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Abstract. Radiogenomics has attracted attention for predicting 
the molecular biological characteristics of tumors from clinical 
images, which are originally a collection of numerical values, 
such as computed tomography (CT) scans. A prediction model 
using genetic information is constructed using thousands of 
image features extracted and calculated from these numerical 
values. In the present study, RNA sequencing of pancreatic 
ductal adenocarcinoma (PDAC) tissues from 12 patients was 
performed to identify genes useful in evaluating clinical 
pathology, and 107 PDAC samples were immunostained to 
verify the obtained findings. In addition, radiogenomics analysis 
of gene expression was performed by machine learning using 
CT images and constructed prediction models. Bioinformatics 
analysis of RNA sequencing data identified integrin αV 
(ITGAV) as being important for clinicopathological factors, 
such as metastasis and prognosis, and the results of sequencing 
and immunostaining demonstrated a significant correlation 
(r=0.625, P=0.039). Notably, the ITGAV high‑expression 
group was associated with a significantly worse prognosis 
(P=0.005) and recurrence rate (P=0.003) compared with the 
low‑expression group. The ITGAV prediction model showed 

some detectability (AUC=0.697), and the predicted ITGAV 
high‑expression group was also associated with a worse 
prognosis (P=0.048). In conclusion, radiogenomics predicted 
the expression of ITGAV in pancreatic cancer, as well as the 
prognosis.

Introduction

Pancreatic cancer is highly lethal with a poor prognosis, and 
no established sensitive markers for recurrence and survival. 
The overall 5‑year survival rate is only 10% and increases to 
only 20% even after curative surgery; therefore, pancreatic 
cancer is considered one of the most fatal diseases (1‑3). 
Large‑scale genome analyses using next‑generation sequencing 
(NGS) have been performed for pancreatic cancer (4) and 
subsequent transcriptome analyses have classified several 
RNA signatures (5,6).

Although recent technological developments have reduced 
the cost of gene research examination, such as gene sequencing, 
the economic costs and the time required for evaluation of the 
genetic information of each patient remain topics of debate. 
The field of radiogenomics has developed to evaluate genomic 
mutations and gene expression changes based on inexpensive 
and non‑invasive general image data (radiomics); this field is 
currently attracting attention (7,8).

Images, such as those obtained by computed tomog‑
raphy (CT) and magnetic resonance imaging (MRI), are 
composed of quantitative digital data that are originally 
a collection of numerical values. The digital information 
obtained by such images can be quantified using mathematical 
methods by considering an image as a matrix of numbers. These 
quantitative values are called image features (IFs), and the field 
of study that deals with various IFs is called radiomics (9). 
Radiogenomics is expected to further facilitate the construc‑
tion of models for predicting tumor molecular profiles by 
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combining genomics techniques with radiomics‑based 
analysis of image phenotypes, thereby allowing non‑invasive, 
easy and inexpensive predictions.

The present study aimed to conduct a comprehensive 
search for molecules showing prognostic value for pancre‑
atic cancer from the transcriptome, and to create a simple, 
inexpensive and non‑invasive predictive model using these 
molecules and diagnostic imaging procedures commonly used 
for cancer treatment via radiogenomics analysis. In pancreatic 
cancer, numerous studies have comprehensively searched for 
factors associated with prognosis and recurrence using NGS 
and immunostaining (4‑6). However, there are few reports that 
investigate the causal relationship between the results of gene 
expression determined by NGS and immunostaining; further‑
more, there are few reports that have constructed predictive 
models from clinical images, such as CT images, in cases of 
pancreatic cancer (10). To the best of our knowledge, there is no 
report of such a causal relationship with regard to integrin αV 
(ITGAV); therefore, this was the subject of the present study. 
To the best of our knowledge, no previous studies on various 
types of cancer have predicted the expression of ITGAV from 
CT images using radiogenomics analysis.

Materials and methods

Study population criteria. A total of 143 patients were 
pathologically diagnosed with pancreatic cancer between 
January 2013 and March 2018 at Chiba Cancer Center 
following surgery. The average age of these patients was 
68.7 years (46‑87 years), 85 were men and 58 were women. 
Of these, patients who received preoperative chemotherapy, 
preoperative radiotherapy or preoperative chemoradiotherapy, 
or those that exhibited metastases to other organs were 
excluded. in addition, patients with cancer in other organs 
were excluded. Of the 143 patients, 107 satisfied the afore‑
mentioned conditions. Samples were retrospectively collected, 
and ‑fixed paraffin‑embedded (FFPE) specimens were used in 
immunostaining, and frozen samples were used in RNA‑seq 
in the present study. Of these cases, total RNA was extracted 
from a total of 15 cases, including six specimens that were 
collected intraoperatively and promptly frozen and nine frozen 
specimens stored in the biobank of Chiba Cancer Center, and 
comprehensively analyzed by NGS. The present study was 
approved by the Chiba Cancer Center Review Board (approval 
no. H29‑006) and all patients provided written informed 
consent.

RNA‑sequencing (RNA‑seq). Total RNA was isolated from 
frozen tissue blocks containing 50‑100 mg pancreatic 
ductal adenocarcinoma (PDAC) tissues or adjacent normal 
tissue. RNA was extracted using the miRNeasy Mini kit 
(cat. no. 217004; Qiagen, Inc.). The concentration of RNA 
was quantified using a NanoDrop system (NanoDrop; Thermo 
Fisher Scientific, Inc.). The quality of sufficiently concentrated 
samples was verified using the Agilent RNA 6000 Nano Kit 
(cat. no. 5067‑1511; Agilent Technologies, Inc.). Samples 
with an RNA integrity number (RIN) value of ≥7.0 were 
used for RNA‑seq. The loading concentration of the final 
library was measured using the Agilent High Sensitivity 
DNA kit (cat. no. 5067‑4626; Agilent Technologies, Inc.) 

and Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.), 
and was 6 pM for RNA‑seq. The library was built for NGS 
using Ion Total RNA‑Seq kit v2 (cat. no. 4475936; Thermo 
Fisher Scientific, Inc.) and Ion Xpress™ RNA‑Seq Barcode, 
cat. no. 4475485; Thermo Fisher Scientific. Inc.). RNA‑seq was 
performed with an Ion Proton ™ instrument (Thermo Fisher 
Scientific, Inc.). Sequencing data were mapped by Subread 
(http://subread.sourceforge.net/) to the hg19 reference 
genome. Differential expression levels were estimated by 
linear modeling based on LIMMA, a method of generating 
linear models for microarray data (11). Genes with a P‑value 
of ≤1.0x10‑4 were defined as differentially expressed genes 
(DEGs). Upon initial DEG analysis, the relative expression 
clustering profile patterns were assessed, and two pairs were 
excluded from further analysis based on the close proximity 
in expression patterns for the normal/tumor tissue pair with 
multidimensional scaling. After excluding 2 pairs, subse‑
quent gene set enrichment analysis Gene Set Enrichment 
Analysis (GSEA; https://www.gsea‑msigdb.org/gsea/index.
jsp) and pathway analysis were performed using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG; https://www.
genome.jp/kegg/kegg_ja.html). In addition, protein‑protein 
interactions for the DEGs were analyzed and visualized using 
Cytoscape (ver. 3.8.1; https://cytoscape.org/) to identify the hub 
genes. The R2: Genomics Analysis and Visualization Platform 
(https://hgserver1.amc.nl/cgi‑bin/r2/main.cgi) with expression 
and prognostic data (ID: PAAD; number of samples: 178) from 
The Cancer Genome Atlas Program was used to pre‑verify 
whether these hub genes were associated with prognosis. Hub 
genes that exhibited a significant association with worsening 
prognosis in R2 underwent immunostaining.

Immunohistochemical analysis. The protein expression levels 
of ITGAV were measured by immunohistochemistry (IHC) 
using mouse monoclonal anti‑human ITGAV protein antibody 
(P2W7; cat. no. sc‑9969; 1:100; Santa Cruz Biotechnology, 
Inc.). Freshly removed pancreatic tissue samples were imme‑
diately fixed in 10% formalin for at least 24 h at 24˚C and 
embedded in paraffin. Briefly, 5‑µm sections were obtained 
from FFPE tissues and underwent ITGAV staining with an 
OptiView DAB IHC Detection Kit (cat. no. 760‑700; Roche 
Diagnostics) and a VENTANA BenchMark ULTRA automated 
slide stainer (Roche Diagnostics). A 3% hydrogen peroxide 
solution was used as the blocking reagent, and the sample was 
treated for 4 min at 36˚C. Enzyme‑induced antigen activation 
was performed using ISH Protease 1 (cat. no. 760‑2018; Roche 
Diagnostics) for 32 min at 36˚C, and the ITGAV primary anti‑
body was applied to the sample for 120 min at 36˚C to reduce 
non‑specific reactions and background staining. According to 
the steps of the OptiView IHC Detection Kit, hydroxyquinoxa‑
line was applied for 8 min at 36˚C and then peroxidase‑labeled 
anti‑hydroxyquinoxylin mouse monoclonal antibody was 
applied as a secondary antibody for 8 min at 36˚C. Finally, 
images were captured under a light microscope.

IHC results were scored based on the percentage positivity 
of staining. Two pathologists evaluated ITGAV protein expres‑
sion as the percentage of the stained tumor cells and the stained 
area in the tumor interstitium. The staining intensity in the 
tumor cells and interstitium was also evaluated. The expres‑
sion status of these proteins (low or high) was determined by 
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the percentage of tumor cells with any membrane staining, the 
staining area of interstitium and the staining intensity.

IHC scoring of ITGAV and the related definitions. Staining 
was usually observed in peripheral nerve cells in pancreatic 
tissue, and the staining levels in these areas were considered 
as controls. The percentage of tumor cells stained was scored 
as follows: 0, 0%; 1, 0‑≤20%; 2, >20‑≤40%; 3, >40‑≤60%; 
4, >60‑≤80%; 5, >80%. The staining intensity of tumor cells 
was also scored (0‑3) as follows: 0, none; 1, intensity lower 
than the control; 2, the same level as the control; 3, intensity 
higher than the control. The two scores, the percentage of 
stained tumor cells and the staining intensity of tumor cells, 
were multiplied and ITGAV expression in tumor cells was 
scored. Similarly, for tumor interstitial tissue, the proportion 
of staining in the interstitial area was calculated as follows: 
0, 0%; 1, 0‑≤20%; 2, >20‑≤40%; 3, >40‑≤60%; 4, >60‑≤80%; 
5, >80%. Staining intensity for the interstitial area was scored 
in the same manner as that for tumor cells. The two scores 
were then multiplied and to provide a score for ITGAV expres‑
sion in the tumor interstitial tissue.

Finally, the IHC expression score of ITGAV in tumor 
tissues was calculated by adding the score in tumor cells to the 
score in tumor interstitial tissue. A regression line was created 
from this score using the least‑squares method and RNA‑seq 
expression, and a value higher than the IHC expression score, 
which corresponded to the median RNA expression, was 
regarded as high expression. Spearman's correlation coef‑
ficient analysis was used to examine the correlation between 
IHC expression scores and RNA‑seq expression.

Statistical analysis. Continuous variables such as age were 
divided into two groups by median. The significant difference 
between ITGAV expression, and clinical and pathological 
variables was assessed using the χ2 test, Fisher's exact test or 
Mann‑Whitney U test. Overall survival (OS) was defined as 
the period between surgery and final observation (in days). 
Disease‑free survival (DFS) was defined as the period between 
surgery and recurrence. A survival curve was prepared using 
the Kaplan‑Meier method and the log‑rank test was used 
to assess significant differences. Multivariate analysis was 
performed using the Cox regression model to determine 
significant factors in the log‑rank test. P<0.05 was considered 
to indicate a statistically significant difference. These statis‑
tical analyses were conducted using JMP version 15.2.1 (SAS 
Institute, Inc.)

CT acquisition and tumor segmentation. CT scans were 
performed under the same conditions as our previous study, 
and a radiologist and a surgeon delineated the volume of 
interest‑pancreatic cancer (VOIpc) (12). Subsequently, VOI+4 mm 
was created by mechanically expanding the axial plane by 
4 mm around each VOIpc.

IF extraction and machine learning. IFs were extracted using 
the same protocol as that described in our previous study; the 
morphology, histogram and texture features were calculated 
from the original images (12). In addition, the same types of 
features were extracted from the original wavelet, Laplacian 
of Gaussian, square, square root, logarithm, exponential, 

gradient, and local binary patterns in 2D‑ and 3D‑filtered 
images. Finally, 3,748 (1,874x2) features were extracted from 
each VOI for early‑ and late‑phase images. Feature selection 
consisted of two steps to stabilize the predictive power of the 
model. Firstly, Student's t‑tests were performed on each IF, 
and only features with significant differences were retained, 
and another feature selection with recursive feature elimina‑
tion was performed using a random forest function. Secondly, 
these IFs were input into extreme gradient boosting (XGBoost) 
to construct the predictive model for ITGAV. The feature 
selection and model construction steps were performed using 
nested cross‑validation. Inner cross‑validation for feature 
selection and outer cross‑validation for model construction 
were five‑fold. The probability of each sample was used for 
receiver operating characteristic (ROC) analysis. A ROC plot 
was created and the area under the curve (AUC) was calculated 
to evaluate the survival prediction of the machine learning 
models. The predicted status of ITGAV (high/low) was calcu‑
lated using the predictive model and quantified in the range 0 
to 1. These were arranged in descending order, divided into two 
groups near the actual ITGAV positive rate, the log‑rank test 
was performed and several P‑values   were calculated; of these, 
the lowest P‑value that would contribute most to survival and 
recurrence was adopted. All statistical analyses and machine 
learning were conducted using R version 3.5.1 (R Foundation 
for Statistical Computing) (Fig. 1).

Results

Patient background. Between January 2013 and March 2018, 
a total of 143 patients were pathologically diagnosed with 
PDAC following surgery. Among of them, 119 patients under‑
went surgery without preoperative chemotherapy or radiation 
therapy, and were diagnosed with pancreatic cancer by postop‑
erative pathological diagnosis. A total of 12 patients presented 
with cancer in other organs or with metastasis to other organs 
and were therefore excluded. As a result, a total of 107 cases 
were included in the present retrospective study. Specimens 
were available for a total of 15 patients. The Biobank provided 
frozen specimens for nine patients: Five cancer tissue speci‑
mens, and four matched cancer and normal tissue specimens. 
In addition, specimens for six other cases were obtained during 
the operation. The present study attempted to extract RNA 
from 10 pairs of cancerous and normal tissues, and five cancer 
tissues alone. Of the remaining 10 pairs, seven pairs passed 
the quality check with a RIN value of ≥7.0, whereas two pairs 
showed RIN values of ≥7.0 for the cancer tissue only. All five 
cases in which only cancer tissues were collected exhibited 
RIN values of ≥7.0. These cases underwent sequencing by 
NGS. Furthermore, the pairs of cancerous and normal tissues 
were evaluated on a multidimensional scale to assess whether 
they were valid. It was detected that one pair was likely to 
have been extracted only from cancerous tissue and another 
pair was likely to have been extracted only from normal 
tissue; therefore, two pairs were excluded (Fig. 2A). Finally, a 
total of 17 samples from 12 patients, including five pairs and 
seven cancer tissue samples, were available and analyzed for 
comprehensive total RNA bioinformatics analysis. RNA‑seq 
analysis results were verified by IHC using the aforementioned 
107 cases. The observation period was between January 2013 
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and July 2020, with a median of 804 days (58‑2,481 days). The 
median age was 70 years (50‑87 years) and the male‑to‑female 
ratio was 60:47 (Table I).

RNA‑seq. The expression levels were analyzed by mapping 
11,272 mRNAs, and the number of DEGs whose expression 
fluctuated in cancer tissues in comparison with adjacent 
normal tissues was 314 (Fig. 2B). When these genes were 
analyzed by the KEGG pathway using GSEA, significant 
pathways included ECM‑receptor interaction, focal adhe‑
sion, protein digestion, etc. (Table SI). When the degree of 
centrality in DEGs was calculated, the top 10 were examined 
to determine the relationship between gene expression and 
prognosis using the R2 platform, as follows: FN1 (P=0.147), 

COL1A1 (P=0.098), COL1A2 (P=0.174), COL3A1 (P=0.206), 
COL5A1 (P=0.158), TIMP1 (P=0.041), COL4A1 (P=0.086), 
ITGB1 (P=0.036), FBN1 (P=0.131), COL5A2 (P=0.220), 
COL4A2 (P=0.121), SPARC (P=0.107), ITGAV (P=0.033) and 
MMP14 (P=0.093) (Fig. 2C). Of these, COL1A1, COL1A2, 
COL4A1, ITGB1, COL4A2 and ITGAV were mapped to the 
ECM‑receptor interaction pathway. Of these mapped DEGs, 
high expression of ITGAV was significantly associated with 
poor prognosis (P=0.033, R2 platform; Fig. 2D); therefore, the 
clinicopathological significance of the ITGAV high expression 
group was verified by immunostaining.

ITGAV IHC scoring. For ITGAV, tumor cells had an IHC score 
of 0‑18 (median, 8), tumor interstitial tissue had an IHC score 

Figure 1. Schematic diagram of the present study was shown. (A‑a) RNA‑sequencing and bioinformatics was performed and ITGAV was detected as hub 
gene, which had clinically significant potential. (A‑b) Group with high expression of ITGAV by IHC was evaluated for its association with clinicopathological 
factors. (A‑c) Survival analysis was performed for ITGAV expression status using Kaplan‑Meier analysis. (B‑a) A region including the tumor region (VOIpc) 
and its surrounding 4 mm (VOIpc+4mm) was selected from the CT images. (B‑b) Radiomics analysis was performed and IFs was extracted from CT. (B‑c) A 
predictive model of ITGAV expression status was calculated from IF using extreme gradient boosting, which is a machine learning method. (C‑a) A predictive 
model of high ITGAV expression was constructed from CT images using machine learning and evaluated with ROC plots. (C‑b) The Kaplan‑Meier curve of the 
predictive model was compared and evaluated with that of the actual one. IF, image feature; IHC, immunohistochemistry; ITGAV, integrin αV; ROC, receiver 
operating characteristic; VOIpc, volume of interest pancreatic cancer.
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of 0‑15 (median, 0), and tumor tissue as a whole had an IHC 
score of 0‑32 (median, 9) (Fig. 3A).

Correlation between IHC scoring and RNA‑seq. With regard to 
ITGAV, there was a correlation between RNA‑seq expression 
levels and tumor cell IHC scores, but there was no significant 
difference (r=0.544, ρ=0.502, P=0.096). Similarly, no signifi‑
cant correlation between RNA‑seq expression levels and IHC 
scores was found in the interstitial tissue. However, there was a 
significant correlation between RNA‑seq expression levels and 
IHC scores in the tumor tissue as a whole (r=0.625, ρ=0.600, 
P=0.039). According to the regression line, the IHC score 
which corresponded to the median RNA‑seq expression level 
was 12.9; therefore, the optimal IHC score corresponding to 
the high expression of ITGAV by RNA sequencing was set 
to 13 (Fig. 3B).

Association between IHC status and clinicopathological 
factors. High ITGAV expression was observed in 25 cases 
(23.4%). No significant association was identified between 
ITGAV and sex or age (cutoff by median value, 70 years; range, 
50‑87 years). The high ITGAV expression group tended to have 
a larger tumor diameter (cutoff by median value, 3.3 cm; range, 
1.0‑11.6 cm) and contained significantly more T2 and T3 cases 

(P=0.055 and 0.023, respectively). Other clinicopathological 
factors, such as preoperative tumor markers (CEA; cutoff by 
median value, 3.3 ng/ml; range, 0.5‑47.3 ng/ml; and CA19‑9; 
cutoff by median value, 137.4 U/ml; range, 0‑47,588.2 U/ml) 
and lymph node metastases exhibited no significant differences 
(Table I).

Relationship between clinicopathological factors and 
prognosis. The presence of the tumor marker CA19‑9 was 
associated with a significantly worse OS and DFS. Similarly, 
positive nerve infiltration, tumor diameter, T factor and lymph 
node metastasis also worsened OS and DFS. In addition, 
surgical procedure, operation time, bleeding volume, vascular 
infiltration, and postoperative adjuvant chemotherapy group 
were significantly associated with OS, and the histological 
type and lymphatic vessel infiltration were associated with 
DFS (Table II).

Relationship between ITGAV expression status determined by 
IHC, prognosis and recurrence. The present study investigated 
the relationship between prognosis and clinicopathological 
factors, including the expression status of ITGAV. In the 
ITGAV high‑expression group, the prognosis was significantly 
worse alongside known prognostic factors, such as lymph node 

Figure 2. Bioinformatics analysis to identify genes that seemed to be clinically pathologically significant. (A) Multidimensional scaling plot of gene expression 
profiles from tissue specimens; horizontal and vertical axes as shown represent the first two dimensions, in which the largest variance between samples based 
on their relative root mean square deviations are typically expressed. The two pairs (shown circled in ellipses) were close proximal with this scaling and 
excluded from further analysis. (B) There were 314 differentially expressed genes that exhibited increased expression in cancer tissues than in normal tissues 
(P<0.0001). (C) Network analysis was performed on the interprotein relationships between mRNAs, and the top 10 hub genes with more central involvement 
were identified. (D) As a result of prognostic analysis with the R2 platform using The Cancer Genome Atlas data, ITGAV was revealed to be significantly 
associated with a worse prognosis (P=0.033), as determined by Kaplan‑Miya analysis. ITGAV, integrin αV.
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Table I. Clinicopathological parameters and ITGAV status, as determined by immunohistochemistry.

 ITGAV status
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Characteristic  Low, n (%) High, n (%) P‑value

Sex   0.353a

  Male 48 (44.9%) 12 (11.2%) 
  Female 34 (31.8%) 13 (12.1%) 
Age, yearsd 69.5 (51‑87) 71 (50‑80) 0.777b

Preoperative CEA, ng/mld 3.25 (0.5‑28.5) 3.4 (0.8‑47.3) 0.779b

Preoperative CA19‑9, U/mld 104.01 (0‑47,588.2) 247.85 (0‑31,800.7) 0.100b

Operation type   0.690c

  Pancreatoduodenectomy 55 (51.4%) 15 (14.0%) 
  Distal pancreatectomy 25 (23.4%) 10 (9.3%) 
  Total pancreatectomy 2 (1.9%) 0 (0.0%) 
Cytology   0.621a

  Negative 72 (67.3%) 21 (19.6%) 
  Positive 10 (9.3%) 4 (3.7%) 
Margin status   0.100c

  R0 68 (63.6%) 21 (19.6%) 
  R1 12 (11.2%) 4 (3.7%) 
  R2 2 (1.9%) 0 (0.0%) 
Differentiation   0.495c

  Well 37 (34.6%) 9 (8.4%) 
  Moderate 38 (35.5%) 15 (14.0%) 
  Poor 7 (6.5%) 1 (0.9%) 
Interstitium type   0.532c

  Medullary 1 (0.9%) 0 (0.0%) 
  Intermediate 76 (71.0%) 22 (20.6%) 
  Scirrhous 5 (4.7%) 3 (2.8%) 
Lymphatic invasion   0.690a

  Negative 23 (21.5%) 6 (5.6%) 
  Positive 59 (55.1%) 19 (17.8%) 
Vascular invasion   0.579a

  Negative  1 (0.9%) 0 (0.0%) 
  Positive 81 (75.7%) 25 (23.4%) 
Neural invasion   0.690a

  Negative 5 (4.7%) 1 (0.9%) 
  Positive 77 (72.0%) 24 (22.4%) 
Lymph node metastasis   0.259a

  Negative 26 (24.3%) 5 (4.7%) 
  Positive 56 (52.3%) 20 (18.7%) 
Max diameter, cmd 3.0 (1.0‑10.0) 3.5 (1.3‑7.0) 0.055b

Postoperative adjuvant chemotherapy   0.374a

  Yes 19 (17.8%) 8 (7.5%) 
  No 63 (58.9%) 17 (15.9%) 
pT (UICC) 8th   0.023c

  T1 18 (16.8%) 1 (0.9%) 
  T2 47 (43.9%) 13 (12.1%) 
  T3 17 (15.9%) 11 (10.3%) 
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metastasis, T factor and tumor markers. Similar to lymph node 
metastasis, tumor diameter and tumor markers, the ITGAV 
high‑expression group also exhibited a significantly worsened 
recurrence rate (Table II).

Evaluation of prognosis and recurrence predictors by 
multivariate analysis. Among the 10 significant factors 
for OS in univariate analysis, tumor diameter was excluded 
because it has almost the same meaning as factor T (The 
Union for International Cancer Control; TNM Classification 
of Malignant Tumours, 8th Edition) (13). Multivariate analysis 
with the top seven of the 10 factors revealed that ITGAV, 
preoperative CA‑19‑9, surgical procedure, nerve infiltra‑
tion, T factor and lymph node metastasis were independent 
prognostic factors (Table III). Similarly, multivariate analysis 
was performed on the eight significant factors for DFS as 
determined by univariate analysis, and revealed that ITGAV, 
neural invasion, T factor and lymph node metastasis were 
independent recurrence factors (Table III).

Predictive power of machine learning models. The AUC for 
ITGAV was 0.671 and 0.697 with imaging features of VOIpc and 
VOI+4 mm, respectively (Fig. 4). Notably, OS was significantly 
different between the groups with predicted ITGAV from 
machine learning (P=0.048). In terms of DFS, predicted high 
ITGAV expression was associated with a worse recurrence 
rate; however, this finding was not significant (Fig. 4).

Discussion

The present study aimed to use CT images to predict the expres‑
sion of ITGAV, which was confirmed to be an independent 
prognostic factor in pancreatic cancer using radiogenomics 
analysis. The results indicated that the expression of ITGAV 
could be predicted with appropriate sensitivity from CT images.

Integrin molecules consist of a dimer of an α subunit and β 
subunit, and ITGAV forms α subunits consisting of integrin α 
chains (14). Integrin is a protein mainly present in the plasma 
membrane on the cell surface, which is involved in cell‑cell 

Table I. Continued.

 ITGAV status
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Characteristic  Low, n (%) High, n (%) P‑value

pStage (UICC 8th)   0.210c

  IA 12 (11.2%) 0 (0.0%) 
  IB 10 (9.3%) 4 (3.7%) 
  IIA 4 (3.7%) 1 (0.9%) 
  IIB 29 (27.1%) 8 (7.5%) 
  III 27 (25.2%) 23 (21.5%) 

aχ2 test; bMann‑Whitney U test; cFisher's exact test; dthese data are presented as median (range). CA19‑9, cancer antigen 19‑9; CEA, carcino‑
embryonic antigen; ITGAV, integrin αV; UICC, Union for International Cancer Control.

Figure 3. Typical ITGAV tissue staining and correlation between IHC expression score of ITGAV and RNA‑seq expression. (A) For ITGAV, staining was 
usually observed in nerve tissue, and the levels of staining in these areas were considered as the control. The staining intensity, and staining area of the tumor 
interstitium and cancer cells differed from case to case. Magnification, x160. (B) There was a significant correlation between the RNA‑seq expression levels 
and IHC scores of ITGAV in the tumor tissue (r=0.625, ρ=0.600, P=0.039). A score exceeding IHC score of 13 was considered high expression of ITGAV; 
<13 was considered low expression and ≥13 was considered high expression. IHC, immunohistochemistry; ITGAV, integrin αV; RNA‑seq, RNA sequencing.
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Table II. Univariate analysis of prognostic factors for OS and DFS.

 Univariate analysis for OS Univariate analysis for DFS
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
  Median, days  Median, days 
 No. of (95% confidence Log‑rank (95% confidence Log‑rank
Variable patients (%) interval) P‑value  interval) P‑value

Sex   0.527  0.760
  Male 60 (56.1) 864 (622‑1,065)  391 (260‑575) 
  Female 47 (43.9) 990 (494‑1,324)  356 (223‑498) 
Age, years   0.299  0.949
  ≤70 55 (51.4) 1,155 (730‑1,276)  408 (282‑561) 
  >70 52 (48.6)   804 (515‑963)  277 (247‑458) 
Preoperative CEA, ng/ml   0.110  0.400
  ≤3.3 54 (50.0) 1,156 (730‑1,324)  402 (279‑737) 
  >3.3 53 (50.0) 804 (572‑911)  302 (225‑458) 
Preoperative CA‑19‑9, U/ml   0.003  <0.001
  ≤137.4 54 (50.0) 1,175 (817‑1,487)  594 (373‑777) 
  >137.4 53 (50.0) 572 (393‑866)  252 (164‑306) 
Operation type   0.007  0.113
  PD 70 (65.4) 730 (534‑942)  307 (256‑455) 
  DP/TP 37 (34.6) 1,324 (864‑NA)  458 (263‑832) 
Operation time, min   0.003  0.087
  ≤311 55 (51.4) 1,175 (817‑1,512)  428 (298‑641) 
  >311 52 (48.6) 711 (515‑911)  280 (243‑498) 
Bleeding volume, ml   0.043  0.123
  ≤600 54 (50.5) 1,065 (746‑1,512)  407 (282‑575) 
  >600 53 (49.5) 777 (560‑990)  280 (243‑498) 
Cytology   0.159  0.056
  Negative 91 (88.3) 905 (746‑1,175)  395 (298‑526) 
  Positive 12 (11.7) 454 (251‑NA)  208 (106‑484) 
Margin status   0.612  0.117
   R0 86 (83.5) 864 (711‑1,175)  356 (268‑498) 
   R1/R2 17 (16.5) 866 (455‑1,212)  380 (135‑575) 
Differentiation   0.055  0.035
  Well 47 (43.9) 1,187 (800‑1,512)  498 (282‑839) 
  Moderate/Poor 60 (56.1) 777 (534‑963)  298 (243‑408) 
Lymphatic invasion   0.122  0.001
  Negative 29 (28.0) 1,243 (746‑1,881)  746 (282‑NA) 
  Positive 78 (72.0) 817 (615‑979)  304 (253‑408) 
Neural invasion   0.022  0.020
  Negative 6 (6.5) NA (1,175‑NA)  NA (280‑NA) 
  Positive 101 (93.5) 817 (656‑990)  356 (263‑458) 
Vascular invasion   0.039  0.147
  Negative (v0/1) 21 (19.6) 1,512 (560‑NA)  455 (279‑1,064) 
  Positive (v2/3) 85 (80.4) 823 (711‑990)  356 (256‑484) 
Interstitium type   0.223  0.807
  Int  98 (91.6) 905 (735‑1,156)  360 (279‑484) 
  Med + Sci 9 (8.4) 396 (248‑1,881)  209 (57‑NA) 
Max diameter, cm   0.033  0.003
  ≤3.3 57 (50.0) 1,155 (804‑1,324)  561 (312‑777) 
  >3.3 50 (50.0) 711 (454‑866)  263 (160‑356) 
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adhesion and signal transduction, and adhesion between cells, 
the extracellular matrix and the constructed extracellular micro‑
environment. ITGAV forms α subunits, which form dimers with 
β1, β3, β5, β6 and β8 (15‑17). In addition, according to recent 
reports, αVβ3, αVβ5 and αVβ6 in tumor cells can activate TGFβ 
in cancer tissues, and TGFβ can induce αVβ6 and αVβ8 in 
pancreatic stellate cells in the tumor interstitium, causing inter‑
stitial changes that induce infiltration and metastasis (18,19).

High ITGAV expression has been reported to contribute 
to tumorigenesis, metastasis, proliferation and invasion in 
breast cancer, and high ITGAV expression has been observed 
in a group with nerve infiltration, lymph node metastasis and 
distant metastasis in colorectal cancer (20,21). In addition, high 
ITGAV expression in tumor cells has been shown to signifi‑
cantly shorten OS and DFS in gastric cancer and colon cancer; 
however, there are few reports of ITGAV in pancreatic cancer, 
and it was reported that no relationship existed between high 
ITGAV expression in tumor cells and prognosis (20,22,23). 
Regarding the interstitium, it has been reported that high 
ITGAV expression was detected in 48% of pancreatic stellate 
cells (PSCs) in the tumor interstitium (23). In the high expres‑
sion group of ITGAV in PSCs in the tumor interstitium, the 
prognosis was significantly poor, and it was poor due to the 
high expression of ITGAV in PSCs in the peritumoral inter‑
stitium rather than in the tumor cells (23). The proportion of 

high expression in tumor cells and peritumoral interstitium 
was generally consistent with the proportion in the present 
study (3,23,24). Furthermore, also in the present study, the high 
expression of ITGAV in tumor cells was not associated with 
prognosis (P=0.802), whereas high expression of ITGAV in the 
entire tumor was associated with a worse prognosis. Therefore, 
high expression of ITGAV in pancreatic cancer tissue may 
contribute to high expression in the peritumoral environment, 
and ITGAV may reflect the malignant potential of the peritu‑
moral environment rather than tumor cells.

For antitumor treatment, various integrin antagonists, such 
as αVβ3 and αVβ5, are in the development and research stage, 
and antitumor effects have been reported in breast cancer 
in vitro (20,25). In clinical trials using integrin inhibitors, 
there are currently no reports showing that a single agent 
is effective, but these agents are expected to be effective in 
combination with multiple agents, such as immune checkpoint 
inhibitors, and by case stratification (26). Although the effect 
of these agents in pancreatic cancer has not been reported, it is 
expected that ITGAV may contribute as a prognostic marker 
and treatment target in pancreatic cancer if the development, 
research, and clinical application of these integrin agents will 
progress in the future.

Radiogenomics analysis has extended to cancer of 
parenchymal organs, which yield easy to evaluate clinical 

Table II. Continued.

 Univariate analysis for OS Univariate analysis for DFS
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
  Median, days  Median, days 
 No. of (95% confidence Log‑rank (95% confidence Log‑rank
Variable patients (%) interval) P‑value  interval) P‑value

Lymph node metastasis   <0.001  <0.001
   Negative 31 (29.0) 1,512 (990‑NA)  962 (455‑NA) 
   Positive 76 (71.0) 735 (534‑866)  271 (209‑373) 
T factor (UICC 8th)    0.010  0.024
  T1/2 79 (76.7) 990 (804‑1,276)  455 (302‑641) 
  T3 28 (26.2) 541 (304‑864)  217 (144‑343) 
Postoperative adjuvant chemotherapy   0.045  0.143
 Yes 80 (74.8) 942 (804‑1,243)  395 (298‑526) 
  No 27 (25.2) 599 (248‑963)  225 (106‑455) 
Stage (UICC 8th)   <0.001a  <0.001a

  IA 12 (11.2)    
  IB 14 (13.1)    
  IIA 5 (4.7)    
  IIB 37 (34.6) 1,187 [817‑1,487 (I and II)]  498 [312‑764 (I and II)] 
  III 39 (36.4) 560 [362‑823 (III)]  256 [160‑386 (III)] 
ITGAV status   0.005  0.003
  Low 82 (76.6) 1,065 (813‑1,243)  441 (306‑641) 
  High 25 (23.4) 534 (287‑804)  206 (119‑302) 

aI and II vs. III. DFS, disease‑free survival; DP, distal pancreatectomy; int, intermediate; ITGAV, integrin αV; med,  medullary; NA, not 
available; OS, overall survival; PD, pancreatoduodenectomy; sci, scirrhous; TP, total pancreatectomy; UICC, Union for International Cancer 
Control.
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images, and to types of carcinoma with molecular markers for 
predicting drug effects, such as lung cancer, breast cancer and 
glioblastoma (9,27,28). Numerous studies have used radiomics 
to analyze the prognosis, and the presence or absence of lymph 
node metastasis from clinical images of pancreatic cancer, 
such as preoperative CT images. However, few radiogenomics 
reports have yielded molecular targets that can be evaluated 
from clinical images (10,29‑31).

As aforementioned, high ITGAV expression has been 
reported to contribute to infiltration and metastasis in various 
types of cancer. In the present study, tumor diameter was 
increased in the ITGAV high‑expression group and the T factor 
was more advanced. Therefore, high ITGAV expression may 
reflect peritumoral invasiveness in addition to changes in the 
extracellular microenvironment. These findings may indicate 
a tendency for early recurrence and deterioration of prognosis. 
Furthermore, in the radiogenomics analysis, the high expression 

of ITGAV improved the detection ability in the analysis, including 
the tumor peripheral region (VOI+4 mm). These results may be 
reflected in the improvement of detection ability by including 
VOI+4 mm in image evaluation (21). In addition, in the present 
study, evaluation using only CT images may be the cause of the 
insufficient ability to discriminate ITGAV status and predict the 
deterioration of the recurrence rate, and the detectability may be 
improved by using another modality, such as MRI.

The present study had limitations. RNA‑seq was performed 
on a small number of cases, which may be insufficient to 
verify the correlation with IHC. Since this was a retrospec‑
tive study at a single institution, the number of cases may have 
been insufficient to perform machine learning; because the 
number of cases was small, model creation and verification 
were performed in the same group. Therefore, model creation 
using more cases and verification at other facilities should be 
performed in the future.

Table III. Multivariate analysis of prognostic factors for OS and DFS.

 OS DFS
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
  95% confidence   95% confidence 
Variable Hazard ratio interval   P‑value Hazard ratio  interval   P‑value

Preoperative CA‑19‑9, U/ml      
  ≤137.4 (n=54) 1   1  
  >137.4 (n=53) 1.761 1.065‑2.932 0.028 1.717 0.981‑3.020 0.058
Operation type      
  PD (n=70) 1     
  DP/TP (n=37) 0.393 0.199‑0.768 0.006 NA  
Operation time, min      
  ≤311 (n=55) 1     
  >311 (n=52) 1.027 0.547‑1.883 0.930 NA  
Differentiation      
  Well (n=47)    1  
  Moderate/Poor (n=60) NA   1.273 0.770‑2.409 0.303
Lymphatic invasion      
  Negative (n=29)    1  
  Positive (n=78) NA   1.805 0.875‑3.999 0.112
Neural invasion      
  Negative (n=6) 1   1  
  Positive (n=101) 3.960 1.086‑25.789 0.035 5.323 1.358‑36.153 0.014
Lymph node  metastasis      
  Negative (n=31) 1   1  
  Positive (n=76) 2.694 1.464‑5.254 0.001 3.015 1.560‑4.760 <0.001
T factor (UICC 8th)       
  T1/2 (n=79) 1   1  
  T3 (n‑28) 2.326 1.317‑4.014 0.004 2.126 1.171‑3.794 0.014
ITGAV status        
  Low (n=82) 1   1  
  High (n=25) 1.873 1.048‑3.247 0.035 2.152 1.168‑3.329 0.015

DFS, disease‑free survival; DP, distal pancreatectomy; ITGAV, integrin αV; OS, overall survival; PD, pancreatoduodenectomy; TP, total 
pancreatectomy; UICC, Union for International Cancer Control.
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In conclusion, bioinformatics analysis of RNA‑seq data for 
pancreatic cancer identified ITGAV as an important hub gene. 
Immunohistochemical staining with multiple samples revealed 

that ITGAV expression was an independent predictor of prog‑
nosis and recurrence in multivariate analysis. Furthermore, 
high ITGAV expression with suggested clinical significance 

Figure 4. Comparison of ITGAV expression status by actual IHC and predictive model in overall survival and recurrence‑free survival curve. (A) In OS, actual 
Kaplan‑Meier curve of ITGAV status (high or low) and (B) the Kaplan‑Meier curve of ITGAV status in the prediction model were shown. (C) Detectability 
for prediction model of ITGAV status from CT was shown by receiver operating characteristic curve (AUC=0.697). (D) In DFS, actual Kaplan‑Meier curve 
of ITGAV status and (E) the Kaplan‑Meier curve of ITGAV status in the prediction model were shown. The high ITGAV group calculated by the prediction 
model was significantly associated with OS, and was associated with DFS; however, this was not significant. AUC, area under the curve; DFS, disease‑free 
survival; ITGAV, integrin αV; OS, overall survival.
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and potential clinical application was predicted by machine 
learning using CT images.
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