
 Open access Proceedings Article DOI:10.1109/CLUSTER.2015.13

Machines Tuning Machines: Configuring Distributed Stream Processors with
Bayesian Optimization — Source link

Lorenz Fischer, Shen Gao, Abraham Bernstein

Institutions: University of Zurich

Published on: 08 Sep 2015 - International Conference on Cluster Computing

Topics: Bayesian optimization, Spark (mathematics) and Stream processing

Related papers:

 Towards automatic parameter tuning of stream processing systems

 Taking the Human Out of the Loop: A Review of Bayesian Optimization

 Into the Storm: Descrying Optimal Configurations Using Genetic Algorithms and Bayesian Optimization

 Multi-Stage Distributed Computing for Big Data: Evaluating Connective Topologies

 Distributed Training of Universal Multi-Nested Neurons

Share this paper:

View more about this paper here: https://typeset.io/papers/machines-tuning-machines-configuring-distributed-stream-
euzqsa6r4k

https://typeset.io/
https://www.doi.org/10.1109/CLUSTER.2015.13
https://typeset.io/papers/machines-tuning-machines-configuring-distributed-stream-euzqsa6r4k
https://typeset.io/authors/lorenz-fischer-49ysq9o18r
https://typeset.io/authors/shen-gao-1bgf27hcgf
https://typeset.io/authors/abraham-bernstein-9zl5cv8qd8
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/conferences/international-conference-on-cluster-computing-3aarziaw
https://typeset.io/topics/bayesian-optimization-3pifrma8
https://typeset.io/topics/spark-mathematics-3k3rt2z6
https://typeset.io/topics/stream-processing-w5h0vlzd
https://typeset.io/papers/towards-automatic-parameter-tuning-of-stream-processing-5995bi4lcp
https://typeset.io/papers/taking-the-human-out-of-the-loop-a-review-of-bayesian-4olcznoudw
https://typeset.io/papers/into-the-storm-descrying-optimal-configurations-using-3z01icc1u2
https://typeset.io/papers/multi-stage-distributed-computing-for-big-data-evaluating-vjed49skdp
https://typeset.io/papers/distributed-training-of-universal-multi-nested-neurons-1yi5g84cqm
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/machines-tuning-machines-configuring-distributed-stream-euzqsa6r4k
https://twitter.com/intent/tweet?text=Machines%20Tuning%20Machines:%20Configuring%20Distributed%20Stream%20Processors%20with%20Bayesian%20Optimization&url=https://typeset.io/papers/machines-tuning-machines-configuring-distributed-stream-euzqsa6r4k
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/machines-tuning-machines-configuring-distributed-stream-euzqsa6r4k
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/machines-tuning-machines-configuring-distributed-stream-euzqsa6r4k
https://typeset.io/papers/machines-tuning-machines-configuring-distributed-stream-euzqsa6r4k

Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2015

Machines Tuning Machines: Configuring Distributed Stream Processors with

Bayesian Optimization

Fischer, Lorenz ; Gao, Shen ; Bernstein, Abraham

Abstract: Modern distributed computing frameworks such as Apache Hadoop, Spark, or Storm distribute
the workload of applications across a large number of machines. Whilst they abstract the details of distri-
bution they do require the programmer to set a number of configuration parameters before deployment.
These parameter settings (usually) have a substantial impact on execution efficiency. Finding the right
values for these parameters is considered a difficult task and requires domain, application, and frame-
work expertise. In this paper, we propose a machine learning approach to the problem of configuring
a distributed computing framework. Specifically, we propose using Bayesian Optimization to find good
parameter settings. In an extensive empirical evaluation, we show that Bayesian Optimization can effec-
tively find good parameter settings for four different stream processing topologies implemented in Apache
Storm resulting in significant gains over a parallel linear approach.

DOI: https://doi.org/10.1109/CLUSTER.2015.13

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-113647
Conference or Workshop Item
Accepted Version

Originally published at:
Fischer, Lorenz; Gao, Shen; Bernstein, Abraham (2015). Machines Tuning Machines: Configuring Dis-
tributed Stream Processors with Bayesian Optimization. In: 2015 IEEE International Conference on
Cluster Computing (CLUSTER 2015), Chicago, Illinois, USA, 8 September 2015 - 11 September 2015,
IEEE Computer Society.
DOI: https://doi.org/10.1109/CLUSTER.2015.13

Machines Tuning Machines:

Configuring Distributed Stream Processors with Bayesian Optimization

Lorenz Fischer

Department of Informatics

University of Zurich

Switzerland

lfischer@ifi.uzh.ch

Shen Gao

Department of Informatics

University of Zurich

Switzerland

shengao@ifi.uzh.ch

Abraham Bernstein

Department of Informatics

University of Zurich

Switzerland

bernstein@ifi.uzh.ch

Abstract—Modern distributed computing frameworks such
as Apache Hadoop, Spark, or Storm distribute the workload
of applications across a large number of machines. Whilst
they abstract the details of distribution they do require the
programmer to set a number of configuration parameters
before deployment. These parameter settings (usually) have
a substantial impact on execution efficiency. Finding the right
values for these parameters is considered a difficult task and
requires domain, application, and framework expertise.

In this paper, we propose a machine learning approach to
the problem of configuring a distributed computing framework.
Specifically, we propose using Bayesian Optimization to find
good parameter settings. In an extensive empirical evaluation,
we show that Bayesian Optimization can effectively find good
parameter settings for four different stream processing topolo-
gies implemented in Apache Storm resulting in significant gains
over a parallel linear approach.

Keywords-distributed stream processing; configuration; op-
timization; Storm

I. INTRODUCTION

The configuration of a distributed system is crucial for

both good performance and to prevent system failures [1].

Many modern distributed programming frameworks offer a

wide range of configuration parameters for tuning purposes.

The performance of a system deployment depends on the

interplay between all parameters with the implementation

of the application logic, the underlying hardware, as well as

the data that is processed by the system. Hence, choosing

suitable configuration parameters given a system imple-

mentation and associated infrastructure can be difficult and

requires expert knowledge of both the problem domain and

the technology used to build the system. Even experts require

careful experimentation as the interactions between different

parameters are hard to predict.1

To address this tedious manual parameter experimenta-

tion, this paper proposes an automated process based on

Bayesian Optimization for finding optimal parameter con-

figurations. Specifically, we present empirical results from a

series of experiments in which we evaluated the suitability

of Bayesian Optimization for the configuration of distributed

1www.slideshare.net/miguno/apache-storm-09-basic-training-verisign

stream processing systems built using Apache Storm.2 Our

contributions are:

• We present an auto-configuration approach for dis-

tributed stream processing systems (SPS) using

Bayesian Optimization.

• We provide an extensive empirical evaluation showing

the effectiveness of our approach on a cluster of 80

machines (320 cores) running Storm topologies (appli-

cations) of varying sizes and characteristics.

• We introduce a reusable benchmark consisting of a set

of operator graphs as well as generation approach.

The remainder of this paper is organized as follows:

next, we first present related work. We then describe the

system used for the evaluations and the give an introduction

to Bayesian Optimization in Section III. Our experimental

setup and results are presented in Sections IV and V,

respectively. We close with conclusions in Section VI.

II. RELATED WORK

A. Configuration of distributed stream processing systems

The problem of how to configure distributed (stream)

query systems [2] and how to react to dynamically changing

properties of stream processors [3] has been extensively

studied in the past decade. Often, cost models have been

proposed to capture complexities of these systems [4], [5] to

optimize the use of resources [4], [6] or query execution [7],

[8]. Others have applied Covariance Matrix Adaption (CMA)

[9] or searched the parameter space using an experimentally

constructed parameter dependency graph [1]. The problem

we tackle in this paper differs from the problem of cost-

model based solutions in two aspects: first, we do not aim

at changing the structure of the streaming application (or

the query), but focus on tuning of configuration parameters

to make the execution more efficient. Second, we do not

attempt to build a complete (closed-form) mathematical

model of the system, but treat the application as a blackbox

function that we optimize using empirical sampling. In

2https://storm.apache.org

contrast to the approaches presented in [9] and [1], we

employ a probabilistic bayesian approach.

Similar to our goal, some studies have focused on one

specific parameter: the degree of parallelization. One line of

work investigates auto-parallelization – the process of auto-

matically choosing the degree of parallelism for operators in

a task graph [10]. It has been extensively studied in the realm

of IBM’s System-S [11] as a theoretical model. Schneider

et al. [12], [13] extended these results and presented an

algorithm to dynamically change the workload on operators

in response to changes in the incoming data stream. In

contrast to pure auto-parallelization, our approach treats the

parallelism of each operator of the topology as only one of

many system parameters that need to be tuned. Note that

we do not cover dynamic auto-parallelization as we assume

mostly static workloads.

B. Applications of Bayesian Optimization

Bayesian Optimization [14] is a probabilistic technique

to optimize systems with unknown cost functions. It has

successfully been applied in cases where the performance of

systems is strongly dependent on configuration parameters,

and no mathematical closed-form cost model is known such

as finding good hyperparameter settings in machine learning

problems (e.g., classification [15], [16], [17] or feature

selection [16]). There are several Bayesian Optimization

frameworks (e.g, Spearmint3 [17], SMAC4[18], HyperOpt5,

or BayesOpt6) available for research. We are not aware of

any previous work that has investigated the applicability of

Bayesian Optimization for the configuration of distributed

systems or for distributed stream processing systems in

particular.

III. SYSTEM DESCRIPTION

This section describes how we employ Bayesian Opti-

mization to configure a distributed stream processing sys-

tem based on the Storm distributed realtime computation

framework. We first give a short introduction into Storm

and Trident; the two technologies we use to implement

our experiments. We then formally describe the process

of Bayesian Optimization before presenting Spearmint, the

optimizer used in the experiments.

A. Distributed Stream Processing with Storm

Many distributed computation frameworks have been

proposed in recent years. One representative of such a

framework aimed at distributed stream processing is the

Storm framework. In contrast to batch-based distributed

systems such as Apache MapReduce,7 Storm ingests data

3https://github.com/HIPS/Spearmint
4http://www.cs.ubc.ca/labs/beta/Projects/SMAC
5http://jaberg.github.io/hyperopt
6http://rmcantin.bitbucket.org/html
7http://hadoop.apache.org

Server 1 Server 2

bt11

bt22bt21

bt12

bt23

st1 st2 st3

Topology

B1

B2

S

g
ro
u
p
in
g

g
ro
u
p
in
g

Figure 1. Logical (left) and physical (right) representation of a topology.
The spout (S) and bolt nodes (B1, B2) are instantiated as spout task
instances (st1-st3) and bolt task instances (bt11-bt23) across two servers.

continuously. As in MapReduce, a Storm application allows

the user to partition the data and to distribute parts of the

processing across a compute cluster.

A Storm application—a topology—is a directed graph

consisting of spout and bolt nodes as depicted in Figure

1 on the left. Spouts emit data to downstream nodes. Bolts

consume data from upstream nodes and emit data to down-

stream nodes. Spout nodes are typically used to connect

a Storm topology to external data sources such as queues,

web-services, or file systems. For each spout and bolt, the

programmer defines how many instances of this node should

be created in the physical instantiation of the topology – the

task instances. This results in a physical topology depicted

on the right of Figure 1, which is different from the logical

representation. The parameter used to define the degree of

parallelism of a node is called a parallelism hint, as Storm

may change these hints for consistency purposes. The task

instances, or tasks, are distributed across all machines of

the compute cluster to which a topology has been assigned.

Each edge in the topology graph defines a grouping strategy

according to which messages that pass between the nodes—

the tuples—are sent to downstream nodes.

Tuples are lists of key-value pairs. The program-

mer defines the tuple format for each edge of the

topology (e.g. field1=query terms, field2=browser cookie,

field3=timestamp). This format cannot be changed at run-

time. Different grouping strategies provide different guar-

antees. For example, the field grouping strategy guarantees,

that all tuples that share the same value in one or multiple

configurable fields are sent to the same task instance.

Higher level operators such as aggregators, state handling,

functions, and filters are provided by Trident, a programming

framework that is part of the Storm distribution. Further,

Trident may combine multiple operators into larger units. In

such cases, Storm overrides the parallelism-hints specified

by the programmer in order to prevent frequent reshuffling of

data across the network. This is similar to the SPADE system

[19], which also fuses several operators into one processing

element (PE) in System-S. In Trident, tuples are processed in

mini-batches, offering consistency guarantees on a per-batch

basis.

Having introduced the basic building blocks of a

Parameter Description

Worker Threads Number of threads per worker
Receiver Threads Number of receiver threads per worker
Ackers Number of acker tasks
Batch Parallelism Number of batches being processed in parallel
Batch Size Number of tuples in each batch
Parallelim Hints Number of task instance to create for operators

Table I: Configuration parameters.

Storm/Trident application, we will describe the various ways

in which such an application can be configured and tuned

in the next section.

B. Configuration Parameters

Storm offers a number of configuration parameters that

allow the programmer, as well as the system administrators,

to configure various aspects of the system. Table I lists

the parameters that we used in our evaluations: parameters

that are most commonly tuned are the already mentioned

parallelism hints, the batch size, and the batch parallelism8

of a topology. Trident guarantees consistency on a per-batch

level. This means that multiple batches can run at the same

time, which can increase overall performance. Note that the

“parallelism hints” parameter is not one single value, but a

list of values that contains one number for each node of the

topology. Hence, for topologies of greater size, the parameter

space, naturally, becomes large. Other parameters that we

included in this study are concurrency related parameters

such as the size of the thread pool available to each worker,

the number number of threads each worker starts to receive

messages, and the degree of parallelism of the “acker”

system bolt, i.e. the number of “acker” task instances, that

Storm uses for its bookkeeping facility.

While any single one of these configuration options im-

pacts the runtime behavior, overall performance is a result of

the combination of all of these parameters working together.

For example, consider the situation in which we set the

parallelism hint of the spout in the topology depicted in

Figure 1 to 10, but the parallelism hint for all bolts to

1. In this situation, the performance will most likely be

bottlenecked by the code in the bolts of the topology. If,

on the other hand, the parallelism hints for the bolts are set

to 100, the new bottleneck would most likely be the code

in the spout node. Similarly, there are interactions between

the parameters for the batch size and the batch parallelism.

Because these interactions are not only dependent on the val-

ues of these parameters themselves, but also on other aspects

such as the available network infrastructure, disk speed, or

availability of memory storage, making predictions about

the resulting performance of the overall system is difficult.

Additionally, framework properties, such as the automatic

operator fusion of Trident, further obfuscate the impact of

any single parameter. To tackle the problem of choosing

8Batch parallelism is also called pipeline parallelism in the literature.

good configuration parameters, we investigate the possibility

of having a computer program choose these parameters. To

this end, we employ the technique of Bayesian Optimization.

C. Bayesian Optimization

In this sub-section, we give a short introduction to

Bayesian Optimization. We refer to [20] and [17] for a more

detailed introduction into the topic. Bayesian Optimization

has first been proposed by Jonas Mockus as an optimization

strategy for situations in which the objective function is

a non-convex blackbox function [14] (i.e., a function for

which no closed-form solution or derivative is known).

The function is assumed to be Lipschitz-continuous (i.e.,

smooth and does not change dramatically). Also, sampling

the function is assumed to be costly, either in terms of

time or money. Thus, it can pay off to invest computa-

tional resources into computing the point in the parameter

space where to sample next. For our domain, we assume

the function to be the actual system performance of our

distributed stream processor, given all the configuration

parameters chosen. Obviously, given the black-box nature

of the system, no mathematical representation exists, and

determining the value of the function given certain parameter

settings is achieved by running the system on a cluster with

these settings and, hence, is costly. The process of choosing

the next set of parameters is conducted using a Bayesian

approach, which combines our prior assumptions about the

function with the observed performance from previous runs.

Borrowing the notation from [20] we can describe this

formally as follows:

P (M |E) ∝ P (E|M)P (M)

The probability distribution over our model M (our blackbox

function) given some observed evidence E (our sampling

runs) is proportional to the likelihood of E given the model

times the prior probability of the model. Thus, we reason

about the likelihood of observing the results of an evaluation

run, given our prior beliefs about how the system would

change in response to parameter modifications. Using the re-

sults of each evaluation run, a posterior distribution P (M |E)
is computed and integrated into the model. The decision of

where to sample next is made by maximizing an acquisition

function. There are various ways in which this acquisition

function can be modeled. Often, Gaussian Processes are

used to model the noise within the acquisition function.

The purpose of the acquisition function is to balance the

tradeoff between exploration and exploitation. The goal is

to sample the next measurement in a region where either

the uncertainty of the expected performance is high, the

expected performance is high, or both.

More formally, again borrowing the notation from [20],

we can describe the process as follows: Bayesian Optimiza-

tion is an iterative process in which we sample an objective

function repeatedly. We define xt to be the t-th sample and

yt = f(xt) + ǫt to be the measured performance of our

algorithm for run t, where f is our blackbox target function

and ǫt is noise, which is typically assumed to be Gaussian.

Our prior believes about f can be expressed as a prior

distribution P (f). We then collect observations (measured

samples) and add them to the set D1:t = {x1:t, y1:t} of all

evidence to date. In each step, we update our posterior belief

with the newly collected evidence:

P (f |D1:t) ∝ P (D1:t|f)P (f)

The new evidence is used to fit a Gaussian Process (GP)

that describes our prior believes of how f is distributed:

f(x) ∼ GP (m(x), k(x, x′))

where m is the mean function at position x and k is the

covariance function depending on x as well as on the closest

perviously sampled point at x′. The result is a function

estimating the expected performance of any parameter value

combination given some confidence interval. An acquisi-

tion function u(x|D) is built using these two parameters

(expected performance and confidence intervals) that are

derived from the data D. The goal of the acquisition function

is to create a tradeoff between exploration (try points with

high uncertainty/variance) and exploitation (try points with

a high expected performance). Hence, the next sample point

x is determined by maximizing u(x) (i.e. the x where the

tradeoff between exploration and exploitation is optimal):

xt+1 = argmaxxu(x|D1:t)

There are several different ways of defining the acquisition

function such as Probability of Improvement (PI), Expected

Improvement (EI), or GP Upper Confidence Bound to name

the most common ones. In this paper, we use Expected

Improvement [21], as it provides a good tradeoff between

exploration and exploitation and it is the method imple-

mented in Spearmint, the toolkit we use in our experiments.

The Expected Improvement acquisition function proposed

by Mockus [21] is defined as:

xt+1 = argmaxxE(max{0, ft+1(x)− fmax}|D1:t)

where fmax is the best solution in the first t samples, so the

next x would be chosen at the position, where the expected

improvement between the new sample point (ft+1(x)) and

the current best sample point (fmax) is maximized. In

contrast to the original optimization problem (our blackbox

function), we can derive a closed-form expression for this

problem, which can then be maximized using an analytical

approach. We refer to [20] for all details.

As already mentioned in section II-B, there exist a

number of freely available programming toolkits that im-

plement Bayesian Optimization. In this project, we lever-

age Spearmint for the following reasons: first, it showed

good performance in comparison with other main-stream

HDFS1

DKVS1

Filter

PPS2

PPS3

CNT1

CNT2

CNT3

CNT4

CNT5

PPS1
FC1

FC2

FC3

FC7

FC4

FC5

FC6

M1

M2

M3

DKVS2

R1

HDFS2

HDFS3

Phase 1:
Reading, Preprocessing, and Counting

Phase 2:
Feature Computation

Phase 3:
Ranking

Figure 2. High-level architecture of Sundog (from [23]).

Bayesian Optimization frameworks [22]. Second, it is well

documented and its source code is openly available. Last,

it supports pausing and resuming the optimization process,

a feature that turned out to be important in our evaluation

setup.

IV. EXPERIMENTAL DESIGN

To evaluate the usefulness of Bayesian Optimization for

parameter configuration of an SPS, we conducted a series

of experiments using one real world application and three

synthetic topologies. This section describes these topologies

and the experimental setup.

A. Sundog: A Real World Topology

The first topology is a modified version of the Sundog

entity ranking system [23]. Entity ranking systems consume

search logs, tweets, etc., and rank search results based on co-

occurence statistics. Figure 2 gives a a high level overview

of the topology: in the first phase, input data is read from

the Hadoop Distributed Filesystem (HDFS). Then, all input

lines that do not contain at least one term of a predefined

dictionary are filtered out. From this reduced data stream,

statistics such as the number of term occurrences are built.

These values are stored in an external distributed key-value

store (DKVS1) to enable access from all compute tasks in

later phases of the processing pipeline. For other statistics,

we first build entity pairs from the terms in a series of

preprocessing steps (PPS1-3) to count the number of search

events and unique users for each entity and entity pair.

Wherever possible, the relevant data is partitioned to allow

parallelization to multiple compute nodes. The second phase

consists of computing the actual feature metrics from the

counter values (FC1-7). In the final phase (phase 3), the

computed features are merged and complemented with semi-

static features that are read from a table in the distributed

key-value store (DKVS2 in Figure 2). Semi-static features

such as the semantic type of an entity do not change often

(or not at all). After merging all features, a score is computed

for each entity pair using a decision tree.

While the original system is processing search log data,

the modified version we used for the experiments presented

in this paper uses a dump of the common crawl data9 as

input and we replaced calls to the distributed key-value store

with dummy methods which always return 1. Even though

9http://commoncrawl.org

these changes invalidate the actual rankings that the system

computes, they do not change the workload characteristics

of the original system.

B. Synthetic Topologies

To gain insight into how well our proposed optimization

strategy generalizes to other topology designs, we generated

a series of synthetic Storm topologies and evaluated the

performance gains with each of them. To this end, we used

the widely used graph generator GGen [24] to generate

three topologies. We then modified these graphs by assigning

different values for time and resource complexities to each

vertex of the graph.

Processing pipelines in Storm typically consist of several

tasks, some of which can run independently in parallel,

while others need to wait for input data from upstream

nodes. For this reason we generated “layer-by-layer” graphs,

as motivated in [25]. In layer-by-layer graphs, nodes are

grouped in layers. Nodes in the same layer only have links

to nodes of downstream layers, but no links to nodes of

the same layer. As we want to test each graph over the

course of 60 or more sampling runs, each run taking two

to ten minutes, while varying node attributes of the graph

such as necessary processing time or the use of constrained

resources, we could only afford a small number of base

graphs/topologies. To ascertain typical topology sizes we

reviewed the literature (see Table III): we found that most

currently published topologies have fewer than 60 vertices,

whilst enterprise-grade application may have up to 100

components [26]. Hence, we generated topologies of three

different sizes having 10, 50, and 100 vertices.

To get valid SPS and comparable graphs, we ensured

that (1) all vertices of the graph are connected to at least

one other vertex in the graph and that (2) the average out-

degree across the whole graph is approximately constant in

all the produced graphs. Since GGen allows choosing (i) the

number of vertices in the graph, (ii) the number of layers

in the graph, and (iii) the probability of vertex to connect

to vertices of different downstream layers only, we picked

parameters that would fulfill these constraints as listed in

Table II. The table reports on the configuration parameters

the number of vertices, layers, and probabilities to connect

to vertices of the next layer as well as the typical graph

statistics such as the number of edges, spout vertices (or

sources), the number of bolt with an outdegree of zero

(sinks), and the average outdegree of all vertices in the

topology.

In the basic configuration, all operators in the topologies

were configured to use the same amount of computational

resources and time. As real world topologies may not

be balanced, we introduced a number of ways to create

imbalance. We describe these modifications in the following

paragraphs. Each modification will be motivated and its

application described in detail. With all of them the goal is

Name V E L P Src Snk AOD

Small 10 17 4 0.40 3 3 1.70
Medium 50 88 5 0.08 17 17 1.76
Large 100 170 10 0.04 29 27 1.65

Table II: The number of (V)ertices, (E)dges, and (L)ayers,

the (P)robability to connect to vertices of different layers,

the number of sources (Src) and sinks (Snk), as well as the

average out-degree (AOD) of the vertices in the generated

topologies.

Year Description # of Ops

2003 Data Dissemination Problem in [27] 40
2004 Linear Road Benchmark in [28] 60
2013 Linear Road Benchmark used in [29] 7
2013 DEBS’13 Grand Challenge Query[30] 3

Table III: Number of operators of topologies in literature.

the same: we intend to generate multiple modified graphs

from a base graph, which we can then optimize using

Bayesian Optimization.

1) Time Complexity: Each tuple takes n units of compute

resources (CPU cycles) to process. The amount of compute

resources each tuple requires to be processed depends,

naturally, on the task the processor has to achieve. We set a

target value of 20 compute resource units per tuple in our

experiments. As we need to simulate actual processing, we

implemented a busy wait strategy in which we empirically

set the complexity of the operations, such that 1 compute

resource unit corresponds to about 1ms of execution time.

Hence, the processing of one data tuple takes about 20ms

on a system that is not overloaded. Others have reported

values of up to 60ms [11] per tuple. In addition to the

balanced base configuration we also generated imbalanced

ones, where the required compute resource units vary across

the topology. Specifically, we used a uniform distribution of

compute length with a mean of 20 compute units (between

0 and 40), resulting in an average processing time of 20 in

the whole topology.

2) Resource Complexity: Bolts (or vertices) that are only

constrained by CPU time are embarrassingly parallelizable

and can be optimized soley by increasing their degree of

parallelism. Other bolts may be constrained by resources

that cannot be added by increasing their parallelism. If a task

instance is slow because of a globally contentious resource,

for example a central database, instantiating more tasks will

not help improve the throughput and only waste resources

on context switching. To simulate contentious resources, we

flag a certain percentage of the processing time as being

“resource contentious”. This means that the time complexity

of the respective bolts is multiplied with the total number

of task instances for a given bolt to negate the effect of

increasing parallelism for the affected bolt. To avoid unfair

distribution of resource contention, this percentage is based

on the number of total compute resource units (see above

in section IV-B1), rather than just selecting a percentage of

0

2

4

6

large medium small sundog
Topology

M
B
/s

Figure 3. Average network load in MB/s per worker for each topology.

the bolts. For example, if we have a topology with 10 nodes

which have an average time complexity of 20 and we want

to have 25% contentious nodes, we select nodes with a total

time complexity of 50 units of compute resources and flag

them as ‘contentious resources bolts’.

3) Selectivity: For every incoming tuple, a task instance

produces 0 to n outgoing tuples. This is called the selectivity

value of a bolt. Selectivity is not susceptible to the degree

of parallelism. In contrast to processing time, the selectivity

value not only influences the workload on downstream

operators, it also incurs network traffic. However, in setups

where the network is not the bottleneck, selectivity can be

simulated using the value for time complexity: having a

selectivity of more than 1 incurs increased workload on

all downstream bolts in the topology. Hence, to simulate

a higher selectivity value, we can as well increase the time

value of all downstream nodes. Analogously, a selectivity

value of less than 1 reduces the workload of all downstream

nodes. For the experiments presented in this paper, we took

care not to overload the network by using sufficiently large

processing time values and omitted a special selectivity flag.

Figure 3 shows the network utilization in megabytes per

second (MB/s) as an average across all worker nodes in

the cluster for all four types of topologies we used in our

evaluations. Note that the network was not saturated in any

of our experiments, as the cluster nodes are equipped with

gigabit network cards that allow a theoretical upper limit of

128MB/s.

4) Topology Generation: The topology generation for

the synthetic topologies consists of (i) generating the base

graphs using GGen, (ii) modifying the resulting graphs by

randomly (but uniformly) changing the time complexity val-

ues and resource contention flags, and finally, (iii) generating

Storm topologies. The bolts in these topologies are linked

using shuffle-grouping, meaning tuples are evenly shuffled

among downstream bolts. This completes the description of

the topology modifications. The concrete degree to which

we applied these modifications will be described below in

the section V.

C. Cluster Configuration

This section describes the cluster hardware and software

used for the experiments.

1) Hardware: Many compute clusters that are in pro-

duction in industry consist of several thousand commodity

computers [31]. While we did not have a cluster of this

magnitude at our disposal, we made an effort to simulate

such a cluster by connecting the work station computers

that our department offers to our students to work on, into

an 80 machine Hadoop cluster. The student computers are

iMac computers with Intel Core i5 CPUs (4 cores with

each 2.7GHz), 8GB ram, and 250GB SSD hard drives. The

iMacs are distributed over two rooms, in rows of at most 8

computers (some rows contain fewer computers). Each row

is connected using a 1Gbps switches. All rows are connected

over at most 2 Cisco Catalyst 4510R+E (48Gbps) switches.

We scheduled our evaluations during off hours. However,

we cannot exclude that there were students using the iMacs

systems during the evaluations. We compensated for this by

running each evaluation multiple times.

In version 0.23, Hadoop introduced support for other

applications than MapReduce through its YARN10 resource

scheduler. For our experiments, we used the Storm-Yarn

project,11 which is an effort to run Storm inside a Hadoop

cluster. In order to prevent the Hadoop cluster from going

down because of a student accidentally shutting down his

work station, we ran the Hadoop Job Tracker as well as the

Zookeeper12 instance on a separate machine. For this, we

used a virtual machine with 4 simulated 2.6GHz CPUs.13

2) Software: All iMac computers ran OS X 10.9.5, hav-

ing Java 1.8.0 11.jdk installed. The virtual machine running

the job tracker ran on Debian 7.8 (wheezy). We used Hadoop

2.2.0 as the base system and Storm 0.9.2-incubating through

Storm-Yarn 1.0-alpha orchestrated by Zookeeper 3.4.5.

V. RESULTS

This section discusses the results of our evaluations.

First, we compare throughput performance achieved when

tuning parallelization. Second, we explore the practicality in

terms of convergence speed of using Bayesian Optimization.

Next, we investigate the robustness of our approach against

problem size. We close with a discussion of the tuning of

additional parameters.

A. Configuring Parallelism

In a first set of experiments, we were interested in finding

out if the parallelism hints of a topology can effectively

be chosen using Bayesian Optimization. We used Spearmint

to choose a parallelism hint for each node in the topology

and decide over the maximum number of task instances

(“max-tasks”) that Storm should instantiate. To ensure that

the sum of tasks is smaller than max-tasks, we normal-

ized the chosen hints using the max-task parameter. As

a baseline we implemented a naive parallel-linear ascent

(pla) optimizer, which sets the same parallelism hint on

all spout/bolt nodes in the topology and increases them in

parallel. We set the maximum number of evaluation runs

10http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site
11https://github.com/yahoo/storm-yarn
12http://zookeeper.apache.org
13We use KVM as the virtualization plattform with storage on iSCSI.

to be 60. To prevent unnecessary evaluation runs for the

pla strategies, we stopped the optimizer after measuring

zero performance in three consecutive runs. As we possess

detailed topological information for the synthetic topologies,

we additionally created a set of experiments in which we

leveraged the topological information. For these experiments

we recursively calculated a “base parallelism weight” value

for each node in the topology. For bolts, this base weight

is equal to the sum of the weights of all their parent nodes.

All spout nodes have a base weight of 1. The optimizer then

only had to choose a multiplier for these base-parallelism

weights. We denote optimizers working with this additional

topological information with the letter “i” for “informed”.

Figure 4 serves as an overview over the results from

this comparison. We list results achieved using the bayesian

optimizer (bo, we will discuss the bo180 values below), the

parallel linear ascent optimizer (pla), the informed bayesian

optimzier (ibo), and the informed parallel linear ascent

optimizer (ipla). For each optimization step, we had the

cluster process data for two minutes. Starting and stopping

the topology took between 40 and 100 seconds. The duration

of the optimization steps depends on the size of the topology

and took between 13 and 518 seconds (see Section V-C be-

low). We then ran the best configuration for each topology-

optimizer combination 30 times. Given that our approach

is probabilistic, we repeated the procedure and graphed

the better of the two optimization passes in the figure,

which shows the average of the 30 repetitions with the best

configuration (error bars represent the minimum/maximum

values).

0% Contentious Operators 25% Contentious Operators

0

100

200

300

400

0

100

200

300

400

0
%

 T
iIm

1
0
0
%

 T
iIm

small medium large small medium large
Topology Size

tu
p

le
s
/s

Strategy pla bo ipla ibo bo180

Figure 4. Throughput: Average performance running synthetic topologies
with varying time complexity imbalance and resource contention on an
80 node cluster (TiIm = time complexity imbalance, pla = parallel linear
ascent, bo/bo180 = Bayesian Optimization, ipla = informed parallel linear
ascent, ibo = informed Bayesian Optimization).

The top-left bar plot shows the results for topoloies for

which the variance of time complexity is zero. In these

homogenous topologies, each spout and bolt consumes the

same number of CPU cycles to process a single incoming

tuple. Also, we ignore resource contention. Under such

conditions, setting all parallelism hints to the same value and

increasing them in parallel is a prudent optimization strategy.

ipla dominates the field for medium and large topologies.

The bayesian optimization strategies (bo and ibo) are unable

to find a better configurations. For small topologies, all

optimization strategies arrive at equally good solutions.

The lower-left bar plot in Figure 4 shows the results for

the case in which the required CPU cycles to process tuples

varies for each bolt. We observe that having topological

information is still of use, however, Bayesian Optimization

can partially compensate for the absence of such information

(pla vs. bo) for medium and large topologies. For small

topologies, all strategies arrive at equally good parallelism

configurations.

In the upper-right plot of Figure 4 we experimented

with the case in which temporal complexity is zero (e.g.

homogenous bolts), however, we randomly selected 25% of

the compute time to be dependent on “contentious resources”

(see section IV-B2). Essentially we bottlenecked 25% of all

bolts. This experiment shows that topological information is

still of value in such cases, however, Bayesian Optimization

can help increase performance substantially for medium and

large topologies.

In the lower-right corner of Figure 4, we finally tested the

case in which we have both, heterogeneous time complexity,

as well as 25% bottlenecked bolts. As we can see, topologi-

cal information does not allow for any better configurations.

In fact, for the large topologies all optimizers set values of

or very close to 1 for all nodes the topology. The small

topology configuration with time complexity imbalance and

contentious resources, Bayesian Optimization without topo-

logical knowledge arrived at the best throughput results.

B. Convergence Speed

To assess the convergence speed we plotted the step at

which we first measured the best performance for each

experiment (Figure 5). As we ran each optimizer twice,

we show minimum-maximum-average numbers over the two

runs. Naturally, the bayesian optimizer needs many more

steps than the linear parallel approach. Interestingly, having

topological information, not only improved the overall result

of the configuration, but also shortened the number of

evaluation runs necessary, to arrive at this result. In four

cases, the best configuration was only found in the 60st run.

For this reason, we ran four configurations for 120 more

steps. The best result achieved in 180 steps is depicted in 4

as the bo180 strategy. We observe that giving the bayesian

optimizer more time to find good parallelism settings, yields

better results in all cases. In Figure 6, we plotted the LOESS

regression smoothing with span 0.75 for these experiments.

The trendlines are consistent with the performance values

in Figure 4: for the small and the medium topologies, good

parallelim settings can be found within the first 50 and 100

optimization steps, respectively. For the large topologies, for

which over 100 parameters need to be set, the setting with

time imbalance (lower-left) seems to have benefitted most

0% Contentious Operators 25% Contentious Operators

0

20

40

60

0

20

40

60

0
%

 T
iIm

1
0
0
%

 T
iIm

small medium large small medium large
Topology Size

s
te

p
s

Strategy pla bo ipla ibo

Figure 5. Convergence Speed: Number of steps required to arrive at
the maximum performance in terms of throughput for each experiment
(TiIm = time complexity imbalance, pla = parallel linear ascent, bo
= bayesian Optimization, ipla = informed parallel linear ascent, ibo =
informed Bayesian Optimization).

0% Contentious Operators 25% Contentious Operators

0

100

200

300

0

100

200

300

0
%

 T
iIm

1
0
0
%

 T
iIm

0 50 100 150 0 50 100 150
Steps

tu
p

le
s
/s

Size small medium large

Figure 6. Loess regression smoothing of the optimization steps of the
bayesian optimizer setting parallelism hints.

from the additional time and the trend line increases after

100 time steps.

C. Scalability

To assess the suitability of our approach for large parame-

ter spaces, we measured the average optimizer run-time and

plotted it in Figure 7. The pla and ipla times are barely

visible, they lie all between 0 and 1 second. As we can see,

the time required to choose the next configuration increases

dramatically as we increase the topology size, and hence,

the number of parameters to optimize. Spearmint needed an

average of 35, 90, and 173 seconds for each optimization

step for the small, medium, and large topologies (bo runs).

Recalling that these topologies have 10, 50, and 100 bolts,

and hence, parallelism hints to optimize, we note that this

increase is sublinear. The informed Bayesian Optimizer (ibo)

required slightly more time with 36, 168, and 253 seconds

per step, respectively. We assume this is due to the fact that

we used floating points values for the weights as opposed

to the simple integer values. These numbers increase also

sublinearly. We observe increasing spreads between best and

worst-case durations. However, even these numbers increase

only sublinearly. Hence, all results indicate that the use of

our approach is practical in terms of run-time.

To summarize these evaluations with synthetic data, we

conclude that while Bayesian Optimization can be practi-

cally used to configure the parallelism of a distributed stream

processor, it can only partially compensate for missing

topological information. In situations, however, where this

0% Contentious Operators 25% Contentious Operators

0

200

400

600

0

200

400

600

0
%

 T
iIm

1
0
0
%

 T
iIm

small medium large small medium large
Topology Size

s
e
c
o
n
d
s

Strategy pla bo ipla ibo

Figure 7. Scalability: Average time elapsed between runs in seconds as a
measure for how long one optimization step takes (TiIm = time complexity
imbalance, pla = parallel linear ascent, bo = Bayesian Optimization, ipla =
informed parallel linear ascent, ibo = informed Bayesian Optimization).

information is expensive to obtain or topologies are complex

(e.g., due to joins or filters), Bayesian Optimization offers

itself as a viable tool.

D. Optimizing Other Configuration Parameters

To assess the usefulness of Bayesian Optimization for

configuring other aspects of a distributed stream processor

for a real-world topology in combination with the degrees of

parallelism of its operator nodes, we conducted an additional

set of experiments, which we present in the following

sections.

In these experiments, we used the Sundog topology pre-

sented in section IV-A. As we did not have topological

information about the topology readily available (and they

are non-trivial to derive), we only employed the parallel

linear ascent (pla) and the bayesian optimizer (bo). We ran

three different combinations of parameter sets: in a first set

or experiments, we had the optimizers choose the parallelism

hints as in our previous evaluations to get a baseline to

compare to. Then, we created configurations for Spearmint

to optimize parameter sets that include the parallelism hints

along with the batch parallelism, batch size, and finally

a set of concurrency related configuration parameters: the

batch-size parameter lets us set the number of lines of

text that Sundog ingests in one mini-batch. Batches can be

processed in parallel. The parameter for batch-parallelism

defines how many such batches can be in the processing

pipeline concurrently. The last set of parameters that we

included in the setup were all concurrency (cc) related

parameters from Table I: the number of worker and receiver

threads, as well as the number of “acker” tasks that Storm

should instantiate.

We present the results obtained from running these experi-

ments in Figure 8. The best configuration of each optimizer

was run 30 times. We present average throughput values

in million tuples per second, denoting the maximum and

minimum measured results with error bars.

In a first comparison, and to get a baseline for later

experiments, we looked at the performance that can be

achieved by setting parallelism hint (h) values. For these

experiments, we used a batch-size of 50.000 lines and a

batch-parallelism of 5, as these were the values used when

Sundog was developed and manually tuned. As our cluster

machines have 4 cores, we set a worker thread pool to 8.

We did not set a value for the number of acker instances,

so the default of one per worker host was used: 80 total

in our case. We left the default value of 1 for the worker

receiver thread count. Looking at the results in Figure 8a, we

note that all three approaches (pla, bo, and bo180) achieve

very similar average results (611k, 660k, and 699k tuples/s).

A two-sided t-test deemed these differences statistically

insignificant (p=0.05).

In a second set of experiments, we added the parame-

ters for batch-parllelism (bp) and batch-size (bs) and had

Spearmint choose values for these settings in addition to

the parallelism hints resulting in substantial performance

gains. We measured a throughput of 1.68 million tuples per

second. This amounts to an improvement of 2.8x compared

to the 611k tuples/second throughput measured when only

optimizing the parallelism hints using pla. When looking

at the parameter configurations we found that the bayesian

optimizer changed the batch-parallelism from 5 to 16 and

increased batch-size from 50.000 to 265.312 tuples. The

Sundog developers reported that they never set these values

that high, as the time it takes to process a batch of this size

seemed unreasonably high.

In a last experiment, we explored if not spending the time

on optimizing parallelism, but instead on fully concentrating

on other parameters, would yield better performance. In this

experiment, we fixed the parallelism hint for all bolts to

the best value that the pla strategy yielded (11), and had

Spearmint search the parameter space of all parameters listed

in Table I except the parallelism hints. The result can be seen

in Figure 8a (bs bp cc): even though the bayesian optimizer

could spend 60 optimization steps on this reduced parameter

space, the highest throughput measured in this experiment

is comparable to the one achieved in the “h bs bp” cases.

Indeed, two-sided t-tests revealed that the throughput of

the “bs bp cc” run (1.63mio tuples/s) was not significantly

different from the performance measured when searching

the extended parameter space over 60 (1.68mio tuples/s) or

180 (1.58mio tuples/s) steps (p=0.05). Figure 8b shows the

progress of the approaches: concentrating on only optimizing

parallelism did not result in good performance even after 180

steps (dashed line). Configuring parallelism as well as batch

size and batch parallelism (solid line), did yield good results,

eventually. The fastest way seems to be a combination of

both approaches, where we first configured parallelism using

the parallel-linear approach and enhanced the settings by

optimizing the batch-size, batch-parallelism, as well as the

number of threads used by the various subsystems (dot-

dashed line).

0.0

0.5

1.0

1.5

2.0

pla bo bo180
Strategy

m
il

tu
p
le

s
/s

h h bs bp bs bp cc

(a) Throughput

0.0

0.5

1.0

1.5

0 50 100 150
Steps

m
il

tu
p
le

s
/s

pla.h bo.h bo.h bs bp bo.bs bp cc

(b) Convergence

Figure 8. Throughput and convergence speed for Sundog using parallel lin-
ear ascent (pla) and Bayesian Optimization (bo) to optimize the parallelism
hints (h) with and without the batch size (bs) and the batch parallelism (bp),
as well as a set of concurrency (cc) related parameters.

VI. CONCLUSIONS AND FUTURE WORK

We presented and evaluated an approach for the config-

uration of distributed stream processors. We implemented

the approach using a set of synthetic and real-world Storm

topologies. We had a bayesian optimization framework find

optimal parameter settings to achieve high throughput and

compared against a parallel linear optimization approach.

Our results suggest that our approach is viable and can find

parameter configurations that lead to substantial throughput

improvements by a factor of up to 2.8 in the best case.

There are some limitations to our work. First, Bayesian

Optimization using Gaussian Processes assumes that the

objective function is continuous. This may not always be

the case when configuring the parallelism of a distributed

stream processor. To what extent this negatively influenced

the results in our auto-parallelization experiments is subject

to future work. Second, as even small sample differences

influence the decision process of the bayesian optimizer,

our setup could be improved by running each sampling run

multiple times and by using the average performance for

each tested parameter configuration.

We believe that Bayesian Optimization is a viable tool

for the field of distributed computing. Especially for tuning

systems with a large configuration parameter space in which

the impact of every single parameter cannot easily be

predicted. As such, we are convinced that our work is of

interest to the community.

ACKNOWLEDGMENTS

We would like to thank Hanspeter Kunz and Enrico Solca

for the many hours they spent helping us setup and run the

cluster we used for the evaluations.

REFERENCES

[1] W. Zheng, R. Bianchini, and T. D. Nguyen, “Automatic
configuration of internet services,” ACM SIGOPS Operating
Systems Review, vol. 41, no. 1, 2007.

[2] D. Kossmann, “The state of the art in distributed query
processing,” ACM Computing Surveys, vol. 32, no. 4, 2000.

[3] A. Deshpande, Z. Ives, and V. Raman, “Adaptive query
processing,” Foundations and Trends in, vol. 1, no. 1, 2006.

[4] M. Cammert and J. Kramer, “A cost-based approach to
adaptive resource management in data stream systems,” IEEE
Transactions on Knowledge and Data Engineering, vol. 20,
no. 2, 2008.

[5] M. Daum, F. Lauterwald, P. Baumgärtel, N. Pollner, and
K. Meyer-Wegener, “Black-box determination of cost mod-
els’ parameters for federated stream-processing systems,”
Proceedings of the Symposium on International Database
Engineering and Applications, 2011.

[6] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer,
“Latency-aware elastic scaling for distributed data stream
processing systems thomas,” in DEBS 2014, 2014.

[7] J. Gomes and H. A. Choi, “Cost-based solution for optimizing
multi-join queries over distributed streaming sensor data,”
Int. Conference on Collaborative Computing: Networking,
Applications and Worksharing, CollaborateCom, 2006.

[8] S. Schmidt, “Quality-of-service-aware data stream process-
ing,” Ph.D. dissertation, 2007.

[9] A. Saboori, G. J. G. Jiang, and H. C. H. Chen, “Autotuning
configurations in distributed systems for performance im-
provements using evolutionary strategies,” The 28th Interna-
tional Conference on Distributed Computing Systems, 2008.

[10] S. Schneider, M. Hirzel, B. Gedik, and K.-L. Wu, “Auto-
parallelizing stateful distributed streaming applications,” in
PACT. New York, New York, USA: ACM Press, 2012.

[11] S. Wu, V. Kumar, K.-L. Wu, and B. C. Ooi, “Parallelizing
stateful operators in a distributed stream processing system:
How, should you and how much?” Proceedings of the 6th
ACM International Conference on Distributed Event-Based
Systems, 2012.

[12] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K. L.
Wu, “Elastic scaling of data parallel operators in stream
processing,” Proceedings of the 2009 IEEE International
Parallel and Distributed Processing Symposium, 2009.

[13] B. Gedik, S. Schneider, M. Hirzel, and K. L. Wu, “Elastic
scaling for data stream processing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 6, 2014.

[14] J. Mockus, “On bayesian methods for seeking the extremum
and their application.” in IFIP Congress, 1977.

[15] J. Bergstra, D. Yamins, and D. Cox, “Making a science of
model search: Hyperparameter optimization in hundreds of
dimensions for vision architectures,” Proceedings of the 30th
International Conference on Machine Learning, 2013.

[16] C. Thornton, F. Hutter, H. H. Hoos, K. Leyton-Brown, and
K. L.-B. Chris Thornton, Frank Hutter, Holger H. Hoos,
“Auto-weka: Combined selection and hyperparameter opti-
mization of classification algorithms,” Proceedings of the
19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2013.

[17] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” NIPS, 2012.

[18] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential
model-based optimization for general algorithm configura-
tion,” in Learning and Intelligent Optimization. Springer,
2011.

[19] B. Gedik, H. Andrade, and K.-L. Wu, “A code generation
approach to optimizing high-performance distributed data
stream processing,” Proceeding of the 18th ACM conference
on Information and knowledge management - CIKM ’09,
2009.

[20] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on
bayesian optimization of expensive cost functions , with appli-
cation to active user modeling and hierarchical reinforcement
learning,” University of British Columbia, Department of
Computer Science, Tech. Rep., 2010.

[21] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of
bayesian methods for seeking the extremum,” Towards Global
Optimization, vol. 2, no. 117-129, 1978.

[22] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, and
J. Snoek, “Towards an empirical foundation for assess-
ing bayesian optimization of hyperparameters,” in Advances
in Neural Information Processing Systems Workshop on
Bayesian Optimization in Theory and Practice2, 2013.

[23] L. Fischer, R. Blanco, P. Mika, and A. Bernstein, “Timely
Semantics: A Study of a Stream-based Ranking System for
Entity Relationships,” in Proceesings of the 14th International
Semantic Web Conference (ISWC), 2015.

[24] D. Cordeiro, P. Swann, D. Trystram, J.-m. Vincent,
G. Mounié, S. Perarnau, and F. Wagner, “Random graph
generation for scheduling simulations,” in SIMUTools, 2010.

[25] T. Tobita and H. Kasahara, “A standard task graph set for fair
evaluation of multiprocessor scheduling algorithms,” Journal
of Scheduling, vol. 5, no. 5, sep 2002.

[26] M. Hajjat, X. Sun, Y.-w. E. Sung, D. Maltz, and S. Rao,
“Cloudward bound: Planning for beneficial migration of en-
terprise applications to the cloud,” in SIGCOMM, 2010.

[27] D. Abadi, D. Carney, U. U. G. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik,
“Aurora: a new model and architecture for data stream man-
agement,” The VLDB Journal The International Journal on
Very Large Data Bases, vol. 12, no. 2, 2003.

[28] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts, “Linear road :
A stream data management benchmark,” in VLDB, 2004.

[29] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch, “Integrating scale out and fault tolerance in
stream processing using operator state management,” in SIG-
MOD. New York, New York, USA: ACM Press, 2013.

[30] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online
scheduling in storm,” in International conference on Dis-
tributed event-based systems - DEBS ’13. New York, New
York, USA: ACM Press, 2013.

[31] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,
commodity data center network architecture,” in SIGCOMM.
New York, New York, USA: ACM Press, 2008.

