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Abstract—The past decade has witnessed a rapid proliferation
of video cameras in all walks of life and has resulted in a tremen-
dous explosion of video content. Several applications such as con-
tent-based video annotation and retrieval, highlight extraction and
video summarization require recognition of the activities occur-
ring in the video. The analysis of human activities in videos is an
area with increasingly important consequences from security and
surveillance to entertainment and personal archiving. Several chal-
lenges at various levels of processing—robustness against errors
in low-level processing, view and rate-invariant representations at
midlevel processing and semantic representation of human activi-
ties at higher level processing—make this problem hard to solve. In
this review paper, we present a comprehensive survey of efforts in
the past couple of decades to address the problems of representa-
tion, recognition, and learning of human activities from video and
related applications. We discuss the problem at two major levels
of complexity: 1) “actions” and 2) “activities.” “Actions” are char-
acterized by simple motion patterns typically executed by a single
human. “Activities” are more complex and involve coordinated ac-
tions among a small number of humans. We will discuss several
approaches and classify them according to their ability to handle
varying degrees of complexity as interpreted above. We begin with
a discussion of approaches to model the simplest of action classes
known as atomic or primitive actions that do not require sophis-
ticated dynamical modeling. Then, methods to model actions with
more complex dynamics are discussed. The discussion then leads
naturally to methods for higher level representation of complex
activities.

Index Terms—Human activity analysis, image sequence analysis,
machine vision, surveillance.

I. INTRODUCTION

R
ECOGNIZING human activities from video is one of the

most promising applications of computer vision. In re-

cent years, this problem has caught the attention of researchers

from industry, academia, security agencies, consumer agencies,

and the general populace as well. One of the earliest investiga-

tions into the nature of human motion was conducted by the con-

temporary photographers E. J. Marey and E. Muybridge in the

1850s who photographed moving subjects and revealed several

interesting and artistic aspects involved in human and animal lo-

comotion. The classic moving light display (MLD) experiment

of Johansson [1] provided a great impetus to the study and anal-

ysis of human motion perception in the field of neuroscience.
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This then paved the way for mathematical modeling of human

action and automatic recognition, which naturally fall into the

purview of computer vision and pattern recognition.

To state the problem in simple terms, given a sequence of

images with one or more persons performing an activity, can a

system be designed that can automatically recognize what ac-

tivity is being or was performed? As simple as the question

seems, the solution has been that much harder to find. In this

survey paper, we review the major approaches that have been

pursued over the last 20 years to address this problem.

Several related survey papers have appeared over the years.

Most notable among them are the following. Aggarwal and Cai

[2] discuss three important subproblems that together form a

complete action recognition system—extraction of human body

structure from images, tracking across frames, and action recog-

nition. Cedras and Shah [3] present a survey on motion-based

approaches to recognition as opposed to structure-based ap-

proaches. They argue that motion is a more important cue

for action recognition than the structure of the human body.

Gavrila [4] presented a survey focused mainly on tracking of

hands and humans via 2-D or 3-D models and a discussion

of action recognition techniques. More recently, Moeslund

et al. [5] presented a survey of problems and approaches in

human motion capture including human model initialization,

tracking, pose estimation, and activity recognition. Since the

mid 1990s, interest has shifted more toward recognizing actions

from tracked motion or structure features and on recognizing

complex activities in real-world settings. Hence, this survey

will focus exclusively on approaches for recognition of action

and activities from video and not on the lower level modules of

detection and tracking, which is discussed at length in earlier

surveys [2]–[6].

The terms “action” and “activity” are frequently used inter-

changeably in the vision literature. In the ensuing discussion,

by “actions” we refer to simple motion patterns usually exe-

cuted by a single person and typically lasting for short dura-

tions of time, on the order of tens of seconds. Examples of ac-

tions include bending, walking, swimming, etc. (e.g., Fig. 1).

On the other hand, by “activities” we refer to the complex se-

quence of actions performed by several humans who could be

interacting with each other in a constrained manner. They are

typically characterized by much longer temporal durations, e.g.,

two persons shaking hands, a football team scoring a goal, or a

coordinated bank attack by multiple robbers (Fig. 2). This is not

a hard boundary and there is a significant “gray area” between

these two extremes. For example, the gestures of a music con-

ductor conducting an orchestra or the constrained dynamics of

a group of humans (Fig. 3) is neither as simple as an “action”

nor as complex as an “activity” according to the above interpre-

tation. However, this simple categorization provides a starting

point to organize the numerous approaches that have been pro-
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Fig. 1. Near-field video: Example of walking action. Figure taken from [7].

posed to solve the problem. A quick preview of the various ap-

proaches that fall under each of these categories is shown in

Fig. 4. Real-life activity recognition systems typically follow a

hierarchical approach. At the lower levels are modules such as

background–foreground segmentation, tracking and object de-

tection. At the midlevel are action–recognition modules. At the

high level are the reasoning engines that encode the activity se-

mantics based on the lower level action primitives. Thus, it is

necessary to gain an understanding of both these problem do-

mains to enable real-life deployment of systems.

The rest of this paper is organized as follows. First, we discuss

a few motivating application domains in Section II. Section III

provides an overview of methods for extraction of low-level

image features. In Section IV, we discuss approaches for rec-

ognizing “actions.” Then, in Section V, we discuss methods to

represent and recognize higher level “activities.” In Section VI,

we discuss some open research issues for action and activity

recognition and provide concluding remarks.

II. APPLICATIONS

In this section, we present a few application areas that will

highlight the potential impact of vision-based activity recogni-

tion systems.

1) Behavioral Biometrics: Biometrics involves study of

approaches and algorithms for uniquely recognizing humans

based on physical or behavioral cues. Traditional approaches

are based on fingerprint, face, or iris and can be classified as

physiological biometrics—i.e., they rely on physical attributes

for recognition. These methods require cooperation from the

subject for collection of the biometric. Recently, “behavioral

biometrics” have been gaining popularity, where the premise

is that behavior is as useful a cue to recognize humans as

their physical attributes. The advantage of this approach is that

subject cooperation is not necessary and it can proceed without

interrupting or interfering with the subject’s activity. Since

observing behavior implies longer term observation of the

subject, approaches for action recognition extend naturally to

this task. Currently, the most promising example of behavioral

biometrics is human gait [10].

2) Content-Based Video Analysis: Video has become a part

of our everyday life. With video sharing websites experiencing

relentless growth, it has become necessary to develop efficient

indexing and storage schemes to improve user experience. This

requires learning of patterns from raw video and summarizing a

video based on its content. Content-based video summarization

has been gaining renewed interest with corresponding advances

in content-based image retrieval (CBIR) [11]. Summarization

and retrieval of consumer content such as sports videos is one

of the most commercially viable applications of this technology

[12].

3) Security and Surveillance: Security and surveillance sys-

tems have traditionally relied on a network of video cameras

monitored by a human operator who needs to be aware of the

activity in the camera’s field of view. With recent growth in

the number of cameras and deployments, the efficiency and ac-

curacy of human operators has been stretched. Hence, security

agencies are seeking vision-based solutions to these tasks that

can replace or assist a human operator. Automatic recognition

of anomalies in a camera’s field of view is one such problem

that has attracted attention from vision researchers (cf., [9] and

[13]). A related application involves searching for an activity of

interest in a large database by learning patterns of activity from

long videos [14], [15].

4) Interactive Applications and Environments: Under-

standing the interaction between a computer and a human re-

mains one of the enduring challenges in designing human–com-

puter interfaces. Visual cues are the most important mode of

nonverbal communication. Effective utilization of this mode

such as gestures and activity holds the promise of helping

in creating computers that can better interact with humans.

Similarly, interactive environments such as smart rooms [16]

that can react to a user’s gestures can benefit from vision-based

methods. However, such technologies are still not mature

enough to stand the “turing test” and thus continue to attract

research interest.

5) Animation and Synthesis: The gaming and animation in-

dustry rely on synthesizing realistic humans and human mo-

tion. Motion synthesis finds wide use in the gaming industry

where the requirement is to produce a large variety of motions

with some compromise on the quality. The movie industry on

the other hand has traditionally relied more on human anima-

tors to provide high-quality animation. However, this trend is

fast changing [17]. With improvements in algorithms and hard-

ware, much more realistic motion synthesis is now possible. A

related application is learning in simulated environments. Ex-

amples of this include training of military soldiers, firefighters,

and other rescue personnel in hazardous situations with simu-

lated subjects.

III. GENERAL OVERVIEW

A generic action or activity recognition system can be viewed

as proceeding from a sequence of images to a higher level inter-

pretation in a series of steps. The major steps involved are the

following:

1) input video or sequence of images;

2) extraction of concise low-level features;

3) midlevel action descriptions from low-level features;

4) high-level semantic interpretations from primitive actions.
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Fig. 2. Medium-field video: Example video sequence of a simulated bank attack (courtesy [8]). (a) Person enters the bank. (b) Robber is identified to be an
outsider. Robber is entering the bank safe. (c) A customer escapes. (d) Robber makes an exit.

Fig. 3. Far-field video: Modeling dynamics of groups of humans as a de-
forming shape. Figure taken from [9].

In this section, we will briefly discuss some relevant aspects

of item 2, i.e., low-level feature extraction. Items 3 and 4 in the

list will form the subject of discussion of Sections IV and V,

respectively.

Videos consist of massive amounts of raw information in the

form of spatio–temporal pixel intensity variations. However,

most of this information is not directly relevant to the task of un-

derstanding and identifying the activity occurring in the video.

A classic experiment by Johansson [1] demonstrated that hu-

mans can perceive gait patterns from point light sources placed

at a few limb joints with no additional information. Extraneous

factors such as the color of the clothes, illumination conditions,

background clutter do not aid in the recognition task. We briefly

describe a few popular low-level features and refer the readers

to other sources for a more in-depth treatment as we progress.

A. Optical Flow

Optical flow is defined as the apparent motion of individual

pixels on the image plane. Optical flow often serves as a good

approximation of the true physical motion projected onto the

image plane. Most methods to compute optical flow assume that

the color/intensity of a pixel is invariant under the displacement

from one video frame to the next. We refer the reader to [18] for

a comprehensive survey and comparison of optical flow com-

putation techniques. Optical flow provides a concise descrip-

tion of both the regions of the image undergoing motion and the

velocity of motion. In practice, computation of optical flow is

susceptible to noise and illumination changes. Applications in-

clude [19], which used optical flow to detect and track vehicles

in an automated traffic surveillance application.

B. Point Trajectories

Trajectories of moving objects have popularly been used as

features to infer the activity of the object (see Fig. 5). The image-

plane trajectory itself is not very useful as it is sensitive to trans-

lations, rotations, and scale changes. Alternative representations

such as trajectory velocities, trajectory speeds, spatio–temporal

curvature, relative motion, etc., have been proposed that are in-

variant to some of these variabilities. A good survey of these

approaches can be found in [3]. Extracting unambiguous point

trajectories from video is complicated by several factors such as

occlusions, noise, and background clutter. Accurate tracking al-

gorithms need to be employed for obtaining motion trajectories

[6].

C. Background Subtracted Blobs and Shape

Background subtraction is a popular method to isolate the

moving parts of a scene by segmenting it into background and

foreground (cf., [21]). As an example, from the sequence of

background subtracted images shown in Fig. 1, the human’s

walking action can be easily perceived. The shape of the human

silhouette plays a very important role in recognizing human

actions, and it can be extracted from background subtraction

blobs (see Fig. 6). Several methods based on global, boundary,

and skeletal descriptors have been proposed to quantify shape.

Global methods such as moments [22] consider the entire shape

region to compute the shape descriptor. Boundary methods

on the other hand consider only the shape contour as the

defining characteristic of the shape. Such methods include

chain codes [23] and landmark-based shape descriptors [24].

Skeletal methods represent a complex shape as a set of 1-D

skeletal curves, for example, the medial axis transform [25].

Applications include shape-based dynamic modeling of the

human silhouette as in [26] to perform gait recognition.

D. Filter Responses

There are several other features that can be broadly classified

as based on spatio–temporal filter responses. In their work,

Zhong et al. [13] process a video sequence using a spatial

Gaussian and a derivative of Gaussian on the temporal axis.

Due to the derivative operation on the temporal axis, the filter

shows high responses at regions of motion. This response was

then thresholded to yield a binary motion mask followed by

aggregation into spatial histogram bins. Such a feature encodes

motion and its corresponding spatial information compactly

and is useful for far-field and medium-field surveillance videos.

The notion of scale-space filtering has also been extended to

videos by several researchers. Laptev et al. [27] propose a

generalization of the Harris corner detector to videos using a set

of spatio–temporal Gaussian derivative filters. Similarly, Dollar
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Fig. 4. Overview of approaches for action and activity recognition.

Fig. 5. Trajectories of a passenger and luggage cart. The wide difference in the
trajectories is indicative of the difference in activities. Figure taken from [20].

Fig. 6. Silhouettes extracted from the walking sequence shown in Fig. 1. Sil-
houettes encode sufficient information to recognize actions. Figure taken from
[7].

et al. [28] extract distinctive periodic motion-based landmarks

in a given video using a Gaussian kernel in space and a Gabor

function in time. Because these approaches are based on simple

convolution operations, they are fast and easy to implement.

They are quite useful in scenarios with low-resolution or poor

quality video where it is difficult to extract other features such

as optical flow or silhouettes.

IV. MODELING AND RECOGNIZING ACTIONS

Approaches for modeling actions can be categorized into

three major classes—nonparametric, volumetric, and para-

metric time-series approaches. Nonparametric approaches

typically extract a set of features from each frame of the video.

The features are then matched to a stored template. Volumetric

approaches on the other hand do not extract features on a

frame-by-frame basis. Instead, they consider a video as a 3-D

volume of pixel intensities and extend standard image features

such as scale-space extrema, spatial filter responses, etc., to

the 3-D case. Parametric time-series approaches specifically

impose a model on the temporal dynamics of the motion. The

particular parameters for a class of actions is then estimated

from training data. Examples of parametric approaches include

hidden Markov models (HMMs), linear dynamical systems

(LDSs), etc. We will first discuss the nonparametric methods,

then the volumetric approaches, and finally the parametric

time-series methods.

A. Nonparametric Approaches for Action Recognition

1) 2-D Templates: One of the earliest attempts at action

recognition without relying on 3-D structure estimation was

proposed by Polana and Nelson [29]. First, they perform motion

detection and tracking of humans in the scene. After tracking,

a “cropped” sequence containing the human is constructed.

Scale changes are compensated for by normalizing the size

of the human. A periodicity index is computed for the given

action and the algorithm proceeds to recognize the action if it

is found to be sufficiently periodic. To perform recognition, the

periodic sequence is segmented into individual cycles using

the periodicity estimate and combined to get an average cycle.

The average cycle is divided into a few temporal segments and

flow-based features are computed for each spatial location in

each segment. The flow features in each segment are averaged

into a single frame. The average-flow frames within an activity

cycle form the templates for each action class.

Bobick and Davis [30] proposed “temporal templates” as

models for actions. In their approach, the first step involved

is background subtraction, followed by an aggregation of a

sequence of background subtracted blobs into a single static

image. They propose two methods of aggregation—the first

method gives equal weight to all images in the sequence, which

gives rise to a representation called the “motion energy image”
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Fig. 7. Temporal templates similar to [30]. Left: motion energy image of a
sequence of a person raising both hands. Right: motion history image of the
same action.

(MEI). The second method gives decaying weights to the

images in the sequence with higher weight given to new frames

and low weight to older frames. This leads to a representation

called the “motion history image” (MHI) (for example, see

Fig. 7). The MEI and MHI together comprise a template for

a given action. From the templates, translation, rotation, and

scale invariant Hu moments [22] are extracted that are then

used for recognition. It was shown in [30] that MEI and MHI

have sufficient discriminating ability for several simple action

classes such as “sitting down,” “bending,” “crouching,” and

other aerobic postures. However, it was noted in [31] that MEI

and MHI lose discriminative power for complex activities due

to overwriting of the motion history and hence are unreliable

for matching.

2) 3-D Object Models: Successful application of models and

algorithms to object recognition problems led researchers in

action recognition to propose alternate representations of ac-

tions as spatio–temporal objects. Syeda-Mahmood et al. pro-

posed a representation of actions as generalized cylinders in the

joint space [32]. Yilmaz and Shah [33] represent ac-

tions as 3-D objects induced by stacking together tracked 2-D

object contours. A sequence of 2-D contours in space

can be treated as an object in the joint space. This

representation encodes both the shape and motion characteris-

tics of the human. From the representation, concise de-

scriptors of the object’s surface are extracted corresponding to

geometric features such as peaks, pits, valleys, and ridges. Be-

cause this approach is based on stacking together a sequence

of silhouettes, accurate correspondence between points of suc-

cessive silhouettes in the sequences needs to be established.

Quasi-view invariance for this representation was shown the-

oretically by assuming an affine camera model. Similar to this

approach, Gorelick et al. [34] proposed using background sub-

tracted blobs instead of contours, which are then stacked to-

gether to create an binary space–time (ST) volume (for

example, see Fig. 8). Because this approach uses background

subtracted blobs, the problem of establishing correspondence

between points on contours in the sequence does not exist. From

this ST volume, 3-D shape descriptors are extracted by solving a

Poisson equation [34]. Because these approaches require careful

segmentation of background and the foreground, they are lim-

ited in applicability to fixed camera settings.

3) Manifold Learning Methods: Most approaches in action

recognition involve dealing with data in very high-dimensional

spaces. Hence, these approaches often suffer from the “curse of

dimensionality.” The feature space becomes sparser in an ex-

ponential fashion with the dimension, thus requiring a larger

Fig. 8. The 3-D space–time object, similar to [34], obtained by stacking to-
gether binary background subtracted images of a person waving his hand.

number of samples to build efficient class-conditional models.

Learning the manifold on which the data resides enables us to

determine the inherent dimensionality of the data as opposed

to the raw dimensionality. The inherent dimensionality con-

tains fewer degrees of freedom and allows efficient models to

be designed in the lower dimensional space. The simplest way

to reduce dimensionality is via principal component analysis

(PCA), which assumes that the data lies on a linear subspace.

Except in very special cases, data does not lie on a linear sub-

space, thus requiring methods that can learn the intrinsic ge-

ometry of the manifold from a large number of samples. Non-

linear dimensionality reduction techniques allow for represen-

tation of data points based on their proximity to each other on

nonlinear manifolds. Several methods for dimensionality reduc-

tion such as PCA, locally linear embedding (LLE) [35], Lapla-

cian eigenmap [36], and Isomap [37] have been applied to re-

duce the high-dimensionality of video data in action–recogni-

tion tasks (cf., [38]–[40]). Specific recognition algorithms such

as template matching, dynamical modeling, etc., can be per-

formed more efficiently once the dimensionality of the data has

been reduced.

B. Volumetric Approaches

1) Spatio–Temporal Filtering: These approaches are based

on filtering a video volume using a large filter bank. The re-

sponses of the filter bank are further processed to derive ac-

tion specific features. These approaches are inspired by the suc-

cess of filter-based methods on other still image recognition

tasks such as texture segmentation [41]. Further, spatio–tem-

poral filter structures such as oriented Gaussian kernels and their

derivatives [42] and oriented Gabor filter banks [43] have been

hypothesized to describe the major spatio–temporal properties

of cells in the visual cortex. Chomat et al. [44] model a seg-

ment of video as a spatio–temporal volume and com-

pute local appearance models at each pixel using a Gabor filter
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bank at various orientation and spatial scales and a single tem-

poral scale. A given action is recognized using a spatial average

of the probabilities of individual pixels in a frame. Because ac-

tions are analyzed at a single temporal scale, this method is

not applicable to variations in execution rate. As an extension

to this approach, local histograms of normalized ST gradients

at several temporal scales are extracted by Zelnik-Manor and

Irani [45]. The sum of the chi-square metric between histograms

is used to match an input video with a stored exemplar. Fil-

tering with the Gaussian kernel in space and the derivative of the

Gaussian on the temporal axis followed by thresholding of the

responses and accumulation into spatial histograms was found

to be a simple yet effective feature for actions in far-field set-

tings [13].

Filtering approaches are fast and easy to implement due to

efficient algorithms for convolution. In most applications, the

appropriate bandwidth of the filters is not known a priori, thus

a large filter bank at several spatial and temporal scales is re-

quired for effectively capturing the action dynamics. Moreover,

the response generated by each filter has the same dimensions as

the input volume, hence using large filter banks at several spa-

tial and temporal scales is prohibitive.

2) Part-Based Approaches: Several approaches have been

proposed that consider a video volume as a collection of local

parts, where each part consists of some distinctive motion pat-

tern. Laptev and Lindeberg [27] proposed a spatio–temporal

generalization of the well-known Harris interest point detector,

which is widely used in object recognition applications and ap-

plied it to modeling and recognizing actions in ST. This method

is based on the 3-D generalization of scale-space representa-

tions. A given video is convolved with a 3-D Gaussian kernel

at various spatial and temporal scales. Then, spatio–temporal

gradients are computed at each level of the scale-space rep-

resentation. These are then combined within a neighborhood

of each point to yield stable estimates of the spatio–temporal

second-moment matrix. Local features are then derived from

these smoothed estimates of gradient moment matrices. In a

similar approach, Dollar et al. [28] model a video sequence

by the distribution of ST feature prototypes. The feature pro-

totypes are obtained by -means clustering of a large set of fea-

tures—ST gradients—extracted at ST interest points from the

training data. Neibles et al. [46] use a similar approach where

they use a bag-of-words model to represent actions. The bag-of-

words model is learned by extracting spatio–temporal interest

points and clustering of the features. These interest points can

be used in conjunction with machine learning approaches such

as support vector machines (SVMs) [47] and graphical models

[46]. Because the interest points are local in nature, longer term

temporal correlations are ignored in these approaches. To ad-

dress this issue, a method based on correlograms of prototype

labels was presented in [48]. In a slightly different approach

Nowozin et al. [49] consider a video as a sequence of sets, where

each set consists of the parts found in a small temporally sliding

window. These approaches do not directly model the global ge-

ometry of local parts instead considering them as a bag of fea-

tures. Different actions may be composed of similar ST parts but

may differ in their geometric relationships. Integrating global

geometry into the part-based video representation was inves-

tigated by Boiman et al. [50] and Wong et al. [51]. This ap-

proach may be termed as a constellation of parts as opposed to

the simpler bag-of-parts model. Computational complexity can

be large for constellation models with a large number of parts,

which is typically the case for human actions. Song et al. [52]

addressed this issue by approximating the connections in the

constellation via triangulation. Niebles et al. [53] proposed a

hierarchical model where the higher level is a constellation of

parts much smaller than the actual number of features. Each of

the parts in the constellation consists of a bag of features at the

lower level. This approach combines the advantages of both the

bag of features and the constellation model and preserves com-

putational efficiency at the same time.

In most of these approaches, the detection of the parts is usu-

ally based on linear operations such as filtering and spatio–tem-

poral gradients, hence the descriptors are sensitive to changes in

appearance, noise, occlusions, etc. It has also been noted that in-

terest points are extremely sparse in smooth human actions and

certain types of actions do not give rise to distinctive features

[28], [46]. However, due to their local nature, they are more ro-

bust to nonstationary backgrounds.

3) Subvolume Matching: As opposed to part-based ap-

proaches, researchers have also investigated matching of videos

by matching subvolumes between a video and a template.

Shechtman et al. [54] present an approach derived from ST

motion-based correlation to match actions with a template.

The main difference of this approach from the part-based

approaches is that it does not extract action descriptors from

extrema in scale space, rather it looks for similarity between

local ST patches based on how similar the motion is in the

two patches. However, computing this correlation throughout a

given video volume can be computationally intensive. Inspired

by the success of Haar-type features or “box features” in object

detection [55], Ke et al. [56] extended this framework to 3-D.

In their approach, they define 3-D Haar-type features that are

essentially outputs of 3-D filter banks with ’s and ’s as

the filter coefficients. These filter responses used in conjunc-

tion with boosting approaches result in robust performance.

In another approach, Ke et al. [57] consider a video volume

as a collection of subvolumes of arbitrary shape, where each

subvolume is a spatially coherent region. The subvolumes are

obtained by clustering the pixels based on appearance and

spatial proximity. A given video is oversegmented into many

subvolumes or “supervoxels.” An action template is matched

by searching among the oversegmented volumetric regions

and finding the minimal set of regions that maximize overlap

between their union and the template.

Subvolume matching approaches such as these are suscep-

tible to changing backgrounds but are more robust to noise and

occlusions. Another advantage is that these approaches can be

extended to features such as optical flow as in [56] to achieve

robustness to changes in appearance.

4) Tensor-Based Approaches: Tensors are generalizations of

matrices to multiple dimensions. A 3-D ST volume can natu-

rally be considered as a tensor with three independent dimen-

sions. Vasilescu [58] proposed the modeling of human action,

human identity, and joint angle trajectories by considering them

as independent dimensions of a tensor. By decomposing the
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overall data tensor into dominant modes (as a generalization of

PCA), one can extract signatures corresponding to both the ac-

tion and the identity of the person performing the action. Re-

cently, Kim et al. [59] extended canonical correlation analysis

to tensors to match videos directly to templates. In their ap-

proach, the dimensions of the tensor were simply the ST di-

mensions corresponding to . Similarly, Wolf et al. [60]

extended low-rank SVM techniques to the space of tensors for

action recognition.

Tensor-based approaches offer a direct method for holistic

matching of videos without recourse to midlevel representations

such as the previous ones. Moreover, they can incorporate other

types of features such as optical flow, ST filter responses, etc.,

into the same framework by simply adding more independent

dimensions to the tensor.

C. Parametric Methods

The previous section focused on representations and models

that are well suited for simple actions. The parametric ap-

proaches that we will describe in this section are better suited

for more complex actions that are temporally extended. Ex-

amples of such complex actions include the steps in a ballet

dancing video, a juggler juggling a ball, and a music conductor

conducting an orchestra using complex hand gestures.

1) Hidden Markov Models: One of the most popular

state–space models is the hidden Markov model. In the discrete

HMM formalism, the state space is considered to be a finite

set of discrete points. The temporal evolution is modeled as

a sequence of probabilistic jumps from one discrete state to

the other. HMMs first found wide applicability in speech

recognition applications in the early 1980s. An excellent source

for a detailed explanation of HMMs and its associated three

problems—inference, decoding, and learning—can be found

in [61]. Beginning in the early 1990s, HMMs began to find

wide applicability in computer vision systems. One of the

earliest approaches to recognize human actions via HMMs was

proposed by Yamato et al. [62] where they recognized tennis

shots such as backhand stroke, backhand volley, forehand

stroke, forehand volley, smash, etc., by modeling a sequence

of background subtracted images as outputs of class-specific

HMMs. Several successful gesture recognition systems such

as in [63]–[65] make extensive use of HMMs by modeling

a sequence of tracked features such as hand blobs as HMM

outputs.

HMMs have also found applicability in modeling the tem-

poral evolution of human gait patterns both for action recogni-

tion and biometrics (cf., [66] and [67]). All these approaches are

based on the assumption that the feature sequence being mod-

eled is a result of a single person performing an action. Hence,

they are not effective in applications where there are multiple

agents performing an action or interacting with each other. To

address this issue, Brand et al. [68] proposed a coupled HMM to

represent the dynamics of interacting targets. They demonstrate

the superiority of their approach over conventional HMMs in

recognizing two-handed gestures. Incorporating domain knowl-

edge into the HMM formalism has been investigated by sev-

eral researchers. Moore et al. [69] used HMMs in conjunction

with object detection modules to exploit the relationship be-

tween actions and objects. Hongeng and Nevatia [70] incorpo-

rate a priori beliefs of state duration into the HMM framework

and the resultant model is called hidden semi-Markov model

(semi-HMMs). Cuntoor and Chellappa [71] have proposed a

mixed-state HMM formalism to model nonstationary activities,

where the state space is augmented with a discrete label for

higher level behavior modeling.

HMMs are efficient for modeling time-sequence data and are

useful both for their generative and discriminative capabilities.

HMMs are well suited for tasks that require recursive proba-

bilistic estimates [63] or when accurate start and end times for

action units are unknown. However, their utility is restricted due

to the simplifying assumptions that the model is based on. Most

significantly the assumption of Markovian dynamics and the

time-invariant nature of the model restricts the applicability of

HMMs to relatively simple and stationary temporal patterns.

2) Linear Dynamical Systems: Linear dynamical systems are

a more general form of HMMs where the state space is not con-

strained to be a finite set of symbols but can take on contin-

uous values in where is the dimensionality of the state

space. The simplest form of LDS is the first-order time-invariant

Gauss–Markov processes, which is described by

(1)

(2)

where is the -dimensional state vector and

is the -dimensional observation vector with . and

are the process and observation noise, respectively, which are

Gaussian distributed with zero-means and covariance matrices

and , respectively. The LDS can be interpreted as a con-

tinuous state–space generalization of HMMs with a Gaussian

observation model. Several applications such as recognition of

humans and actions based on gait [7], [72], [73], activity recog-

nition [9], [74], and dynamic texture modeling and recognition

[75], [76] have been proposed using LDSs.

Advances in system identification theory for learning LDS

model parameters from data [77]–[79] and distance metrics on

the LDS space [75], [80], [81] have made LDSs popular for

learning and recognition of high-dimensional time-series data.

More recently, in-depth study of the LDS space has enabled the

application of machine learning tools on that space such as dy-

namic boosting [82], kernel methods [83], [84], and statistical

modeling [85]. Newer methods to learn the model parameters

[86] have made learning much more efficient than in the case

of HMMs. Like HMMs, LDSs are also based on assumptions

of Markovian dynamics and conditionally independent observa-

tions. Thus, as in the case of HMMs, the time-invariant model

is not applicable to nonstationary actions.

3) Nonlinear Dynamical Systems: While time-invariant

HMMs and LDSs are efficient modeling and learning tools,

they are restricted to linear and stationary dynamics. Consider

the following activity: a person bends down to pick up an

object, then he walks to a nearby table and places the object on

the table, and finally rests on a chair. This activity is composed

of a sequence of short segments each of which can be modeled

as an LDS. The entire process can be seen as switching between
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LDSs. The most general form of the time-varying LDS is given

by

(3)

(4)

which looks similar to the LDS in (1) and (2), except that the

model parameters and are allowed to vary with time. To

tackle such complex dynamics, a popular approach is to model

the process using switching linear dynamical systems (SLDSs)

or jump linear systems (JLSs). An SLDS consists of a set of

LDSs with a switching function that causes model parameters

to change by switching between models. Bregler [87] presented

a multilayered approach to recognize complex movements con-

sisting of several levels of abstraction. The lowest level is a se-

quence of input images. The next level consists of “blob” hy-

potheses where each blob is a region of coherent motion. At the

third level, blob tracks are grouped temporally. The final level

consists of an HMM for representing the complex behavior.

North et al. [88] augment the continuous state vector with a

discrete state component to form a “mixed” state. The discrete

component represents a mode of motion or more generally a

“switch” state. Corresponding to each switch state, a Gaussian

autoregressive model is used to represent the dynamics. A max-

imum-likelihood approach is used to learn the model parameters

for each motion class. Pavlovic and Rehg [89], [90] model the

nonlinearity in human motion in a similar framework, where the

dynamics are modeled using LDS and the switching process is

modeled using a probabilistic finite state machine.

Though the SLDS framework has greater modeling and de-

scriptive power than HMMs and LDSs, learning and inference

in SLDS are much more complicated, often requiring approx-

imate methods [91]. In practice, determining the appropriate

number of switching states is challenging and often requires

large amounts of training data or extensive hand tuning.

V. MODELING AND RECOGNIZING ACTIVITIES

Most activities of interest in applications such as surveillance

and content-based indexing involve several actors, who interact

not only with each other, but also with contextual entities.

The approaches discussed so far are mostly concerned with

modeling and recognizing actions of a single actor. Modeling

a complex scene, the inherent structure and semantics of com-

plex activities require higher level representation and reasoning

methods.

A. Graphical Models

1) Belief Networks: A Bayesian network (BN) [92] is a

graphical model that encodes complex conditional dependen-

cies between a set of random variables that are encoded as

local conditional probability densities (CPD). Dynamic belief

networks (DBNs) are a generalization of the simpler BNs by in-

corporating temporal dependencies between random variables.

DBNs encode more complex conditional dependence relations

among several random variables as opposed to just one hidden

variable as in a traditional HMM.

Huang et al. [19] used DBNs for vision-based traffic moni-

toring. Buxton and Gong [93] used BNs to capture the depen-

dencies between scene layout and low-level image measure-

ments for a traffic surveillance application. Remagnino et al.

[94] present an approach using DBNs for scene description at

two levels of abstraction—agent level descriptions and inter-

agent interactions. Modeling two-person interactions such as

pointing, punching, pushing, hugging, etc., was proposed by

Park and Aggarwal [95] in a two-stage process. First, pose esti-

mation is done via a BN and temporal evolution of pose is mod-

eled by a DBN. Intille and Bobick [96] use BNs for multiagent

interactions where the network structure is automatically gen-

erated from the temporal structure provided by a user. Usually

the structure of the DBN is provided by a domain expert. How-

ever, this is difficult in real-life systems where there are a very

large number of variables with complex interdependencies. To

address this issue, Gong et al. [97] presented a DBN framework

where the structure of the network is discovered automatically

using Bayesian information criterion [98], [99].

DBNs have also been used to recognize actions using the con-

textual information of the objects involved. Moore et al. [69]

conduct action recognition using belief networks based on scene

context derived from other objects in the scene. Gupta et al.

[100] present a BN for interpretation of human–object interac-

tions that integrates information from perceptual tasks such as

human motion analysis, manipulable object detection, and “ob-

ject reaction” determination.

Though DBNs are more general than HMMs by considering

dependencies between several random variables, the temporal

model is usually Markovian as in the case of HMMs. Thus, only

sequential activities can be handled by the basic DBN model.

Development of efficient algorithms for learning and inference

in graphical models (cf., [101]) have made them popular tools

to model structured activities. Methods to learn the topology or

structure of BNs from data [102] have also been investigated

in the machine learning community. However, to learn the local

CPDs for large networks requires very large amounts of training

data or extensive hand-tuning by experts both of which limit the

applicability of DBNs in large scale settings.

2) Petri Nets: Petri nets were defined by Petri [103] as a

mathematical tool for describing relations between conditions

and events. Petri nets are particularly useful to model and visu-

alize behaviors such as sequencing, concurrency, synchroniza-

tion, and resource sharing [104], [105]. Petri nets are bipar-

tite graphs consisting of two types of nodes—places and transi-

tions. Places refer to the state of an entity and transitions refer

to changes in the state of the entity. Consider an example of a

car pickup activity represented by a probabilistic Petri net as

shown in Fig. 9. In this figure, the places are labeled

and transitions . In this PN, and are the start

nodes and is the terminal node. When a car enters the scene, a

“token” is placed in place . The transition is enabled in this

state, but it cannot fire until the condition associated with it is

satisfied, i.e., when the car stops near a parking slot. When this

occurs, the token is removed from and placed in . Sim-

ilarly, when a person enters the parking lot, a token is placed

in and transition fires after the person disappears near the

parked car. The token is then removed from and placed in .



TURAGA et al.: MACHINE RECOGNITION OF HUMAN ACTIVITIES: A SURVEY 1481

Fig. 9. Probabilistic Petri net representing a pickup-by-car activity. Figure
taken from [108].

Now with a token in each of the enabling places of transition ,

it is ready to fire when the associated condition, i.e., car leaving

the parking lot is satisfied. Once the car leaves, fires and both

tokens are removed and a token placed in the final place . This

example illustrates sequencing, concurrency, and synchroniza-

tion.

Petri nets were used by Castel et al. [106] to develop a system

for high-level interpretation of image sequences. In their ap-

proach, the structure of the Petri net was specified a priori.

This can be tedious for large networks representing complex

activities. Ghanem et al. [107] proposed a method to semiau-

tomate this task by automatically mapping a small set of log-

ical, spatial, and temporal operators to the graph structure. Using

this method, they developed an interactive tool for querying

surveillance videos by mapping user queries to Petri nets. How-

ever, these approaches were based on deterministic Petri nets.

Hence, they cannot deal with uncertainty in the low-level mod-

ules as is usually the case with trackers, object detectors, etc.

Further, real-life human activities do not conform to hard-coded

models—the models need to allow deviations from the expected

sequence of steps while penalizing significant deviations. To ad-

dress this issue, Albanese et al. [108] proposed the concept of a

probabilistic Petri net (PPN) (see Fig. 9). In a PPN, the transi-

tions are associated with a weight that encodes the probability

with which that transition fires. By using skip transitions and

penalizing them with low probability, robustness is achieved to

missing observations in the input stream. Further, the uncer-

tainty in the identity of an object or the uncertainty in the un-

folding of an activity can be efficiently incorporated into the to-

kens of the Petri net.

Though Petri nets are an intuitive tool for expressing complex

activities, they suffer from the disadvantage of having to man-

ually describe the model structure. The problem of learning the

structure from training data has not yet been formally addressed.

3) Other Graphical Models: Other graphical models have

been proposed to deal with the drawbacks in DBNs—most

significantly, the limitation to sequential activities. Graphical

models that specifically model more complex temporal rela-

tions such as sequentiality, duration, parallelism, synchrony,

etc., have been proposed in the DBN framework. Examples

include the work of Pinhanez and Bobick [109] who use a

simplified version of Allen’s interval algebra to model sophis-

ticated temporal ordering constraints such as past, now, and

future. This structure is termed the past–now–future (PNF)

network. Similarly, Shi et al. [110], [111] have proposed using

propagation nets to represent activities using partially ordered

temporal intervals. In their approach, an activity is constrained

by temporal and logical ordering and duration of the activity

intervals. More recently, Hamid et al. [112] considered a tem-

porally extended activity as a sequence of event labels. Due

to contextual and activity specific constraints, the sequence

labels are observed to have some inherent partial ordering.

For example, in a kitchen setting, the refrigerator would have

to be opened before the eggs can be accessed. Using these

constraints, they consider an activity model as a set of sub-

sequences, which encode the partial ordering constraints of

varying lengths. These subsequences are efficiently represented

using Suffix trees. The advantage of the Suffix-tree represen-

tation is that the structure of the activity can be learned from

training data using standard graph-theoretic methods.

B. Syntactic Approaches

1) Grammars: Grammars express the structure of a process

using a set of production rules. To draw a parallel to grammars

in language modeling, production rules specify how sentences

(activities) can be constructed from words (activity primitives),

and how to recognize if a sentence (video) conforms to the rules

of a given grammar (activity model). One of the earliest use of

grammars for visual activity recognition was proposed by Brand

[113], who used a grammar to recognize hand manipulations in

sequences containing disassembly tasks. He made use of simple

grammars with no probabilistic modeling. Ryoo and Aggarwal

[114] used the context-free grammar (CFG) formalism to model

and recognize composite human activities and multiperson in-

teractions. They followed a hierarchical approach where the

lower levels are composed of HMMs and BNs. The higher level

interactions are modeled by CFGs. Context-free grammar ap-

proaches present a sound theoretical basis for modeling struc-

tured processes. In syntactic approaches, one only needs to enu-

merate the list of primitive events that need to be detected and

the set of production rules that define higher level activities of

interest. Once the rules of a CFG have been formulated, effi-

cient algorithms to parse them exist [115], [116], which have

made them popular in real-time applications.

Because deterministic grammars expect perfect accuracy in

the lower levels, they are not suited to deal with errors in low-

level tasks such as tracking errors and missing observations. In

complex scenarios involving several agents requiring temporal

relations that are more complex than just sequencing, such as

parallelism, overlap, synchrony, it is difficult to formulate the

grammatical rules manually. Learning the rules of the grammar

from training data is a promising alternative, but it has proved

to be extremely difficult in the general case [117].

2) Stochastic Grammars: Algorithms for detection of

low-level primitives are frequently probabilistic in nature.

Thus, stochastic context-free grammars (SCFGs), which are

a probabilistic extension of CFGs, were found to be suitable
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Fig. 10. Example of an attribute grammar for a passenger boarding an airplane taken from [120].

for integration with real-life vision modules. SCFGs were

used by Ivanov and Bobick [118] to model the semantics of

activities whose structure was assumed to be known. They

used HMMs for low-level primitive detection. The grammar

production rules were augmented with probabilities and a

“skip” transition was introduced. This resulted in increased

robustness to insertion errors in the input stream and also to

errors in low-level modules. Moore et al. [119] used SCFGs

to model multitasked activities—activities that have several

independent threads of execution with intermittent dependent

interactions with each other as demonstrated in a blackjack

game with several participants.

In many cases, it is desirable to associate additional attributes

or features to the primitive events. For example, the exact

location in which the primitive event occurs may be signifi-

cant for describing an event, but this may not be effectively

encoded in the (finite) primitive event set. Thus, attribute

grammars achieve greater expressive power than traditional

grammars. Probabilistic attribute grammars have been used by

Joo and Chellappa [120] for multiagent activities in surveil-

lance settings. In the example shown in Fig. 10, one can see

the production rules and the primitive events such as “appear,”

“disappear,” “moveclose,” “moveaway,” etc., in the description

of the activity. The primitive events are further associated with

attributes such as location (loc) where the appearance and

disappearance events occur, classification (class) into a set of

objects, identity (idr) of the entity involved, etc.

While SCFGs are more robust than CFGs to errors and missed

detections in the input stream, they share many of the temporal

relation modeling limitations of CFGs as discussed above.

C. Knowledge and Logic-Based Approaches

1) Logic-Based Approaches: Logic-based methods rely on

formal logical rules to describe common sense domain knowl-

edge to describe activities. Logical rules are useful to express

domain knowledge as input by a user or to present the results of

high-level reasoning in an intuitive and human-readable format.

Declarative models [121] describe all expected activities in

terms of scene structure, events, etc. The model for an activity

consists of the interactions between the objects of the scene.

Medioni et al. [122] propose a hierarchical representation to

recognize a series of actions performed by a single agent.

Symbolic descriptors of actions are extracted from low-level

features through several midlevel layers. Next, a rule-based

method is used to approximate the probability of occurrence

of a specific activity by matching the properties of the agent

with the expected distributions (represented by a mean and a

variance) for a particular action. In a later work, Hongeng et al.

[123] extended this representation by considering an activity

to be composed of several action threads. Each action thread

is modeled as a stochastic finite state automaton. Constraints

between the various threads are propagated in a temporal logic

network. Shet et al. [124] propose a system that relies on logic

programming to represent and recognize high-level activities.

Low-level modules are used to detect primitive events. The

high-level reasoning engine is based on Prolog and recognizes

activities, which are represented by logical rules between prim-

itives. These approaches do not explicitly address the problem

of uncertainty in the observation input stream. To address this

issue, a combination of logical and probabilistic models was

presented in [125], where each logical rule is represented as

first-order logic formula. Each rule is further provided with a

weight, where the weight indicates a belief in the accuracy of

the rule. Inference is performed using a Markov-logic network.

While logic-based methods are a natural way of incorporating

domain knowledge, they often involve expensive constraint

satisfaction checks. Further, it is not clear how much domain

knowledge should be incorporated in a given setting—incorpo-

rating more knowledge can potentially make the model rigid

and nongeneralizable to other settings. Further, the logic rules

require extensive enumeration by a domain expert for every

deployment.

2) Ontologies: In most practical deployments that use any

of the aforementioned approaches, symbolic activity defini-

tions are constructed in an empirical manner, for example,

the rules of a grammar or a set of logical rules are specified

manually. Though empirical constructs are fast to design and

even work very well in most cases, they are limited in their

utility to specific deployments for which they have been de-

signed. Hence, there is a need for a centralized representation

of activity definitions or ontologies for activities that are inde-

pendent of algorithmic choices. Ontologies standardize activity

definitions, allow for easy portability to specific deployments,

enable interoperability of different systems, and allow easy

replication and comparison of system performance. Several

researchers have proposed ontologies for specific domains of

visual surveillance. For example, Chen et al. [126] proposed

an ontology for analyzing social interaction in nursing homes,

Hakeem et al. for classification of meeting videos [127], and

Georis et al. [8] for activities in a bank monitoring setting. To

consolidate these efforts and to build a common knowledge

base of domain ontologies, the Video Event Challenge Work-

shop was held in 2003. As a result of this workshop, ontologies

have been defined for six domains of video surveillance [128]:

1) perimeter and internal security; 2) railroad crossing surveil-

lance; 3) visual bank monitoring; 4) visual metro monitoring;

5) store security; and 6) airport-tarmac security. An example

from the ontology output is shown in Fig. 11, which describes
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Fig. 11. Ontology for car cruising in parking lot activity. Example taken from
[128].

car cruising activity. This ontology keeps track of the number

of times the car moves around in a circuit inside the parking lot

without stopping. When this exceeds a set threshold, a cruising

activity is detected. The workshop also led to the development

of two formal languages—the video event representation lan-

guage (VERL) [129], [130], which provides an ontological

representation of complex events in terms of simpler subevents,

and the video event markup language (VEML), which is used

to annotate VERL events in videos.

Though ontologies provide concise high-level definitions of

activities, they do not necessarily suggest the right “hardware”

to “parse” the ontologies for recognition tasks.

VI. DIRECTIONS FOR FUTURE WORK AND CONCLUSION

A lot of enthusiasm has been generated in the vision com-

munity by recent advances in machine recognition of activities.

However, several important issues remain to be addressed. In

this section, we briefly discuss some of these issues.

A. Real-World Conditions

Most action and activity recognition systems are currently de-

signed and tested on video sequences acquired in constrained

conditions. Factors that can severely limit the applicability in

real-world conditions include noise, occlusions, shadows, etc.

Errors in feature extraction can easily propagate to higher levels.

For real-world deployment, action recognition systems need to

be tested against such real-world conditions. Methods that are

robust to these factors also need to be investigated. Many practi-

cally deployed systems do not record videos at high spatio–tem-

poral resolution in part due to the difficulty in storing the large

data that is produced. Hence, dealing with low-resolution video

is an important issue. In the approaches discussed so far, it is

assumed that reliable features can be extracted in a given set-

ting such as optical flow or background subtracted blobs. In

analyzing actions in far-field settings, this assumption does not

usually hold. While researchers have addressed these issues in

specific settings (cf., [131] and [132]), a systematic and general

approach is still lacking. Hence, more research needs to be done

to address these practical issues.

B. Invariances in Human Action Analysis

One of the most significant challenges in action recognition

is to find methods that can explain and be robust to the wide

variability in features that are observed within the same action

class. Sheikh et al. [133] have identified three important sources

that give rise to variability in observed features. They are as

follows:

1) viewpoint;

2) execution rate;

3) anthropometry

Any real-world action recognition system needs to be in-

variant to these factors. In this section, we will review some

efforts in this direction that have been pursued in the research

community.

1) View Invariance: While it may be easy to build statistical

models of simple actions from a single view, it is extremely chal-

lenging to generalize them to other views. This is due to the wide

variations in motion and structure features induced by camera

perspective effects and occlusions. One way to deal with the

problem is to store templates from several canonical views as

done in [30] and interpolate across the stored views as proposed

by [134]. This approach, however, is not scalable because one

does not know how many views to consider as canonical. An-

other approach is to assume that point correspondences across

views are available as in [32] and compute a transformation that

maps a stored model to an example from an arbitrary view. Sim-

ilarly, Seitz and Dyer [135] present an approach to recognize

cyclic motion that is affine invariant by assuming that feature

correspondence between successive time instants is known. It

was shown by Rao and Shah [136] that extrema in ST curvature

of trajectories are preserved across views, which were exploited

to perform view-invariant action recognition. Another example

is the work of Parameswaran et al. [137] who define a view-in-

variant representation of actions based on the theory of 2-D and

3-D invariants. In their approach, they consider an action to be

a sequence of poses. They assume that there exists at least one

key pose in the sequence in which five points are aligned on a

plane in the 3-D world coordinates. Using this assumption, they

derive a set of view-invariant descriptors. More recently, the no-

tion of motion history [30] was extended to 3-D by Weinland et

al. [138] where the authors combine views from multiple cam-

eras to arrive at a 3-D binary occupancy volume. Motion history

is computed over these 3-D volumes and view-invariant features

are extracted by computing circular fast Fourier transform (FFT)

of the volume. All these approaches are strongly tied to the spe-

cific choice of feature. There is no general approach of achieving

view invariance that can be extended to several features, thus

making it an open research issue.

2) Execution Rate Invariance: The second major source of

observed variability in features arises from the differences in ex-

ecution rates while performing the same action. Variations in ex-

ecution style exist both in interperson and intraperson settings.

State–space approaches are robust to minor changes in execu-

tion rates, but are not truly rate invariant, because they do not

explicitly model transformations of the temporal axis. Mathe-

matically, the variation in execution rate is modeled as a warping

function of the temporal scale. The simplest case of linear time

warps can be usually dealt with fairly easily. To model highly

nonlinear warping functions, the most common method is dy-

namic time warping (DTW) of the feature sequence such as in

[134], [139], and [140]. Recently, Veeraraghavan et al. [141]

proposed using DTW with constraints to account for the fact that

the space of all time-warp functions does not produce physically

meaningful actions. DTW is a promising method because it is

independent of the choice of feature. The only requirement is
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that a distance metric be defined on the feature space. However,

DTW requires accurate temporal alignment of test and gallery

sequences, i.e., the start and end time instants have to be aligned.

Further, the distance computations involved can be prohibitive

for long sequences involving many templates. Thus, more effi-

cient methods are required to achieve real-time performance.

3) Anthropometric Invariance: Anthropometric variations

such as those induced by the size, shape, gender, etc., of humans

is another important class of variabilities that requires careful

attention. Unlike viewpoint and execution-rate variabilities

that have received significant attention, a systematic study of

anthropometric variations has been receiving interest only in

recent years. Ad hoc methods that normalize the extracted fea-

tures to compensate for changes in size, scale, etc., are usually

employed when no further information is available. Drawing on

studies on human anthropometry Gritai et al. [142] suggested

that the anthropometric transformation between two different

individuals can be modeled as a projective transformation of

the image coordinates of body joints. Based on this, they define

a similarity metric between actions by using epipolar geometry

to provide constraints on actions performed by different indi-

viduals. Further research is needed to understand the effects of

anthropometric variations and building algorithms to achieve

invariance to this factor.

C. Evaluation of Complex Systems

Establishing standardized test beds is a fundamental require-

ment to compare algorithms and assess progress. It is encour-

aging to see that several data sets have been made available by

research groups and new research is expected to report results

on these data sets. Examples include the University of Central

Florida (UCF) activity data set [143], Transportation Security

Administration (TSA) airport tarmac data set [9], Free View-

point National Institute for Research in Computer Science and

Control (INRIA) data set [138], and the Royal Institute of Tech-

nology (KTH) actions data set [47]. However, most of these data

sets consist of simple actions such as opening a closet door,

lifting an object, etc. Very few common data sets exist for evalu-

ating higher level complex activities and reasoning algorithms.

Complex activity recognition systems consist of a slew of lower

level detection and tracking modules. Hence, a straightforward

comparison of systems is not easy. One approach to evaluate

complex systems is to create ground truth corresponding to out-

puts from a predefined set of low-level modules. Evaluation

would then focus solely on the high-level reasoning engines.

While this is one criterion of evaluation, the other criterion is

the ability to deal with errors in low-level modules. Participa-

tion from the research community is required to address this

important issue.

D. Integration With Other Modalities

A vision-based system to recognize human activities can

be seen as a crucial stepping stone toward the larger goal of

designing machine intelligence systems. To draw a parallel

with natural intelligence, humans rely on several modalities

including the five classical senses—vision, audition, tactition,

olfaction, and gustation—and other senses such as thermo-

ception (temperature) and equilibrioception (balance and

acceleration) for everyday tasks. It has also been realized

that alternate modalities can improve the performance of

vision-based systems, e.g., inertial sensors in structure from

motion (SfM), joint audio–video-based tracking [144], etc.

Thus, for the longer term pursuit to create machine intelligence,

or for the shorter term pursuit of increasing the robustness

of action/activity detection modules, integration with other

modalities such as audio, temperature, motion, and inertial

sensors needs to be investigated in a more systematic manner.

E. Intention Reasoning

Most of the approaches for recognizing and detecting action

and activities are based on the premise that the action/activity

has already occurred. Reasoning about the intentions of humans

and inferring what is going to happen presents a significant intel-

lectual challenge. Security applications are among the first that

stand to benefit from such a system, where detection of threat is

of utmost importance.

VII. CONCLUSION

Providing a machine the ability to see and understand

as humans do has long fascinated scientists, engineers, and

even the common man. Synergistic research efforts in various

scientific disciplines, computer vision, artificial intelligence,

neuroscience, linguistics, etc., have brought us closer to this

goal than at any other point in history. However, several more

technical and intellectual challenges need to be tackled before

we get there. The advances made so far need to be consol-

idated, in terms of their robustness to real-world conditions

and real-time performance. This would then provide a firmer

ground for further research.
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