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SUMMARY

In most manufacturing and distribution systems, semi-"nished jobs are transferred from one processing
facility to another by transporters such as automated guided vehicles (AGVs) and conveyors, and "nished
jobs are delivered to customers or warehouses by vehicles such as trucks. Most machine scheduling models
assume either that there are an in"nite number of transporters for delivering jobs or that jobs are delivered
instantaneously from one location to another without transportation time involved. In this paper, we study
machine scheduling problems with explicit transportation considerations. Models are considered for two
types of transportation situations. The "rst situation involves transporting a semi-"nished job from one
machine to another for further processing. The second appears in the environment of delivering a "nished
job to the customer or warehouse. Both transportation capacity and transportation times are explicitly
taken into account in our models. We study this class of scheduling problems by analysing their complexity.
We show that many problems are computationally di$cult and propose polynomial or pseudo-polynomial
algorithms for some problems. Copyright ( 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

In most manufacturing and distribution systems, semi-"nished jobs are transferred from one
facility to another for further processing through material handling systems such as automated
guided vehicles (AGVs) and conveyors, and "nished jobs are delivered to customers or ware-
houses by vehicles such as trucks. In the last four decades, many books and numerous papers
have been published in the area of machine scheduling. However, most of the published literature
explicitly or implicitly assumes that either there are an in"nite number of transporters for
delivering jobs or that jobs are transported instantaneously from one location to another without
transportation time invloved.

Problems that address the optimal co-ordination of machine scheduling and job transporting
are certainly more practical than those scheduling problems that do not take these factors into
consideration. It is clear that seemingly di!erent operations in manufacturing and distribution
systems must be co-ordinated carefully in order to achieve ideal overall system performance. The



recent tremendous interest in supply chain management in both academic and industrial commu-
nities has demonstrated the importance of such coordination.

In this paper, we investigate machine scheduling models that explicitly consider constraints on
both transportation capacity and transportation times. We consider two types of transportation.
The "rst type is intermediate transportation in a #ow shop where jobs are transported from one
machine to another for further processing. The second type is the transportation necessary to
deliver "nished jobs to the customer. We consider various scheduling problems involving these
two types of transportation where both transportation capacity and transportation times are
explicitly taken into account.

The earliest scheduling paper that explicitly considers the transportation factor is probably
the one by Maggu and Das [1]. They consider a two-machine #ow shop makespan problem
with unlimited bu!er spaces on both machines in which there are a su$cient number
of transporters so that whenever a job is completed on the "rst machine it can be transported,
with a job-dependent transportation time, to the second machine immediately. They generalize
the well-known Johnson's rule [2] to solve their problem. Maggu et al. [3] consider the
same problem with the additional constraint that some jobs must be scheduled consecutively.
They show that a similar rule solves the problem. Kise [4] studies a similar problem but with
only one transporter with a capacity of one (i.e. it can transport only one job at a time). He
shows that this problem is ordinarily NP-hard even with job-independent transportation
times.

Following most of the #ow shop scheduling literature, Maggu and Das [1], Maggu et al., [3],
and Kise [4] assume that intermediate bu!er space is in"nite. Several closely related problems,
including bu!er space constraints, have been studied in the literature. Stern and Vitner [5]
consider a two-machine #ow shop makespan problem where there is only one transporter with
a capacity of one. They assume that transportation times are job-dependent and that there is no
intermediate bu!er space at either machine. They formulate the problem as an asymmetric
traveling salesman problem and give a polynomial-time heuristic. As pointed out later by
Ganesharajah et al. [6], this problem is strongly NP-hard. Panwalkar [7] considers the same
problem as the one studied by Stern and Vitner except that the bu!er space at the second machine
is in"nite. He provides an optimal polynomial-time algorithm. Stevens and Germill [8] provide
heuristics to the problem studied by Panwalkar except that their objective is minimizing
maximum lateness.

Other related problems have been studied by Mitten [9], Maggu et al. [10], Langston [11],
Yu [12], and Ganesharajah et al. [6]. Mitten [9] presents a simple rule to solve a two-machine
#ow shop makespan problem in which each job has a starting time lag and a completion time lag.
A starting (completion) time lag forces the starting (completion) time of a job on the second
machine to be at least some time later than that on the "rst machine. Clearly, if each job has either
a starting time lag or a completion time lag, but not both, the resulting problem is then equivalent
to the problem considered by Maggu and Das [1]. Maggu et al. [10] show that a simple rule can
solve a more general problem that has both the features of the problem of Maggu and Das [1]
and those of the problem of Mitten [9]. Langston [11] analyses some heuristics for a k-station
#ow shop makespan problem where each station has a number of machines that can be used to
process jobs, and there is only one transporter with a capacity of one to transport jobs with
transportation times dependent on the physical locations of the origin and destination machines.
Yu [12] considers various special cases of the problem studied by Maggu and Das [1].
Ganesharajah et al. [6] study problems of jointly scheduling machines and AGV in repetitive
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manufacturing systems with unidirectional loops for AGV movements. Each AGV can transport
only one job at a time. There is an input bu!er and output bu!er at each machine with a bu!er
size of one. The objective is the minimization of the steady-state cycle time required to "nish jobs
in a minimal job set under some prespeci"ed AGV dispatching policies. They analyse the
computational complexity of various cases.

Another line of research focuses on problems where the completion time of a job is de"ned
as the time when the job arrives at its customer. Potts [13], and Hall and Shmoys [14]
study a single-machine problem with unequal job arrival times and delivery times. They implicitly
assume that there are a su$cient number of vehicles such that whenever a job is completed
on a machine it is delivered immediately to its customer. They provide heuristics and error
bound analysis. Woeginger [15] considers the same problem but with parallel machines and
equal job arrival times. He gives some heuristics with a constant worst-case bound guarantee.
Herrmann and Lee [16], Chen [17], Cheng et al. [18], and Yuan [19] also consider schedul-
ing problems which include delivery. However, they do not consider transportation times,
i.e. they assume that deliveries are made instantaneously. The completion time of a job is
de"ned as the time when a job (probably with some other jobs together as a batch) is ready for
delivery.

There are also papers that address scheduling decisions from the material handling systems
design viewpoint. Recent reviews in the design and analysis of material handling systems can be
found in References [6, 20]. Papers studying scheduling issues in the underlying material hand-
ling systems include, among others, Raman et al. [21], Jaikumar and Solomon [22], Kise et al.
[23], Levner et al. [24], Bilge and Ulusoy [25] and Agnetis et al. [26].

Note that the "rst type of transportation problem we consider is the same as the one studied
in References [1, 4]. The second type is the same as the one considered in Reference [13].
Our problems may be viewed as extensions of the few problems considered in the litera-
ture [1, 4, 13]. While most related literature has only addressed special problems, we
give a systematic and uni"ed treatment of these important problems by classifying their
computational complexity. While we have been conducting this research, Hurink and Knust
[27] have independently studied some cases of a problem with the ,rst type of transportation,
which are closely related to one of the problems we consider. They assume that there is only one
transporter available which can carry only one job at a time and that the returning time of the
transporter is zero. Motivated by problems in general logistics management, we do not assume
zero returning time, and in general, we allow multiple transporters, each capable of carrying
multiple jobs.

The remainder of this paper is organized as follows. In Section 2, we introduce our notation
and describe the two types of transportation and their underlying scheduling problems. In
Sections 3 and 4, we then study problems with the "rst and second type of transportation,
respectively. Finally, we conclude the paper in Section 5.

2. PROBLEMS AND NOTATION

As discussed above, we consider two types of transportation. Usually, type-1 transportation
happens inside a manufacturing facility, while type-2 happens between a manufacturing facility
and the customers or warehouses. Since our focus in this paper is on scheduling with transporta-
tion constraints, we will not consider other types of constraints, such as bu!er space.
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2.1. Scheduling with type-1 transportation

The machine con"guration inside a manufacturing facility can be #ow shop, job shop, open shop,
or other types. In this paper, we consider type-1 transportation mainly in a #ow shop environ-
ment. Our problems with type-1 transportation can be described in general as follows. We are
given a set of n jobs to be processed on m machines in a #ow shop. Each job must "rst be
processed on machine 1, then machine 2, etc., and "nally machine m. The processing time of job
j on machine k is p

jk
. We assume that all of the jobs start at machine 1. After a job is processed on

machine k, it is transported to machine k#1 by a transporter. There are a total of v identical
transporters initially located at machine 1. Each transporter has a capacity of c, i.e. it can carry up
to c jobs in one shipment. The transportation time from machine k to machine k#1 is denoted
by t

k,k`1
, which is assumed to be independent of the jobs being transported. We assume that

loading and unloading times are included in processing times of jobs and are not considered
separately.

Let C
j
denote the completion time of job j, that is the time when job j is completed on the last

machine m. We are mainly concerned about minimizing makespan C
.!9

and total completion
time +C

j
. We follow the commonly used three-"eld notation aDbDc for machine scheduling

problems (see, e.g. Reference [28]). In the a "eld, we use notation &TF' to denote a #ow shop
problem with transportation between machines. Hence, TF

2
Dv"x, c"y DC

.!9
represents the

2-machine #ow shop makespan problem with x transporters, each with capacity y. We note that
following this notation the problem considered by Maggu and Das [1] can be denoted as
TF

2
Dv*n, c*1 DC

.!9
.

2.2. Scheduling with type-2 transportation

A problem with type-2 transportation can be described as follows. A set of n jobs is to be
processed at a manufacturing facility. Depending on speci"c problems characteristics, the facility
can be a single machine, a set of parallel machines, or a series of #ow shop machines. After the
processing, jobs must be delivered to the corresponding customers or warehouses. For ease of
exploration, we only consider the case where all customers are located in close proximity to each
other. Hence, the transportation time is assumed to be the same for each job. As in the case of
type-1 transportation, we assume that there are v identical vehicles available to deliver jobs. Each
vehicle has a capacity of c and is initially located at the manufacturing facility. The transportation
time from the manufacturing facility to the customer is t

1
and that from the customer to the

manufacturing facility is t
2
, where t

1
and t

2
are independent of the jobs being transported. The

completion time of a job is de"ned as the time when it arrives at the customer.
Note that we may consider a problem with type-2 transportation as a special case of a problem

with type-1 transportation by treating the customer as the last machine on which processing
times of jobs are zero. However, for notational convenience and for future research purposes (we
will consider routing decisions between the manufacturing facility and customers in our further
research), we treat problems with type-2 transportation as a di!erent problem class.

For a problem with type-2 transportation, by the three-"eld notation aDbDc, we use &1PD',
&PmPD', or &FmPD' in the a "eld to represent problems where jobs are "rst processed on a single
machine, m parallel machine, or m #ow shop machines, respectively, and then delivered to the
customer. For example, P

2
PD Dv*2, c"1 D+C

j
represents the total completion time problem

with two identical parallel machines and 2 or more delivery vehicles, each with capacity 1. Note that
the problem considered by Potts [13] can then be denoted as 1PD Dr

j
, v*n, c*1 DC

.!9
.
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2.3. ¹wo frequently cited NP-hard problems

Throughout this paper, we will use the 3-partition problem, a well-known strongly NP-hard
problem, and the equal-size partition problem, a well-known ordinarily NP-hard problem [29], to
show the NP-hardness of our scheduling problems. For ease of presentation, we describe them
here so that we can directly cite them later when necessary.

2.3.1. 3-Partition problem (3-PP). Given 3h items, H"M1, 2,2, 3hN, each item j3H has a posit-
ive integer size a

j
satisfying b/4(a

j
(b/2, and +3h

j/1
a
j
"hb, for some integer b, the question asks

whether there are h disjoint subsets H
1
, H

2
,2,H

h
of H such that each subset contains exactly

three items and its total size is equal to b.

2.3.2. Equal-size partition problem (ESPP). Given 2h items, H"M1, 2,2, 2hN, each item i3H has
a positive integer size a

i
, such that +

i|H
a
i
"2A, for some integer A. The question asks if there is

a subset G-H such that +
i|G

a
i
"A and there are h items in G.

3. SCHEDULING PROBLEMS WITH TYPE-1 TRANSPORTATION

It is known (see, e.g. Reference [28]) that the classical 3-machine #owshop makespan problem
without transportation F

3
DDC

.!9
is strongly NP-hard, while the 2-machine problem F

2
DDC

.!9
is

polynomially solvable by Johnson's rule [2]. Thus, any 3-machine problem with type-1 transpor-
tation, except in special cases, must be strongly NP-hard. Hence, we focus on problems with two
machines. We will clarify the complexity of 2-machine #ow shop problems with type-1 transpor-
tation and identify some polynomially solvable cases. We use t

1
and t

2
to denote, respectively, the

transportation time from machine 1 to machine 2 and that from machine 2 to machine 1.
We note that a transporter in a 2-machine #ow shop problem with type-1 transportation may be

viewed as a &machine' (whose duty is to transport jobs) between the two real machines (whose duty is
to process jobs). However, as the transporter is returning from machine 2 to machine 1, it is occupied
but not carrying any job. Hence, a transporter is di!erent from what a real machine is supposed to
be in traditional scheduling problems. Thus, the problem TF

2
Dv"1, c"1DC

.!9
(to be studied in

Section 3.1) is di!erent from the traditional problem without transportation F
3
Dp

j2
,p DC

.!9
.

In a given schedule, we call all the jobs transported together in one shipment from machine 1 to
machine 2 a batch. We use the notation B

k
to denote the kth batch of jobs, and prescribe that

a batch transported earlier has a smaller index. We let d
k
denote the departure time of batch B

k
from

machine 1, and let C
j1

and C
j2

denote the completion times of job j on machine 1 and machine 2,
respectively. Sometimes, we also use C

j
to denote the completion time of job j on machine 2.

It is easy to prove that the following property holds for all 2-machine #ow shop problems with
type-1 transportation and a regular objective function, TF

2
Dv*1, c*1 D f (C

1
,2,C

n
), where the

objective f (C
1
,2, C

n
) is a non-decreasing function of C

1
,2, C

n
.

Property 1. There exists an optimal schedule for the problem TF
2
Dv*1, c*1 D f (C

1
,2, C

n
)

that satis"es the following conditions.

(i) Jobs are processed on machine 1 without idle time.
(ii) Jobs transported in the same batch are processed consecutively without idle time on both

machines.
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(iii) Jobs "nished earlier on machine 1 are delivered earlier to machine 2. Furthermore, the
sequence of jobs on machine 1 is the same as that on machine 2. Namely, it is a permutation
schedule.

(iv) Vehicle k delivers all of the batches with an index that can be written as k#qv for some
integer q*0.

(v) The departure times of two consecutive batches delivered by the same vehicle k (i.e. batches
B
k`qv

and B
k`(q`1)v

for some integer q*0) satisfy that either d
k`(q`1)v

"d
k`qv

#t, or
d
k`(q`1)v

is the completion time of the last job in B
k`(q`1)v

on machine 1, where t"t
1
#t

2
is

the transportation time of a round trip between machine 1 and machine 2.

Proof:

(i) If there exists idle time, we can always move the subsequent jobs earlier without increasing
the objective value.

(ii) If they are not processed consecutively, then we can always move jobs later on a machine
such that all of the jobs of a batch are processed consecutively and the completion time of the
batch is not delayed. The objective value does not increase as a result of these moves.
Furthermore, similar to (i), we can see that there should not be idle time between jobs in the
same batch.

(iii) Since we assume that each job has the same size and that the objective function is regular, it is
clear that jobs "nished earlier on machine 1 are delivered earlier to machine 2. Furthermore,
if the job sequence on machine 2 is not the same as that on machine 1, then we can
re-sequence jobs on machine 2 to be in the same order as those on machine 1 without
increasing the objective value.

(iv) Since we assume that the transportation time is independent of jobs and all the vehicles are
identical, it is optimal to use all of the vehicles once before we use them again. Thus, we can
index deliveries by vehicle k as k#qv.

(v) When vehicle k "nishes its (q#1)th delivery and returns to machine 1, there are two possible
cases. Either this vehicle will immediately transport jobs at time d

k`(q`1)v
"d

k`qv
#t, or it

will wait until more jobs are complete and hence d
k`(q`1)v

is the completion time of the last
job in B

k`(q`1)v
on machine 1. K

Before we start investigating more complex problems, we "rst note that among all of the
2-machine #ow shop problems with type-1 transportation, the simplest one is the problem
TF

2
Dv"n, c*1 DC

.!9
. In this problem, whenever a job is "nished on machine 1, there is always

a transporter available to transport it to machine 2. Hence, there is actually no constraint on
transportation capacity associated with this problem although there is a transportation time
between the two machines. This problem is a special case of the problem studied by Maggu and
Das [1] in which transportation times are job dependent.

In the following subsections, we consider various problems with constraints on transportation
capacity and on transportation times.

3.1. Problem TF2 Dv"1, c"1 DC
.!9

Two cases of the problem TF
2
Dv"1, c"1DC

.!9
have been studied in the literature. Kise [4]

proves the NP-hardness for the the case with general transportation times t
1

and t
2
. Hurink and

Knust [27] show that the case with a general t
1

and t
2
"0 is strongly NP-hard. Note that the

problem considered by Hurink and Knust is equivalent to the classical 3-machine #ow shop
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Figure 1. A schedule for the instance of the problem TF
2
Dv"1, c*3DC

.!9
.

problem with identical processing times on the second machine, i.e. F
3
Dp

j2
,p DC

.!9
, and hence

the latter problem is also strongly NP-hard.
We note that in practice, the two-way transportation times between two given machines are

usually identical, i.e. t
1
"t

2
. However, this problem can be shown easily to be equivalent to that

considered by Hurink and Knust [27]. Hence, the problem TF
2
Dv"1, c"1 DC

.!9
is strongly

NP-hard even if t
1
"t

2
.

Next, we consider the problem with one transporter but with greater capacity. Will the
problem still be NP-hard?

3.2. Problem TF2Dv"1, c*3 DC
.!9

¹heorem 1. The problem TF
2
Dv"1, c*3 DC

.!9
is strongly NP-hard even if t

1
"t

2
.

Proof. We show the NP-hardness of the problem by a reduction from the 3-PP. Given a 3-PP
instance, we construct an instance for our problem as follows:

n"3h#1 jobs, N"HXM3h#1N

Processing times: p
j1
"2a

j
, for j3H, p

3h`1,1
"1

p
j2
"2a

j
, for j3H, p

3h`1,2
"2b,

One-way transportation time t
1
"t

2
"b, capacity c*3, makespan threshold value

y"1#(2h#3)b.
PIf there is a solution to the 3-PP instance, we show that there is a schedule to our problem with
a makespan of no more than y. Given a solution to the 3-PP instance, H

1
, H

2
,2, H

h
, we

construct a schedule for our problem as shown in Figure 1.
In this schedule, the transporter departs from machine 1 at each time point 1#2kb, for

k"0, 1,2, h, and transports all of the jobs (3 jobs, except the "rst trip which carries only one job)
"nished on machine 1 by that time. It is easy to see that the above schedule is feasible and the
makespan is y.
QNow suppose that there exists a schedule for our problem with a makespan of no greater
than y. Since the total processing time of jobs on machine 2 equals 2(h#1)b, and the earliest
possible starting time of processing jobs on machine 2 is 1#t

1
"1#b"y!2(h#1)b, we can

see that (i) job 3h#1 is the "rst job scheduled; (ii) the "rst batch only contains job 3h#1 and is
transported from machine 1 at time 1; and (iii) there is no idle time on machine 2 after it starts
processing the "rst job at time 1#b.

Suppose that there are q batches in the schedule for some q'1. Denote these batches by B
1
,

B
2
,2,B

q
. Let the departure times of the transporter from machine 1 corresponding to these

MACHINE SCHEDULING WITH TRANSPORTATION CONSIDERATIONS 9
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batches be denoted by d
1
, d

2
,2, d

q
, respectively. Similarly, denote the corresponding arrival

times and completion times of these batches on machine 2 by r
1
, r

2
,2, r

q
, and C

1
, C

2
,2, C

q
,

respectively. Clearly, r
k
"d

k
#b for all k. From the discussion above, we know that B

1
contains

job 3h#1 only, and d
1
"1, r

1
"1#b, and C

1
"1#3b. Also, as discussed above, there is no

idle time between batches of jobs at machine 2. Thus, the second batch must arrive at machine
2 at a time no later than C

1
, i.e. r

2
)C

1
. Since the transporter takes t

1
#t

2
"2b units of time to

"nish one delivery and return to machine 1, then d
k`1

*d
k
#2b, for all k. This means

d
2
*1#2b and hence r

2
*1#3b"C

1
. This implies that r

2
"C

1
"1#3b and d

2
"1#2b.

Hence, we can see that +
i|B2

p
i1
)2b. If +

i|B2
p
i1
(2b, then +

i|B2
p
i2
(2b, and hence

C
2
(1#5b. On the other hand, it can be seen that r

3
*r

2
#2b"1#5b. This implies that there

will be some idle time between the batches B
2

and B
3

on machine 2. From the earlier discussion,
we know this will not happen. Thus +

i|B2
p
i1
"2b must be true.

By the same argument, we can show that for each other batch B
k
, for k"3,2,q, it must be

true that +
i|Bk

p
i1
"2b. Then it is easy to see that q"h#1 and the h batches B

2
, B

3
,2, B

h`1
form a solution to the 3-PP instance. K

Note that the complexity of the problem TF
2
Dv"1, c"2 DC

.!9
is still open. Since TF

2
Dv"1,

c"1 DC
.!9

and TF
2
Dv"1, c*3 DC

.!9
are both strongly NP-hard, it will be interesting to see

under what special cases the problem become polynomially solvable.

3.3. Problem TF2 Dpj1,p1, v*1, c*1DCmax

In this section, we assume that the number of vehicles v is "xed, i.e. it is not part of the problem
input. We show that the problem TF

2
Dp

j1
,p

1
, v*1, c*1 DC

.!9
is polynomially solvable by

a dynamic programming algorithm. The following lemma can be proved easily, and hence we
omit the proof.

¸emma 1.

(i) There exists an optimal solution for TF
2
Dp

j1
,p

1
, v*1, c*1 DC

.!9
such that jobs are

sequenced in the non-increasing order of p
j2

on both machines,
(ii) If t"t

1
#t

2
)vp

1
, where p

1
is the identical processing time of jobs on machine 1, then

there exists an optimal solution such that each job is transported from machine 1 to 2 immediate-
ly after it is completed on machine 1.

By Lemma 1(i), the sequencing problem is trivial. If t"t
1
#t

2
)vp

1
, then by Lemma 1(ii), the

decision of the starting time of each trip is also trivial. However, for the case with t'vp
1
, the

starting time of the trip of each vehicle needs to be decided, and this can be done by dynamic
programming. Let the jobs be reindexed such that p

12
*p

22
*2*p

n2
. Schedule jobs in the

order (1, 2,2, n) on machine 1 without idle time. Then the completion time of job j on machine
1 is, C

j1
"jp

1
, for j"1,2, n. For each transporter, there are only a "nite number of possible time

points for departure from machine 1. We can specify these time points following Property 1(iv)
and (v). When a transporter returns from machine 2 to 1, it will either transport a batch of jobs
immediately or wait until the completion time of a job before transporting the batch that contains
that job. In the "rst case, the departure time is x#t where x is the departure time of the last batch
transported by the transporter. In the second case, the departure time is C

j1
, for some job j. Note

that in the "rst case, x can be traced back and the departure time can be expressed as C
j1
#qt for

some q)n!j and some job j.

10 C.-Y. LEE AND Z.-L. CHEN
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In summary, the possible departure times of a transporter from machine 1 can be C
j1

, C
j1
#t,

C
j1
#2t,2, C

j1
#qt, for some q)n!j, and j"1,2, n. Thus, there are at most n2 candidate

departure time points. For ease of presentation, let us assume that we have ¹(¹ )n2) candidate
departure time points that are indexed as 1, 2,2,¹ such that earlier time points have smaller
indices. Let t(k) denote the actual time corresponding to departure time point k, for
k"1, 2,2,¹. Also, let t (0)"0.

De"ne F(k; j; s
1
, s

2
,2, s

v
) as the minimum completion time of a partial schedule containing the

"rst k jobs M1, 2,2,kN, provided that the current last v batches contain jobs j, j#1,2, k and are
transported at times t(s

1
), t(s

2
),2, t(s

v
) from machine 1 to 2, where s

h
3M0, 1, 2,2, ¹N for

h"1, 2,2, v and 0)s
1
)s

2
)2)s

v
. Note that if we know the available time of machine

2 before we deliver jobs j, j#1,2, k from machine 1 to 2, then the increase of makespan due to jobs
j, j#1,2, k is actually "xed. De"ne C(x; k; j; s

1
,2, s

v
) as the minimum increase of the makespan

due to jobs j, j#1,2, k, given that machine 2 is ready at time x for processing these jobs which are
transported in v batches, respectively, at times t(s

1
), t(s

2
),2, t(s

v
) from machine 1 to 2. Note that

x depends on the previous v deliveries and the corresponding jobs contained in these deliveries.
Namely, x"F ( j!1; i; b

1
, b

2
,2, b

v
) for some (i; b

1
, b

2
,2, b

v
) that satisfy the following conditions.

(i) 0)j!i)vc,
(ii) 0)b

1
)b

2
)2)b

v
, and t(s

h
)!t(b

h
)*t

1
#t

2
, for all h"1, 2,2, v.

For all q"1, 2,2, v, if t(s
q
) is not the completion time of some job on machine 1, then by

Property 1(v), b
q
is the unique time point such that t(b

q
)"t(s

q
)!t; otherwise, b

q
can be any point

with 0)b
q
)¹ which satis"es (i) and (ii).

First, let C(0; 0; 0; ,2, 0)"0. Given (x; k; j; s
1
,2, s

v
) with x*0, max M0, k!vc#1N)j)

k)n, and 0)s
1
)s

2
)2)s

v
, the value of C(x; k; j; s

1
,2, s

v
) can be calculated easily in O(v)

time by the following procedures:
Let g be the earliest time when machine 2 becomes available. Initially, let g"x. Let i be the "rst

job to be delivered next. Initially, let i"j and u"1.

(1) If (i#c!1)p
1
't(s

u
), let h"min Mk, [(t(s

u
)/p

1
]N where the notation [Z] represents the

largest integer no more than Z. Otherwise, h"min Mk, i#c!1N.
(2) Transport jobs Mi,2, hN by transporter u at time t(s

u
).

(3) Let g"max Mg, t(s
u
)#t

1
N#p (i, h), where p(i, h)"p

i2
#p

i`1,2
#2#p

h2
.

(4) Let i"h#1. If i"k#1 or u"v, then go to (5). Otherwise, let u"u#1 and go to (1).
(5) If i"k#1 and u"v, then set C(x; k; j; s

1
,2, s

v
)"g!x and terminate. Otherwise, let

C(x; k; j; s
1
,2, s

v
)"R and terminate.

Note that we can calculate p (1, j) for all j in advance. Then in Step (3), p (i, h)"p (1, h)!
p(1, i!1). Therefore, the above procedures take O(v) time because the main loop runs v
times.

3.3.1. DP algorithm for TF
2
D pj1,p1, v*1, c*1 DCmax

Initial conditions: F (0; 0; 0, 0,2, 0)"0
Recursive equations: For k"1, 2,2, n; j"max M1, k!vcN, max M1, k!vcN#1,2, maxM1,

k!vN; and 0)s
1
)s

2
)2)s

v
,

F (k; j, s
1
, s

2
,2, s

v
)"min MF( j!1; i; b

1
, b

2
,2, b

v
)#C(F ( j!1; i; b

1
, b

2
,2, b

v
); k; j; s

1
,

s
2
,2, s

v
) Di, b

1
,2, b

v
, satisfying the conditions (i) and (ii) described aboveN.

Optimal solution: min MF(n; j; s
1
, s

2
,2, s

v
) D all possible states ( j; s

1
, s

2
,2, s

v
)N
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¹ime complexity: O(cv`2vv`3n2v`1). Given k and j, for each q"1, 2,2, v, if s
q
is a time point

corresponding to the completion time of some job (there are at most O(cv) possible such s
q
's

because k!j)cv), then b
q
can have up to ¹#1 choices; otherwise, b

q
has only one choice (i.e.

t(b
q
)"t(s

q
)!t). Thus, there are a total of O((cv#1)n2) possible combinations of s

q
and b

q
in the

DP. Therefore, we have O((cv)vn2v) possible combinations of (s
1
,2, s

v
; b

1
,2, b

v
). For each

combination, there are a total of O ((cv)2n) possibilities of (k, j, i). Furthermore, as we indicated
earlier, it takes O(v) time to calculate the function C for each state. This veri"es the
overall complexity of the algorithm. Since the number of vehicles v is a "xed number, the problem
is polynomially solvable. For the special case with v"1, this algorithm has the complexity
O((cn)3).

Remarks.

(i) When v is not "xed, whether there exists a polynomial time algorithm for TF
2
Dp

j1
,p

1
,

v*1, c*1 DC
.!9

is left as an open question.
(ii) A similar DP algorithm with the same complexity can be easily constructed for the problem

TF
2
D p

j2
,p

2
, v*1, c*1 DC

.!9
. We omit the details of the algorithm.

4. SCHEDULING PROBLEMS WITH TYPE-2 TRANSPORTATION

In this section, we consider scheduling problems with type-2 transportation where jobs are "rst
processed on a single machine, parallel machines, or a #ow shop, then delivered by one or more
vehicles to the customer. We use the same notation as that in Section 3 and call jobs delivered
together in one shipment a batch. Let B

k
denote the kth batch of jobs delivered. Batches delivered

earlier have smaller indices. For batch k, let d
k
denote the departure time from the manufacturing

facility. Hence, d
k
#t

1
is the arrival time at the customer for all jobs in batch k.

4.1. Problem 1PDDv*1, c*1 DC
.!9

Let u"n!cq, where q is the largest integer no more than n/c. Clearly, u*0. For this problem, it
is easy to see that the following property holds.

Property 2. There exists an optimal schedule for the problem 1PD Dv*1, c*1 DC
.!9

that
satis"es the following conditions.

(i) Jobs are processed in nondecreasing order of processing times on the machine.
(ii) Each delivery batch contains consecutively processed jobs.
(iii) Earlier processed jobs are delivered no later than those processed later.
(iv) If u'0, then there are q#1 delivery batches. The "rst batch contains u jobs, and each of the

other batches contains c jobs.
(v) If u"0, then there are q delivery batches and each batch contains c jobs.

Proof:

(i) Can be proved by a pair-wise interchange argument.
(ii) If a batch contains non-consecutive jobs, then we can rebatch the jobs so that all the jobs in

the same batch are processed consecutively without increasing the objective value.
(iii) By (ii) and a pair-wise interchange argument on the batches.

12 C.-Y. LEE AND Z.-L. CHEN
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(iv) and (v) If a batch, with exception of the "rst batch, contains less than c jobs, we can always
"ll the batch with more jobs from earlier batches without increasing the objective value.

K

Let jobs be indexed in the non-decreasing order of their processing times. By this property, we
know exactly what jobs each batch contains and what time each batch is delivered. Let
P ( j)"+j

k/1
p
k
. Let r

h
denote the completion time of the last job in batch B

h
on the machine. Then

there are two cases.
Case 1: If u'0, then B

1
"M1, 2,2, uN, r

1
"P (u); and B

h
"Mu#(h!2)c#1,2, u#

(h!1)cN, r
h
"P (u#(h!1)c), for h"2,2, q#1.

Case 2: If u"0, then B
h
"M(h!1)c#1,2, hcN, r

h
"P(hc), for h"1,2, q.

Now we can see that the problem 1PD Dv*1, c*1 DC
.!9

reduces to the problem of schedul-
ing vehicles to deliver these batches so that the time when the last batch gets to the customer is
minimum. It is not di$cult to see that, if we view a vehicle as a machine and delivering a batch as
a job, then this vehicle dispatching problem is similar to the classical parallel machine makespan
problem with di!erent job arrival times and equal processing times, i.e. Pv Dr

j
, p

j
,p DC

.!9
, where

there are q (or q#1 if u'0) jobs and v identical parallel machines, the arrival time of job j is r
j
,

for j"1,2, q#1, and the processing times of jobs are all equal to t"t
1
#t

2
.

It is easy to see that sorting jobs in non-decreasing order of their arrival times and then
assigning available jobs in this order to the available machines is optimal for Pv Dr

j
, p

j
,p DC

.!9
.

Therefore, our problem 1PD Dv*1, c*1 DC
.!9

can be solved by assigning undelivered batches
to the available vehicles in the order of their completion times on the machine. It can be seen
easily that the overall time complexity for solving this problem is bounded by O(n log n). Note
that the makespan of the problem 1PD Dv*1, c*1 DC

.!9
is equal to the makespan of the

corresponding problem Pv Dr
j
, p

j
,p DC

.!9
minus t

2
.

4.2. Problem 1PD Dv*1, c*1 D +Cj

It is easy to see that there exists an optimal schedule for this problem that satis"es Property
2(i)}(iii). However, more than one partial batch may exist in an optimal schedule, i.e. Property
2(iv) and (v) may not hold for this problem.

In the following, we propose a DP algorithm similar to the one given in Section 3.3. Reindex
jobs in non-decreasing order of p

j
. Schedule jobs on the machine in the order (1, 2,2, n) without

idle time. Denote the completion time of job j on the machine by C
j
, for j"1, 2,2, n. Then use

the same arguments as that in Section 3.3 to identify a total of no more than n2 candidate
departure time points of vehicles. These time points are C

j
#kt, for k"0, 1,2, n!1, and

j"1, 2,2, n. Index these time points by 1, 2,2, ¹, where ¹)n2 such that an earlier time point
has a smaller index. Let t(h) denote the corresponding time of time point h, for h"1, 2,2, ¹ and
let t(0)"0. Following the same notation, we can construct a similar DP algorithm as the one
described in Section 3.3 where that the recursive relation should be changed to the following

F (k; j; s
1
, s

2
,2, s

v
)"min MF ( j!1; i; b

1
, b

2
,2, b

v
)#C (k; j; s

1
, s

2
,2, s

v
) Di; b

1
,2, b

v
N

where (i) F (k; j; s
1
, s

2
,2, s

v
) is de"ned as the minimum total completion time of a partial schedule

corresponding to the state (k; j; s
1
, s

2
,2, s

v
); (ii) the ranges for i and b

1
,2, b

v
are the same

respectively, as those in the algorithm of Section 3.3; and (iii) C(k; j; s
1
, s

2
,2, s

v
) is the minimum

total completion time of jobs j,2, k under the schedule corresponding to (k; j; s
1
, s

2
,2, s

v
). Note
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that similar to the discussion in Section 3.3, the value of C(k; j; s
1
, s

2
,2, s

v
) can be

easily calculated in O (v) time. The resulting algorithm has the same time complexity
O(cv`2vv`3n2v`1). When v"1, the complexity of this algorithm is O((cn)3) and it can be re"ned
to O(n3).

We note that for the special case of this problem with only one vehicle v"1, i.e. the problem
1PD Dv"1, c*1 D+ C

j
is equivalent to a problem studied in Reference [30].

4.3. Problem PmPD Dv"1, c*1 D+C
j

It is known that scheduling jobs in the non-decreasing order of their processing times is optimal
for the corresponding classical problem without transportation Pm DD+C

j
. In this section, we prove

that P
2
PDDv"1, c*1D+C

j
is NP-hard. Hence, the general problem PmPDDv"1, c*1D+C

j
is

NP-hard for m*2.

¹heorem 2. The problem P
2
PDDv"1, c*1 D+C

j
is NP-hard even if t

1
"t

2
.

Proof. We prove this by a reduction from the ESPP. Given an instance of ESPP, we construct
the following instance for our problem.

Number of jobs n"2h#1, N"HXM2h#1N"M1, 2,2, 2h#1N.
One-way transportation time t

1
"t

2
"(h2A/2#A/2h)/2. (Let t"t

1
#t

2
).

Processing times p
j
"h2A#a

j
, for j3H; p

2h`1
"t"h2A/2#A/2h.

Threshold of total completion time >"(2h#1)(2h#3)(h2A/2#A/2h)/2.

PIf there is a solution to the ESPP instance, we show that there is a schedule for the
above-constructed instance with a total completion time of no more than >. Let G be a subset of
H that solves the ESPP instance. We can construct the following schedule. Machine 1 "rst
processes job 2h#1, which is followed by jobs from G in nondecreasing order of processing times
(called SP¹ order), and machine 2 processes jobs from HCG in SPT order. Let C

*k+,1
and

C
*k+,2

denote the completion times of the kth job on machine 1 and machine 2, respectively. Since
+
j|G

a
j
"+

j|HCG
a
j
"A, and all the jobs in HCG and in H are in respective SPT orders, we can see

that C
*k+,1

)p
2h`1

#kh2A#kA/h"(1#2k)t, and C
*k+,2

)kh2A#kA/h"2kt. Let the vehicle
deliver only one job in each delivery trip. Let odd-numbered delivery trip i deliver the jth job
completed on machine 1 for some j with j"(i#1)/2, and let even-numbered delivery trip i deliver
the jth job completed on machine 2 for some j with j"i/2.

In the above schedule, the "rst delivery trip delivers job 2h#1 and departs at time p
2h`1

"t. It
is easy to see that by the time the vehicle is ready to deliver a job j3H, the job is already
completed. Hence, the vehicle is always busy starting from time t. Thus, the "nal completion time
(i.e. the time when it arrives at the customer) of the kth job delivered is kt#t

1
"(k#1/2)t. So,

the total completion time of all of the jobs is +
j|N

( j#1/2)t"[(2h#1)/2#(h#1)(2h#1)]t">.
QNow we show that if there exists a schedule with a total completion time of no more than >,
then there must be a solution to the ESPP instance. First, it is easy to see that, in an optimal
schedule for the given instance of the problem P

2
PD Dv"1, c*1 D+C

j
, the following properties

hold. (i) Jobs on either machine are processed in the SPT order, for otherwise, pair-wise
interchange argument can be applied to improve the solution. (ii) Job 2h#1 is processed "rst on
a machine (let it be machine 1 without loss of generality) since it is the job with the shortest
processing time. (iii) Besides job 2h#1, there are h jobs processed on machine 1 (denote the set of
these jobs as G), and h jobs processed on machine 2.

14 C.-Y. LEE AND Z.-L. CHEN
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To show (iii), note that C
* j+,1

*t#jh2A, for j"0, 2,2, n
1

and C
*j+,2

*jh2A, for
j"1, 2,2, n

2
where C

*j+,i
is the completion time of the jth job on machine i, and n

1
#1 and

n
2

are numbers of jobs on machines 1 and 2, respectively and n
2
"(2h!n

1
). Note that even if we

ignore the transportation constraint and allow each job to be delivered immediately after it is
completed on a machine, the total completion time of the schedule is at least

Z"

n1`1
+
j/1

(C
* j+,1

#t
1
)#

n2
+
j/1

(C
* j+,2

#t
1
)*

n1
+
j/0

(t#jh2A#t
1
)#

2h~n1
+
j/1

( jh2A#t
1
)

It can be shown that

n1
+
j/0

(t#jh2A#t
1
)#

2h~n1
+
j/1

( jh2A#t
1
)

is convex in n
1
. If n

1
Oh, then it can be shown that

n1
+
j/1

(t#jh2A#t
1
)#

2h~n1
+
j/1

( jh2A#t
1
)'>

hence Z'>, which is a contradiction. Thus, n
1
"n

2
"h.

Given a schedule with a total completion time of no more than>, we "rst show that the vehicle
must deliver only one job on each delivery trip. We will only consider the solution that satis"es
(i)}(iii) above. From the discussion above,

Z*

h
+
j/0

(t#jh2A#t
1
)#

h
+
j/1

( jh2A#t
1
)">!A(h#1)

On the other hand, we can see that the smallest di!erence of completion times of any two jobs in
the schedule is at least h2A/2!2A. Thus, if there is a delivery trip that delivers more than one job,
then the resulting total completion time will be more than Z#h2A/2!2A*>#h2A/2!
(Ah#3A)'>when h*4. Thus the vehicle can deliver only one job per delivery trip. Hence, job
2h#1 is the "rst job delivered, and the vehicle makes exactly n delivery trips.

Since >"(t#t
1
)#(2t#t

1
)#2#(nt#t

1
), the vehicle must depart at time t for the "rst

trip and have no idle time after t. Furthermore, we can see that the departure time for the kth
delivery trip is kt, for k"1, 2,2, n. On the other hand, we can assume that jobs processed earlier
are delivered earlier because otherwise we could follow this rule to improve the schedule. It is easy
to see that C

*h`1+,1
*C

*h+,2
*C

*j+,1
, for all j)h. Thus, the last job on machine 2 is delivered in the

(n!1)th trip, and the last job on machine 1 is delivered in the nth trip. This means that
C

*h`1+,1
)nt and C

*h+,2
)(n!1)t. Note that C

*h`1+,1
)nt is equivalent to t#h (h2A)#+

j|G
a
j

)nt"(2h#1)t"t#h(h2A)#A. Hence, +
j|G

a
j
)A. Similarly, we can show that

C
*h+,2

)(n!1)t implies +
j|HCG

a
j
)A. Thus, +

j|G
a
j
"+

j|HCG
a
j
"A since +

j|H
a
j
"2A. K

We note that Theorem 2 implies that problem PmPD Dv"1, c*1 D+C
j
is at least NP-hard.

However, whether it is strongly NP-hard is still an open question.

4.4. Problem F2PD Dv"1, c"1DC
.!9

The corresponding classical problem without transportation F
2
DDC

.!9
is polynomially solvable by

the well-known Johnson's algorithm [2]. In this section, we prove that this problem with type-2
transportation is strongly NP-hard.
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Figure 2. A schedule for the instance of the problem F
2
PDDv"1, c"1DC

.!9
.

¹heorem 3. The problem F
2
PDDv"1, c"1DC

.!9
is NP-hard in the strong sense even if

t
1
"t

2
.

Proof. We prove the theorem by a reduction from 3-PP. Given an instance of 3-PP, we
construct the following instance for our scheduling problem.

Number of jobs, n"4h#1, N"HXM3h#1,2, 4h#1N.
Processing times

p
j1
"b/2#a

j
/2, for j3H; p

3h`1,1
"0; p

j,1
"2b, for j"3h#2,2, 4h#1.

p
j2
"a

j
, for j3H; p

j2
"3b, for j"3h#1,2, 4h#1.

One-way transportation time, t
1
"t

2
"b/2.

Makespan threshold value, >"(4h#3)b#b/2.

PGiven a solution to the 3-PP instance, we can construct a schedule for processing jobs on the
two machines as shown in Figure 2, where jobs are scheduled in the sequence (3h#1, H

1
,

3h#2,2, H
h
, 4h#1). Based on this schedule, we let the vehicle deliver one job on each delivery

trip, and the kth delivery trip departs at time (k#2)b, for k"1, 2,2, 4h#1; and hence, the
vehicle has no idle time after it "rst departs at time 3b. Job 3h#j, for j"1, 2,2, h#1, is
delivered on the (4 j!3)th delivery trip, and the three jobs in H

j
, for j"1, 2,2, h, are delivered,

respectively, on the (4j!2)th, (4j!1)th, and 4jth trips. It is easy to see that this schedule is
feasible and its makespan is (4h#3)b#b/2">.
QSuppose that there is a schedule for the instance of our problem with a makespan of no more
than >. We "rst show that in any feasible schedule for the instance of our problem with
a makespan of no more than >, the following must be true: (i) there is no idle time on machine 2;
(ii) job 3h#1 is processed "rst; and (iii) the vehicle starts at time 3b and has no idle time between
consecutive deliveries, i.e. the kth delivery trip departs at time 3b#(k!1)b, for all k"1, 2,2, n.
The total processing time of jobs on machine 2 is (4h#3)b">!b/2. It takes b/2 units of time to
deliver the last job to the destination, and hence machine 2 should have no idle time. This shows
(i). If a job other than 3h#1 is processed "rst, then the completion time of the last job will be
greater than (4h#3)b, which implies that the makespan of the problem will be greater than >.
This shows (ii). Since the "rst job completes at time 3b, the vehicle starts no earlier than that time.
Furthermore, since there are 4h round trips and one one-way trip, the total transportation time is
at least 4hb#b/2. Hence, the vehicle has to start at time 3b and there is no idle time after it starts.
This shows (iii).

Now, we prove that there is a solution to the instance of 3-PP. Note that we only need to
consider permutation schedules because other types of schedules can be transformed into
permutation schedules without increasing the objective value. This can be done by simply

16 C.-Y. LEE AND Z.-L. CHEN
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rescheduling jobs on machine 2 in the same order as on machine 1. Given a permutation schedule
with a makespan of no more than >, by the results (i)}(iii) shown earlier, we can see that in this
schedule jobs are scheduled in the following sequence: 3h#1, H

1
, 3h#2,

H
2
,2, 4h, H

h
, 4h#1, H

h`1
where H

i
, for i"1, 2,2, h#1, is a subset of jobs from H (H

1
and

H
h`1

could be empty). Let the number of items in H
1

be k. In the following, we show that k"3,
and the total processing time of jobs in H

1
on machine 1 is 2b. This implies that +

j|H1
a
j
"b. By

the same argument, it can be shown that each other H
k
, for k"2,2, h, contains exactly 3 jobs

and +
j|Hk

a
j
"b. Hence, H

h`1
is empty and the subsets H

1
, H

2
,2, H

)
give a solution to the 3-PP

instance.
Suppose that k)2. Then the completion time of job 3h#2 on machine 2 is

6b#+
j|H1

p
j2
'4b#kb. On the other hand, job 3h#2 is the (k#2)th job delivered and hence it

must be completed by time 3b#(k#1)b"4b#kb. This results in a contradiction.
Now, suppose that k*4. Then the completion time of job 3h#2 on machine 1 is

C
3h`2,1

"(k/2#2)b#g/2, and the completion time of the last job of H
1

on machine 2 is
C

L
"3b#g, where g"+

j|H1
a
j
. When k*4, g((k!2)b, and hence C

L
!C

3h`2,1
"

b!kb/2#g/2(0. Thus, there is an idle time on machine 2 between the last job of H
1

and job
3h#2. This violates the property (i) derived earlier.

We thus conclude that k"3. We now prove that +
j|H1

a
j
"b. Suppose that +

j|H1
a
j
(b. Then

+
j|H1

p
j2
(2b. The completion time of job 3h#2 on machine 1 is equal to (3

2
)b#(1

2
)+

j|H1
a
j
#2b

which is greater than 3b#+
j|H1

a
j
, the completion time of the last job of H

1
on machine 2. Hence,

there is an idle time on machine 2 between the last job of H
1

and job 3h#2. This violates the
property (i). On the other hand, if +

j|H1
a
j
'b then the completion time of job 3h#2 on machine

2 is greater than 7b, and it is thus impossible for the vehicle to deliver job 3h#2 at time 7b. It
must be true that +

j|H1
a
j
"b. K

Note that the problem F
2
PDDv"1, c"1DC

.!9
is similar to the classical problem

F
3
Dp

j3
,p DC

.!9
. The latter problem can be shown to be strongly NP-hard by a proof similar to

that of F
2
PDDv"1, c"1DC

.!9
. Hurink and Knust [27] have independently showed that

F
3
Dp

j3
,p DC

.!9
is strongly NP-hard.

4.5. Problem F
2
PD Dv"1, c*4 ,xed DCmax

In this section, we show that the problem F
2
PDDv"1, c"kDC

.!9
with any "xed k*4 is

strongly NP-hard. We have seen in Section 4.4 that the problem F
2
PDDv"1, c"1DC

.!9
is

strongly NP-hard. Although we believe that the problems F
2
PDDv"1, c"2DC

.!9
and

F
2
PDDv"1, c"3DC

.!9
are also strongly NP-hard, we are not able to prove that now. Namely,

the complexity of these two problems is still unknown.

¹heorem 4. The problem F
2
PDDv"1, c"kDC

.!9
with any "xed k*4 is strongly NP-hard.

Proof. To prove this theorem, we "rst show that the following problem, which we call
k-Partition Problem (k-PP), is strongly NP-hard, for any "xed k*4. Then the theorem will be
proved by a reduction from (k!1)-PP.

K-partition problem (k-PP). Given ku items, G"M1, 2,2, kuN, each item j3G has a positive
integer size x

j
satisfying +

j|G
x
j
"uq, for some integer q, the question asks whether there are

u disjoint subsets G
1
, G

2
,2, G

u
of G such that each subset contains exactly k items and its total

size is equal to q.
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We show that k-PP is strongly NP-hard by transforming 3-PP to k-PP. Given an instance of
3-PP, we construct the following instance for k-PP.

Number of items, ku with u"h, G"HXM3h#1,2, khN
Sizes of items, x

j
"(k!3)a

j
, for j3H, x

j
"A!b, for j3GCH, where A is su$ciently large

such that A'khb
In this instance, q"(k!3)A.

(i) If there is a solution to the 3-PP instance, H
1
,2, H

h
, then add k!3 items from

M3h#1,2, khN to each H
i
, for i"1,2, h. Let the resulting sets be denoted as G

1
,2, G

h
. It is

easy to see that there are exactly k items in each G
i
and the total size of the items in G

i
is exactly

q. Hence, G
1
,2, G

u
form a solution to the k-PP instance.

(ii) If there is a solution to the k-PP instance, G
1
,2, G

u
, then "rst we can see that each G

i
must

contain exactly k!3 items from M3h#1,2, khN. Thus, each G
i
contains exactly 3 items from

H. Let H
i

denote the set of these three items. The total size of H
i

is thus
q!(k!3)(A!b)"(k!3)b. Hence, +

j|H1
a
j
"b, for each i. This implies that H

1
,2, H

h
form a solution to the 3-PP instance.

Combining the results of (i) and (ii), we have shown that k-PP with any "xed k*4 is strongly
NP-hard. In the following, we show the strong NP-hardness of our scheduling problem
F
2
PDDv"1, c"kDC

.!9
with any "xed k*4 by a reduction from (k!1)-PP. Given an instance

of (k!1)-PP, we construct an instance of the scheduling problem as follows:

Number of jobs, n"ku#1, N"GXM(k!1)u#1,2, ku#1N
Processing times, p

j1
"0, p

j2
"2(x

j
#Q), for j3G, where Q is su$ciently large such

that Q'nq,

p
(k~1)u`1,1

"0, p
(k~1)u`1,2

"2

p
j1
"2R, p

j2
"2, for j3M(k!1)u#2,2, ku#1N, where R"(k!1)Q#q#1

One-way transportation time, t
1
"t

2
"R

Makespan threshold value, >"2uR#R#2.

PIf there is a solution to the (k!1)-PP instance, we show that there is a schedule to the instance
of our scheduling problem with the makespan no more than>. Given a solution to the (k!1)-PP
instance, we construct a schedule for processing jobs on the two machines as shown in Figure 3.
Based on this schedule, we form u#1 delivery batches, B

1
"M(k!1)u#1N, and

B
j`1

"G
j
XM(k!1)u#j#1N, for j"1, 2,2, u. The departure times of these batches are,

d
1
"2, and d

j`1
"2jR#2, for j"1, 2,2, u. It is easy to see that this schedule is feasible and the

makespan of this schedule is exactly >.
QWe now show that if there is a schedule for the instance of our problem with the makespan no
more than >, then there is a solution to the instance of (k!1)-PP. We "rst prove that in any
feasible schedule with the makespan no more than >, the following must be true:

(1) The vehicle makes exactly u#1 deliveries.
(2) The "rst delivery batch B

1
contains job (k!1)u#1 only and its departure time d

1
"2.

(3) The vehicle has no idle time between consecutive deliveries.
(4) There is no idle time between jobs on machine 2.

18 C.-Y. LEE AND Z.-L. CHEN
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Figure 3. A schedule for the instance of the problem F
2
PDDv"1, c"kDC

.!9
.

(1) If the vehicle makes more than u#1 deliveries, then the makespan will be at least
(u#1)(t

1
#t

2
)#t

1
"2(u#1)R#R'>. This means that the vehicle makes at most

u#1 deliveries. On the other hand, since its capacity is k and there are ku#1 jobs, at least
u#1 deliveries are necessary. This shows that there are exactly u#1 deliveries.

(2) If the "rst batch contains a job from NCM(k!1)u#1N, then the departure time of the "rst
batch must be later than 2. Since the vehicle makes exactly u#1 deliveries, the makespan
will be more than 2#u(t

1
#t

2
)#t

1
">. This shows that the "rst batch can only contain

job (k!1)u#1 and its departure time must be 2.
(3) By (1) and (2).
(4) If there is an idle time on machine 2, then the completion time of the last job on machine

2 will be more than +
j|G

p
j2
"2uR#2, which means that the makespan will be more than

2uR#2#t
1
">. Thus there should be no idle time on machine 2.

Now, we are ready to prove the main result. By (2) and (3), it is easy to see that the departure
time of delivery batch j is d

j
"2#( j!1)R, for j"1,2, u#1. By (1) and (2), we can see that

each delivery batch B
j
, for j"2,2, u#1, contains exactly k jobs. Without loss of generality, let

us assume that the u jobs that require processing on machine 1, i.e. jobs (k!1)u#2,2, ku#1,
are scheduled on both machines in this order. (We can assume so because these jobs are identical.)
Now, let us consider B

2
. Clearly, all the jobs in B

2
are processed and completed in the time

interval (d
1
, d

2
]"(2, 2R#2] on machine 2. In this interval, at most k!1 jobs from G can be

processed and completed on machine 2 because any k or more jobs of G will have a total
processing time more than 2kQ'2R"d

2
!d

1
. On the other hand, except jobs from G, the only

other job that can be completed on machine 2 in this interval is job (k!1)u#2. Thus, B
2

must
contain k!1 jobs from G and job (k!1)u#2. Furthermore, job (k!1)u#2 is the last job in
the batch and is completed at time 2R#2 because 2R#2 is the earliest possible time it can be
completed on machine 2. Let G

1
denote the set of the k!1 jobs from G. Consider the total

processing time of these k!1 jobs on machine 2, P(G
1
)"+

i|G1
p
i2
"2(k!1)Q#2+

i|G1
x
i
. We

can see P(G
1
))2R!2 because they must be completed no later than 2R at which job

(k!1)u#2 starts processing. This implies that +
i|G1

x
i
)q. On the other hand, by equation (4),

we can see that +
i|G1

x
i
*q because otherwise there will be some idle time on machine 2 between

job (k!1)u#2 and the last job of G
1
. All this shows that G

1
contains k!1 jobs and +

i|G1
x
i
"q.

Applying the same arguments to each delivery batch B
j
and the time interval (d

j~1
, d

j
], for

j"3, 4,2, u#1, we can easily show that each B
j
contains exactly k!1 jobs from G and job

(k!1)u#j which are all processed and completed in the interval (d
j~1

, d
j
] on machine 2. Let

G
j~1

denote the set of the k!1 jobs from G in the batch B
j
. It can be proved in the same way that
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+
i|Gj~1

x
i
"q, for each j"3, 4,2, u#1. Therefore, G

1
,2, G

u
form a solution to the (k!1)-PP

instance. K

The following property holds for the problem F
2
PDDv"1, c"kDC

.!9
with any k.

Property 3. There exists an optimal schedule for the problem F
2
PDDv"1, c"kDC

.!9
such

that (1) earlier processed jobs are delivered earlier; and (2) the "rst delivery trip delivers
n!(vn/kw!1)k jobs, and each other delivery trip delivers k jobs.

Proof. It is easy to see that (1) is true. To show that (2) is true, we "rst observe that the last
delivery batch must contain k jobs; otherwise, some jobs in the previous batch can be delayed and
put into this last batch without increasing the objective value. The argument applies to other
batches except the "rst one. K

As discussed above, the case with c"1, and the case with a "xed c*4, respectively, are
NP-hard in the strong sense, and it is an open question for the case with c"2 or 3. Now, the
interesting question is whether the problem is NP-hard in the case with the capacity c not "xed in
advance. If c*n, then an obvious optimal delivery schedule is to deliver all the jobs together
when they are completed on machine 2, and Johnson's algorithm is optimal for scheduling jobs
on the machines. Thus, it is a polynomially solvable problem. If c"n!1, we still have
a polynomial solution. This can be done by "rst "xing one job to be processed "rst and to be
delivered alone. We then schedule the remaining jobs by Johnson's Algorithm and deliver all of
them in one batch. Depending which one is selected as the "rst job, there are n schedules
generated. We pick the one with the smallest makespan. Hence, combining these two cases, we
can see that the problem F

2
PDDv"1, c*n!1DC

.!9
is polynomially solvable. Following the

same argument, it can be shown that F
2
PDDv"1, c*n!kDC

.!9
is polynomially solvable for

"xed k. The next section shows that this problem becomes NP-hard in the ordinary sense when
c"n/2.

4.6. Problem F2PD Dv"1, c"n/2DC
.!9

¹heorem 5. The problem F
2
PDDv"1, c"n/2DC

.!9
is NP-hard even if t

1
"t

2
.

Proof. We prove the case with n as an even number. The proof technique can be easily
extended to the other case where n is an odd number. We use a reduction from the ESPP. Given
an instance of ESPP, we construct the following instance for our problem with an even n.

Number of jobs n"2h#2, N"HXM2h#1, 2h#2N"M1, 2,2, 2h#2N
Processing times:

p
j1
"0, for j3H, p

2h`1,1
"p

2h`2,1
"(h#1)A,

p
j2
"A#a

j
, for j3H; p

2h`1,2
"p

2h`2,2
"2

Capacity of the vehicle c"h#1
Transportation time t

1
"t

2
"(h#1)A/2#1

Makespan threshold value >"5(h#1)A/2#5

PIf there is a solution to the ESPP instance, we show that there is a schedule for our problem
with a makespan of no more than>. Let G be a subset of H that solves the ESPP instance. We can
construct a schedule for the instance of the problem F

2
PDDv"1, c"n/2DC

.!9
by processing
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jobs on both machines in the order (G, 2h#1, GCH, 2h#2). Deliver all the jobs in G together
with job 2h#1 in one batch at time (h#1)A#2, and deliver all remaining jobs in another batch
at time 2(h#1)A#4. Hence, the makepsan is equal to 2(h#1)A#4#t

1
">.

QNow, we show that if there exists a schedule with a makespan of no more than >, then
there must be a solution to the ESPP instance. First, it is easy to see that in a schedule
with a makespan of no more than >, the following must be true: (i) there is no idle time on
machine 2; (ii) there are only two deliveries, one at the completion time of the (h#1)th job and the
other at the completion time of all jobs; and (iii) the "rst delivery must be no later than
(h#1)A#2.

Without loss of generality, let job 2h#1 be processed earlier than job 2h#2. Let the sequence
of jobs on machine 2 be (H

1
, 2h#1, H

2
, 2h#2, H

3
), where H

1
, H

2
, and H

3
are subsets of H and

H
1

and H
3

may be empty. If H
1

contains more than h jobs, then the completion time of the "rst
h#1 jobs on machine 2 is greater than (h#1)A#(h#1)'(h#1)A#2 (recall that a

j
is

a positive integer), contradicting the fact that the "rst h#1 jobs are delivered no later than
(h#1)A#2. On the other hand, if H

1
contains less than h jobs, then the completion time of the

last job of H
1

on machine 2 is smaller than (h#1)A while the completion time of job 2h#1 on
machine 1 is (h#1)A. Hence, there is an idle time on machine 2, a contradiction. Hence,
H

1
contains exactly h items. Using a similar argument, we can see that the total processing time of

the jobs of H
1

on machine 2 is equal to (h#1)A, which implies +
j|H1

a
j
"A. Similarly, we can

show that H
2

contains h jobs and the total processing time of the jobs of H
2

on machine 2 is
(h#1)A, and hence H

3
is empty and +

j|H2
a
j
"A. This shows that there is a solution to the ESPP

instance. K

It can be shown easily that there exists an optimal schedule for the problem F
2
PDDv"1,

c"n/2DC
.!9

such that jobs are delivered by two trips (each one carries n/2 jobs) and
jobs delivered on the "rst and second trips are processed in their respective orders determined
by Johnson's algorithm. Hence, we can "rst apply Johnson's algorithm to our problem and
then partition the jobs into two groups. The "rst group is delivered in the "rst trip and
the remaining jobs are delivered in the second trip. In order to partition jobs into two groups
we can design a pseudo-polynomial dynamic programming algorithm to solve our problem
optimally. The recursive equations in the algorithm are quite standard [31] and are omitted
here.

The existence of such a pseudo-polynomial algorithm means that the problem F
2
PDDv"1,

c"n/2DC
.!9

is NP-hard in the ordinary sense.

4.7. A heuristic for the problem F
2
PDDv"1, c"kDC

.!9

Heuristic 1. Get a schedule for job processing on the two machines by applying Johnson's
Algorithm. Then deliver n!(vn/kw!1)k jobs in the "rst delivery trip and k jobs in each other
delivery trip.

¸emma 2. If we apply Heuristic 1 to the problem F
2
PDDv"1, c"kDC

.!9
with t

1
*t

2
and let

C
H

be the makespan obtained, then C
H
)(1#(2n!2k)/(2n!k))C* where C* is the optimal

makespan, and the bound is tight.

Proof. Let A be the makespan for applying Johnson's Algorithm to the classical problem
F
2
DDC

.!9
. We have C

H
)A#vn/kw(t

1
#t

2
)!t

2
and C**max MA#t

1
, vn/kw(t

1
#t

2
)!t

2
)N.
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Table I. Summary of complexity status of scheduling problems with transportation

Problem Complexity Reference

¹ype-1 transportation

TF
2
Dv"1, c"1 DC

.!9
SNP Hurink and Knust [27]

TF
2
Dv"1, c"2 DC

.!9
Open

TF
2
Dv"1, c*3 DC

.!9
SNP Section 3.2

TF
2
Dp

j1
"p

1,
v*1, c*1 DC

.!9
P Section 3.3

TF
2
Dp

j2
"p

2,
v*1, c*1 DC

.!9
P Section 3.3

TF
2
Dv*n, c*1 DC

.!9
P Maggu and Das [1]

¹ype-2 transportation

1PD Dv*1, c*1 DC
.!9

P Section 4.1
1PD Dv"1, c*1 D+C

j
P Ahmadi et al. [30]

1PD Dv*1, c*1 D+C
j

P Section 4.2
P
2
PD D v"1, c*1 D+C

j
NP Section 4.3

F
2
PD D v"1, c"1 DC

.!9
SNP Section 4.4

F
2
PD D v"1, c"2 DC

.!9
Open

F
2
PD D v"1, c"3 DC

.!9
Open

F
2
PD D v"1, c*4, "xed c DC

.!9
SNP Section 4.5

F
2
PD D v"1, c"n/2 DC

.!9
NP Section 4.6

F
2
PD D v"1, c*n!k, "xed k DC

.!9
P Section 4.5

Note: P: polynomially solvable; SNP: NP-hard in the strong sense; NP: NP-hard; Open: unknown
complexity.

Hence,

C
H

C*
)1#

(vn/kw!1)(t
1
#t

2
)

C*

)1#
(vn/kw!1)(t

1
#t

2
)

(vn/kw!1)(t
1
#t

2
)#t

1

)1#
vn/kw!1

vn/kw!1/2

)1#
2n!2k
2n!k

Consider an example with the following instance: p
j1
"e for j"1,2, n; p

j2
"e for

j"1,2, n!1 and p
n2
"n!k, where e is a very small number. Furthermore, let t

1
"t

2
"k/2.

The optimal solution is to sequence jobs in the order: J
1
, J

2
,2, J

n
, and deliver n!(vn/kw!1)k

jobs in the "rst delivery and then k jobs each in the remaining deliveries, resulting
C*"e(n!(vn/kw!1)k#1)#(vn/kw!1)k#k/2. Heuristic 1 may sequence jobs in the order:
J
n
, J

1
,2, J

n~1
, and deliver n!(vn/kw!1)k jobs in the "rst delivery and then k jobs each in the

remaining deliveries, resulting C
H
"e(n!(vn/kw!1)k)#(n!k)#(vn/kw!1)k#k/2. When

e approaches 0, C
H
/C* approaches (1#(2n!2k)/(2n!k)). K

Remark. If k"n/2, then C
H
/C*)5/3.
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5. CONCLUSION

Motivated by logistics management in practice, the machine scheduling problems we have
studied take into account explicitly both transportation capacity and transportation times. We
have classi"ed the computational complexity of various scheduling problems with type-1 or -2
transportation by either proving their NP-hardness or providing polynomial algorithms. The
results of this paper, together with related existing results, are summarized in Table I. Note that
the dynamic programming algorithms (polynomial or pseudo-polynomial) developed in the
paper may be re"ned so that a possibly lower complexity can be achieved. However, since we are
mainly interested in classifying the complexity status of the problems, we leave possible re"ne-
ment of these algorithms for future research.

Many interesting topics remain for future exploration. First of all, the open problems posed in
this paper need to be resolved. Secondly, various polynomially solvable special cases need to be
identi"ed. Thirdly, more realistic models need to be investigated, including problems with type-1
transportation that consider constraints on bu!er space and problems with type-2 transportation
that involve multiple customers such that vehicle routing decisions have to be addressed as well.
We have already begun conducting related research in this direction.
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