysiological knowledge.

It is an open challenge to adapt machine-learning tech-

niques and dynamical models in particular to properly take into 

account the nonstationary behavior of the brain.
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