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Abstract The modeling of thermal residual stresses gen-
erated in TaC/stellite and TiC/stellite composite surface
layers produced by the oscillating electron beam remelting
on low alloys steel is presented. The homogenization
method is applied to analyze the real composite micro-
structures by utilizing the digital image-based (DIB) geo-
metric modeling technique. Two scales of elastic stress
analysis are studied: macroscopic one referring to the
global structure of composite layer produced over the
substrate of low alloy steel and microscopic, comprising
the selected unit cell of composite microstructure.

The results of the analysis show the microscopic stress to
be few times higher than the macroscopic one with stress
level much above the elastic limit of matrix material, which
implies the development of plastic field around the in-
clusions. The ceramic inclusions within the unit cell are
found to be under high compressive stresses. Also, the
composite surface layer stays in compression, mainly by
the influence of the stress component parallel to the layer/
substrate interface. The effect of hardphase volume frac-
tion is examined and it is found that for a small volume
fractions the macro and micro stress does not differ sub-
stantially between composites with TaC and TiC hard-
phases despite their mismatch in thermophysical
properties. Also, the stress modeling is presented for the
composite containing other inclusions and the problem of
the selection between 2D and 3D model for the stress
analysis is discussed.

1
Introduction
There are several industry fields like aircraft, electrical,
nuclear or building where metal matrix composites

(MMC) are preferably used for engineering applications
reducing the use of traditional materials. High strength of
MMC together with high stiffness and high thermal sta-
bility at elevated temperatures makes them very attractive
for engineering structures.

One of the fields where application of MMC can be
beneficial are composite surface layers produced over a
substrate of conventional material. The role of a surface
layer is to secure the surface of material against the action
of external factors like corrosion as well as mechanical
factors (intensive wear, cycling loading) resulting in the
excessive wear of material during service life (Rohatgi et al.
(1994)). An example of application of composite surface
layers is for many machine parts and tools (e.g. drilling
and boring tools) which are often subject to extreme
working conditions. Although the commonly used mate-
rials for such applications are characterized by high
strength, wear and corrosion resistance, yet there is still
need to improve the service condition for this kind of
layers because of the increase of working temperatures and
loads. The metal matrix composite may be suitable for this
purpose as their unique properties can sustain these de-
manding service conditions. By embedding hard ceramics
in the form of fibers, whiskers or particulates into the
metal matrix, we can expect the hard inclusions to carry
on the main load resulting from the intensive surface wear
during the service life of machine parts. In such a system,
elastic ceramic hardphases will allow to absorb the dy-
namic load much better than the metal matrix, which can
be damaged through the accumulation of loads (see e.g.,
Broutman and Krock (1974)).

The proper selection of materials for a composite layer
over a given substrate material is very important as this
process should take into account many factors, of which
the most important is chemical, metallurgical and physical
compatibility between composite layer and the substrate
material and also between the composite components
themselves. To attain metallurgical compatibility we may
compose a composite with matrix material taken as the
metal alloy traditionally used for such layers. In this
meaning the surface material is enriched with hard in-
clusions creating the composite with unique properties.

On the other hand, chemical compatibility requires the
matrix and reinforcement to be at the equilibrium state in
thermodynamically stable phases. This can be achieved by
the proper selection of the reinforcing phase for a given
metal matrix. Usually ceramic materials like SiC, TiC, TiB2,
ZrO2, Al2O3 are used as a hardphase while the metal ma-
trix may be selected from titanium, aluminium, magne-
sium or nickel alloys. Such combination of constituents
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will not assure the physical compatibility between com-
posite components and also between the composite layer
and the substrate material. The most important is the
problem of mismatch in thermal expansion coefficients
between the reinforcement and matrix components. When a
ductile matrix has higher thermal expansion coefficient
than the reinforcement, then during formation of the
composite the hard phase contains compressive residual
stresses which seems to be preferable for brittle ceramic
materials although the subsequent external loads may re-
verse the sign of these stresses. For the matrix materials with
high yield stress it is advised to select reinforcing materials
with thermal expansion coefficient close to the matrix, be-
cause the limited plasticity can lead to high internal stresses.
However, the presence of residual stresses in composites
can be beneficial or detrimental depending upon the se-
lection of constituent materials for the matrix and hard-
phase. An example of positive effect of residual stresses is
aluminum matrix composite reinforced with SiC particles.
In this system, residual stresses induce the formation and
further movement of dislocation in the plastic aluminum
matrix, which leads to the strengthening of Al and sub-
sequent residual stress relaxation (Shi and Arsenault
(1994)). The negative effect can be seen for composites with
decreased matrix plasticity and brittle reinforcements. In
this case the composite can be damaged by the formation
and growth of microcracks both through the matrix and the
reinforcement. It was observed by MacKay (1990) for TiAl
composites reinforced with SiC particles4.

The stress state is one of the key factors affecting the
reliability and durability of the composite structure. We
can distinguish two-scale levels of stress in the system of
composite surface layers. The first one refers to the mi-
croscopic level of stress state within the composite and the
other refers to the global structure, where the composite
layer is treated as a homogeneous body with uniform
properties. Both scales of stress are important parts of a
stress analysis in this system. The knowledge of stress
state can be especially desired in the process of controlling
the properties of manufactured composites (composite
layers) and their thermomechanical response under ap-
plied loads.

However, the investigation of stress state in composites
is difficult because of the existence of different phases in
one material. Thus analytical and numerical methods grew
up to determine the stresses. There are several, less or
more precise, analytical models used to predict the overall
composite thermomechanical response. These can include
‘‘the rule of mixture’’, ‘‘shear lag model’’ or ‘‘Eshelby’s
equivalent inclusion model’’(see e.g., Taya and Arsenault
(1989)). The numerical methods are primary based on the
finite element method. The finite element model usually
represents a small scale region with matrix and re-
inforcement repeatedly distributed in a whole structure
and the computed stresses are related to the microscopic
stage of the problem. When a composite has randomly
distributed reinforcements, which is usually the case for
the particulate reinforced composites, the problem of de-
termining micro and macroscopic stress is more compli-
cated with the mentioned methods. To estimate the stress
state in real randomly distributed particles in the matrix

more sophisticated methods have been utilized. One of the
promising and advanced ones is the homogenization
method as it allows to describe both the micro and macro
thermomechanical behavior of composite materials using
rigorous mathematical theory (Guedes and Kikuchi (1990)
and Cheng (1992)). It should be noted that the theory can
describe both micro- (local) boundary value problems
with the help of the two-scale asymptotic expansion
method if the periodic boundary condition is introduced
on the representative volume element (RVE) (see Sanchez-
Palencia (1980)). Therefore, we assume that the selected
composite layers are statistically homogeneous and peri-
odic so that the asymptotic homogenization method can
be applied if the RVE size is sufficiently large.

On the other hand, the continuum-based formulation of
the homogenization method requires some kind of nu-
merical methods such as finite element method. To carry
out the computation effectively, modeling of appropriate
microstructural geometry is essential since most of metal
matrix composites have more or less random nature in
their microstructural morphology. In this context, Hollis-
ter and Kikuchi (1994) addressed the modeling issue in FE
geometric modeling of bone microstructure. They ex-
tensively utilized the digital images and their processing
techniques to construct the digitized 3D-FE model of a
bone microstructure by identifying each voxel as an finite
element. Along with the asymptotic homogenization
method, their digital image-based (DIB) modeling tech-
nique enabled the quantitative study of the macro- and
micromechanical characteristics of bone’s porous skeleton
in the framework of linear elasticity. In order to success-
fully take into account the effect of microstructural geo-
metry, we shall utilize this novel method in our
homogenization analyses. This method has been used in
our work and the fromulae in linear elasticity will be
presented later in the paper.

The aim of this paper is to present some aspects on
modeling the stress state in metal matrix composite sur-
face layers through the utilization of DIB geometric
modeling. This technique allows to analyze the real com-
posite microstructures and to convert them into virtual
representation of 3D geometry as shown by Terada et al.
(1996). For the stress analysis, we have selected nickel-base
alloy as the matrix and four carbide ceramic materials: SiC,
TiC, TaC and HfC for the hardphase. The homogenization
method is used to evaluate the effective material properties
such as elastic and thermal expansion coefficient matrices
by taking a ‘‘unit cell’’ as a representative volume element.
Also, other simplified models used to estimate the overall
composite properties are presented for comparison. We
have conducted the analysis for linear elasticity case with
thermal loading equal to the temperature difference be-
tween composite formation and room temperature,
therefore we analyzed the thermal residual stresses gen-
erated upon cooling of composite layer. For high tem-
perature drops, the thermal residual stresses may
significantly influence the overall stress state in the com-
posite layer as well as in the whole structure as they shall
superimpose with the external service loads. The applica-
tion of the homogenization method allows us to estimate
the stress state in the composite’s unit cell at the micro-
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scopic level by localizing the deformation of the global
structure, which has been obtained in the stress analysis.

2
Materials and processing
For the purpose of the analysis we based our work on the
composite with stellite (nickel-based alloy) as a matrix and
carbide ceramics as inclusions. Stellites are widely used for
surface layers produced by plasma hardfacing method
since they have high wear and corrosion resistance. The
chemical composition of the stellite used in the analysis is
equivalent to Deloro Stellite 40. The following properties
of the stellite were assumed in the analysis: density
q � 8330 kg=m3,Young’s modulus E = 183 GPa, Poisson’s
ratio m � 0:3 and coefficient of thermal expansion
a � 9:7 � 10ÿ6 1=K according to technical data of Deloro

Stellite (1970).
The selection of reinforcing phase depends on many

factors affecting the properties of metal matrix composites.
We have assumed four carbide particles: TaC, TiC, SiC and
HfC as the reinforcement. Such selection was dictated by
the fact that the contribution of carbide metallic bonds
should effectively improve the wetting of ceramic particles
by the stellite matrix. Also, because the composite surface
layers were obtained in the process of electron beam re-
melting the high formation entalphy of these ceramics
prevents their decomposition during remelting.

The properties of ceramics were taken from the litera-
ture (ASM Reference Book and Morrell (1989)) and are
presented in Table 1. As it is seen from the table the se-
lected ceramics differ in their properties. Specifically, HfC
and TaC have high density which is important when we
take into account the stiffness/density ratio as a common
indicator of composite weight with a given stiffness. The
thermal expansion coefficient (a) of the hardphases, which
has the strong influence on the stress state generated
within a composite varies between ceramics in a wide
range from 4 to 7:4 � 10ÿ6 1/K, while the Young’s modulus
has similar values for all except TaC. All considered
ceramics have high melting temperature and high hard-
ness which makes them attractive for applications working
at elevated temperatures.

One of the advanced methods of producing this kind of
composite layers is a technique of remelting by a high
energy concentrated beam (electron, laser or plasma) the
surface of substrate material previously covered with a
mixture of metal and ceramic powders. The process of

coverage the surface with the powders can be done
manually, by spreading the powders over the surface or
mechanically using e.g. the plasma spraying method (see
e.g., Matejka (1989)). In fact, the former technique may be
used separately for a direct deposition of composite layers,
but because of the layer porosity and adhesive bonding to
the substrate it still needs a subsequent remelting in order
to reduce the porosity and create strong bonds at the layer/
substrate interface.

In our analysis we have utilized the microstructures of
carbide ceramics/stellite composites produced by the os-
cillating electron beam remelting technique over the sub-
strate of low alloy steel (equivalent to ASTM A618 grade).
Particularly, we based our work on TaC/stellite and TiC/
stellite composites as the initial source for the further
analysis. The microstructures of these composite layers are
presented in Fig. 1. According to the DIB geometrical
modeling described in the next section we have specified
the composite’s unit cell by selecting them from the images
of composite micrographs, which is marked and shown in
Fig. 1.

3
The homogenization method and microstructural modeling
by digital images

3.1
Introduction
In this section, we shall present two rigorous tools to
analyze the mechanical behavior of the MMC whose ma-
terial properties and configurations are described in the
previous section. One of the tools is the mathematical
theory of homogenization and the other is the Digital
Image-Based (DIB) geometric modeling technique.

The so-called asymptotic homogenization method con-
cerns composite media whose microstructure occupies a
fixed region with characteristic length e of its hetero-
geneity. The theory asserts that if the selected re-
presentative volume element (RVE) is infinitesimally
small, the actual displacement, ue, tends to the homo-
genized displacement field, u0, which is the global solution
of the governing equations whose coefficients have been
homogenized. While the effective properties can be de-
rived from the micromechanical characteristics, the mi-
cromechanical behaviors can be obtained by localizing the
overall structural response to the local one; these processes
are called, respectively, homogenization and localization.
The global-local approach was successfully applied to the
engineering problems in both linear elasticity and elasto-
plasticity with the help of Finite Element Method (Guedes
and Kikuchi (1990), Devries and Léne (1987), Duvaut and
Nuc (1983)).

After deriving the homogenization formulae for linear
elasticity with temperature change, the procedure of con-
struction of a unit cell by the DIB modeling is briefly de-
scribed.

3.2
The homogenization formulae
We recall that the theory concerns statistically homo-
geneous or periodic composite media of domain Xe and

Table 1. The properties of ceramic reinforcements used for the
metal matrix composites

Properties Ceramics

SiC HfC TaC TiC

Melting temperature (K) 2500 4203 4152 3340
Density q (g/cm3) 3.10 12.67 14.50 4.92
Coefficient of thermal
expansion a (10)6 1/K) 4.02 6.60 6.3 7.4

Young’s modulus E (Gpa) 402 470 722 447
Poisson’s ratio m 0.142 0.180 0.240 0.190
Shear modulus G (Gpa) 178 193 227 186
Bend strength (Mpa) 459 234–241 215–310 282–667
Microhardness (Gpa) 28 22.6–30.5 16–24 20–24
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the representative volume element (RVE) occupying a
microscopic region V with characteristic length e. Identi-
fying the size of the RVE with e, we introduce two different
scales: one of these is a macroscopic scale denoted by x, in
the domain Xe at which the heterogeneities are invisible
and the other one is an microscopic one denoted by
y � x=e which enlarges the RVE region by e such that
V � eY. Thus, the superscripts introduced in variables
indicate their orders as well as the dependency on both
x and=or y: Let the structure be subjected to a surface
traction t̂ and a prescribed homogenous displacement
boundary conditions on Ct and Cu, respectively, with
temperature change DT. According to the principle of
minimum total potential energy for equilibrium, the dis-
placement ue is the solution of the variational problem
defined in the domain Xe:
Z

X
e

e�ve
� : De

�x� : e�ue
�dx

�

Z

X
e

�DTe�ve
� : De : ae

� be
:ve

�dx

�

Z

Ct

t^�x�:v

edx; 8ve
�1�

with the constitutive relation

re
� De

�x� :
ÿ
e�u

e
� ÿ DTae

�x�
�

� De
�x� : e�ue

� ÿ DTbe
�x�

�2�

Here ve is the virtual displacement, be
�x� the body force,

De
�x� the elasticity tensor, ae

�x� the coefficient of thermal
expansion (CTE) with be

� De
: ae

:

With the help of the method of two-scale asymptotic
expansion (see, e.g., Sanchez-Palencia (1980)), the theory
asserts that if the selected RVE is periodic and in-
finitesimally small, the actual displacement, ue, tends to
the homogenized one, u0, which is the solution of the
following macroscopic equations whose coefficients have
been homogenized.

Z

X

ex�v� : DH : ex�u
0
�dx �

Z

X

DTex�v� : DH : aHdx

�

Z

X

bH
:vdx �

Z

Ct

t:vdC 8v

�3�

and that the Y-periodic characteristic deformations vkh

and w can be obtained by solving the following micro-
scopic equations, respectively:

Z

Y

ey�w� : D : ey�v
kh
�dy

�

Z

Y

D : ey�w�dy; 8w ; Y ÿ periodic �4�

Z

Y

ey�w� : D : ey�w�dy

�

Z

Y

b : ey�w�dy; 8w ; Y ÿ periodic �5�

Here, the strains are denoted by ec � 1=2�vrc �rcv�
�c � x or y� and the homogenized quantities in Eqn. (3)
are calculated by averaging over the unit cell:

DH
�

1

jYj

Z

Y

D : sdy; bH
�

1

jYj

Z

y

�b ÿ D : ey�w��dy

and bH
�

1

jYj

Z

Y

bdy �5�

Also, the tensor of localization have been defined as
skh
ij � Ikh

ij ÿ ey;ij�v
kh
� where Ikh

ij indicates the fourth order
identity tensor. Once the macroscopic displacement uo

and DT are obtained in the macroscopic region, these
values are localized to give the micromechanical response
of the unit cell. Therefore, the microscopic stress is de-
fined by

ro
�y� � �D�y� : s�y�� : ex�u

o
� ÿ DT�b�y� ÿ ey�w� �6�

On the other hand, the macroscopic quantities are ob-
tained by taking the average over the RVE domain Y. In
order that the macroscopic strain ex�u

o
� would be the

volume average of the microscopic one eo, it seems ap-

Fig. 1a,b. The microstructure of TaC/stellite (a) and TiC/stellite
(b) composite surface layers produced on low alloy steel by the
electron beam remelting method
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propriate that the RVE domain and the microscopic dis-
placement w1 would be periodic and therefore so are vkh

and w. In this way, we may call the RVE the unit cell.
If we postulate that the displacement were Y-periodic,

the substitution of the variables obtained in the above
provides the following microscopic governing equations:
Z

Y

wry : D : ryv
khdy

�

Z

Y

D : rywdy; 8w : Y ÿ periodic; �7�

and

Z

Y

wry : D : rywdy �

Z

Y

b : rywdy �8�

Using these solutions vkh and w, the homogenized elasti-
city tensor and the homogenized CTE are constructed by
the following formulae:

DH
�

1

jYj

Z

Y

D :sdy ; �9�

aH
� �DH

�

ÿ1
:

�
1

jYj

Z

Y

ÿ
bÿ D : ey�w�

�
dy

�
; �10�

and

bH
�

1

jYj

Z

Y

bdy : �11�

where jYj indicates the volume of the unit cell.
Thus, the effective properties can be derived from the

micromechanical characteristics and the micromechanical
behaviors can be obtained by localizing the overall struc-
tural response to the local one; these processes are called
the homogenization and the localization, respectively.

We have skipped several steps in the formulation and
omitted some explanations, since they are not relevant to
our present interest. One can refer to literature, for ex-
ample, by Guedes and Kikuchi (1990) Devries and Léne
(1987) or Duvaut and Nuc (1983) for the detailed deriva-
tion of the homogenization formulae.

3.3
Digital image-based FE-geometric modeling for the unit cell
Digital image-based (DIB) technique is used to catch and
manipulate the image of composite microstructures (unit
cells) so that they could be analyzed by the homogenization
method. Also, this technique is very helpful for preparing
the images of composite unit cells to some other additional
processing like generation of 3D structures or changing
volume fraction of inclusions. The main procedure of
preparation the unit cell of a composite microstructure can
be divided into the following major four parts (see Fig. 2):

1. Capturing and Sampling: prior to digitalization, an
image of a composite microstructure must be captured
by an optical sensor which is chosen upon the desired
formation modality. This process is assumed to be done
by a high resolution scanner unit.

2. Selecting and Thresholding: which are probably the
most important operations. This process determines the
unit cell size, its FE model size and the microstructural
configurations. By giving the thresholding pixel value,
the actual morphology such as inclusion shape, volume
fractions, etc., is determined.

3. Exporting (and Adjusting, if necessary): the binary data
stored in the computer are exported into an ASCII file
and transferred to a UNIX platform so that our com-
puter program can read and recognize the data. This set
of data is actually the prototype of our FE model, which
is either two or three dimensional. Depending on our
needs, the microstructural configuration is adjusted,
e.g., the volume fraction is modified by changing the
number of pixels.

4. Stacking: prior to or during the finite element analysis
(FEA), the process is made using the exported data to
construct the three-dimensional (3D) structure.

While the first three stages correspond to the pre-proces-
sing of FEA, the last process includes both the main part and
post-processing of the FEA of the homogenization method.
In order to construct 3D FE model in the DIB modeling, two
dimensional digital images have to be combined. The forth
process, namely the stacking, corresponds to such data
operation. In 3D FE modeling, each pixel in a 2D image is
recognized as a voxel which is identified as a finite element
in FEA. Then, the FE model obtained in this process is the
direct interpretation of the scanned image using two di-
mensionally presented micrographs of real composite ma-
terials along with image-processing software. Therefore, the
homogenization analyses can reflect the effects of the ori-
ginal geometric configuration.

This method involves image processing which fully uti-
lizes both hardware and software capability available. For
our particular purpose, the process of changing the vo-
lume fraction of a constituent can be easily done by op-
erating the voxel values of the digitized unit cell model.
The more detailed description of the DIB modeling pro-
cedure, the related image processing and some applica-
tions to the homogenization analyses are found in Terada
et al. (1996).

4
The procedure of calculations and analysis

4.1
Calculation scheme
We have implemented the following scheme for calcula-
tion of macro and microscopic residual stresses in the

Fig. 2. The diagram showing DIB modeling sequence192



MMC surface layers shown in Fig. 3. First, the homo-
genization method is used to obtain the effective compo-
site properties dependent on the properties of its
constituents and their volume fraction. This is done for the
selected unit cell taken from the microstructure of com-
posite. Next, the global structure is defined to compose the
substrate material covered with a composite surface layer
having uniform homogenized properties. Then, the stan-
dard finite element method is applied to solve for the
displacement and stress field in the macroscopic scale
(global structure). The last step utilizes calculated global
displacement field taken for the selected unit cell from the
composite’s global structure to computer the microscale
(local) stress distribution for composite microstructure
represented by the selected unit cell.

4.2
Changing volume fraction
The initial hardphase volume fraction of TaC/stellite and
TiC/stellite equaled approximately 30% based on the
weight method. In the process of digital image-based (DIB)
modeling we have selected the unit cell as a representative
volume element from TaC/stellite and TiC/stellite com-
posites (Fig. 1). After thresholding and adjusting we have
obtained digitized image of the selected composites’ mi-
crostructures as seen in Fig. 4. These images contain 30450

pixels for TaC/stellite and 29225 pixels for TiC/stellite
composites. The calculated volume fractions for these unit
cells equaled 21 and 24%, respectively.

To see the effect of volume fraction on the thermo-
mechanical response of selected composites we have gen-
erated other volume fractions upon those digitized unit
cells. As the typical hardphase volume fraction in MMC
ranges from 5 to 40% we have generated four more unit
cells with volume fractions of 5, 13, 30 and 40% covering
the range of application. Fig. 5 shows the unit cells with 5%
and 40% hardphase volume fraction for TaC/stellite
composite as an example. The procedure we applied for
the volume fraction change randomly removes/adds
hardphase material (pixels) from/to the inclusion-matrix
boundary. As it is seen from these pictures, rather torn
shape boundary of inclusions is generated, but for the
purpose of the analysis this would not be a significant
factor.

5
Results of calculations

5.1
Effective composite properties
By applying the homogenization method we have calcu-
lated the engineering composite’s constants for the plane
stress case: Young’s modulus (E11;E22) Poisson’s ratio
(v12), shear modulus (G12) and thermal expansion coeffi-
cient (a11; a22). There are many models found in the lit-
erature elaborated to estimate the effective properties of
composites (see e.g., Vaidya and Chawla (1994) or Whit-
ney and McCullough (1990)). For comparison with the
homogenization method we have included the calculated
effective composite properties based on the classical ‘‘rule
of mixture’’ used primarily for the transverse direction of
fiber composites and two other often used models based
on approximated equations for particulate composites.
These models are presented as follows:

For the estimation of Young’s modulus we used ‘‘the rule
of mixture’’ model by Reuss (1929):

Ec �
1

Vm=Em � Vp=Ep
�12�

Fig. 3. The scheme of calculation procedure applied in the
stress analysis

Fig. 4. The digitized unit cells of 21%
TaC/stellite (left) and 24% TiC/stellite
composites (right) after selection and
thresholding
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and Halpin-Tsai (Halpin and Kardos (1967)) expression:

Ec �
Em�1� ngVp�

1ÿ gVp
where g �

�Ep=Em ÿ 1�

�Ep=Em � n�
�13�

where: E – Young’s modulus, V – volume fraction (c –
composite, m – matrix, p – particulate), n is factor
assumed to be 1.

For the estimation of thermal expansion coefficient we
used two models:
Kerner’s (1956) model for volumetric coefficient of ther-
mal expansion b � 3a :

bc � bm Vm � bpVp ÿ �bm ÿ bp�VmVp

�

1=Km ÿ 1=Kp

Vm=Kp � Vp=Km � 3Gm=4
�14�

where K is bulk modulus and G shear modulus.
This model accounts for shear and isostatic stresses, but

the last part of this expression can be particularly negli-
gible reducing the formula for a to the classical ‘‘rule of
mixture’’:

ac � amVm � apVp �15�

Turner’s model (1946), which accounts for the case of
hydrostatic stresses:

ac �
amVmKm � apVpKp

VmKm � VpKp
�16�

The calculated homogenized composite properties were
combined and plotted in Fig. 6 with the presented sim-
plified models. These models are used for comparison
purposes only. The measurement results are necessary to
validate the analytical ones, although good agreement is
obtained for Halpin-Tsai and Turner models. It can also be
seen from the figure that the effective properties both of E
and a are close each other for a small volume fraction. The
increase of the hardphase volume fraction results in bi-
linear increase of the homogenized properties and the
higher influence of ceramic properties on the effective
properties of the composite which is seen especially for the
TaC ceramic having high Young’s modulus.

The ‘‘rule of mixtures’’ model gives a very rough esti-
mation of composite properties except for the case of ef-
fective density of composite which gives accurate
approximation. The density of a composite plays an im-
portant role when we are taking into account stiffness/
density (specific stiffness) ratio. Most ceramics are char-
acterized by a higher Young’s modulus and lower density
than matrix material. This feature is used to produce
composites structures that are lighter than traditional
materials or have reduced cross section without the loss of
stiffness. Chawla (1987) discussed a simple model which
shows that for beams under compressive and flexural
loads the minimum weight of composite structure for a
given stiffness can be obtained while the term (E=q2)
reaches maximum.

Fig. 7 shows the change of specific stiffness of TaC/
stellite and TiC/stellite composites. The Young’s modulus
was obtained by the homogenization method while the
density of composite was estimated by the ‘‘rule of mix-
ture’’:

qh � qp � Vp � qm � Vm �17�

Comparing to steel which �E=q� � 26 it is seen, that for
TaC/stellite composite higher ratio is available when the
hardphase volume fraction is greater than 30%. This is the
result of high density of TaC ceramic which is almost 2
times the steel density. On the other hand, over 13%
hardphase volume fraction is needed to assess for the same
specific density as steel in TiC/stellite composite.

5.2
Finite element analysis of macroscopic stress
in the global structure
The finite element plane stress elastic analysis was con-
ducted in order to obtain the stress and strain field in a
global structure composed of a composite surface layer
with 1 mm thickness and 10 mm thick low alloy steel. Fig. 8
shows the finite element mesh, which has 594 four node
plain stress elements connected in 550 nodes.

The structure is assumed to be stress free and uniform
temperature drop of )1000 K is applied to simulate the
formation of thermal residual stresses upon cooling from
composite’s fabrication (1293 K) to room temperature

Fig. 5. TaC/stellite digital image
with generated hardphase volume
fraction of 5% (left) and 40% (right)
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(293 K). For the linear analysis any level of temperature
loads could give the same quality results, however, the
assumption of the real temperature drop would give us the
view on the stress level comparing to the elastic limit of
applied materials. It was also assumed in the calculations
that there is a perfect contact on the boundary of the
composite layer and substrate material. The anisotropic
properties of composite are input in the analysis through
the elastic and thermal expansion coefficients matrices and
the properties of substrate material are assumed to be
isotropic and a typical one is for steel:
a � 12 � 10ÿ6 1=K; E � 210 GPa; v � 0:3: The material

properties are assumed to be constant in the analyzed
range of temperature.

The finite element calculations show that the surface
layer after cooling down to room temperature is in com-
pression primarily by the influence of rxx stress compo-
nent parallel to the layer/substrate interface. The von
Mises stress field shows the edges to be the regions of high
stress concentration, but this singularity occurs in many
systems composed of materials with different properties
and can be a separate field of research in this area. For our
purpose we will narrow our study to regions laying far

Fig. 6. Comparison of calculated homogenized properties of TaC/stellite and TiC/stellite composites with respect to hardphase
volume fraction

Fig. 7. Variation of composite specific stiffness with hardphase
volume fraction for TaC/stellite and TiC/stellite composites

Fig. 8. The finite element model of the MMC surface layer produced
over the low alloy steel
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from the edges. The rxx stress and von Mises (rM) stress
distribution is presented in Fig. 9 for one of TaC/stellite
models with 21% hardphase volume fraction.

The overall stress distribution for both composite sys-
tems and for each hardphase volume fraction is similar
expect for the stress level. The stress level primarily de-
pends on the difference of strains in the x direction be-
tween the layer and the substrate resulting from different
contraction of composite and substrate during cooling
process of composite structure. This is because of the
difference in thermal expansion coefficients between the
composite and steel substrate. The increase of the hard-
phase volume fraction alters the homogenized composite’s
properties and as a result, the global stress level is also
changed. As it was expected the residual stress in com-
posite layer changes linearly with hardphase volume
fraction because of the linearity of the problem. It is seen
from the Fig. 10 that there is a symmetry across the zero
stress line between rxx and rM stresses for both analyzed
composites that confirms the main role of rxx stress in the
effective stress of the composite. It is also seen that for the
small hardphase volume fractions there is a small differ-

ence in the stress level for TaC/stellite and TiC/stellite
composites despite the differences in properties of TaC
and TiC inclusions. Particularly, the ratio of TaC to TiC
both rxx and rM stress equals �1 for 5% inclusion volume
fraction. This may result from a very close values of
homogenized properties of both composites with 5% vo-
lume fraction, for which the effective composite properties
depend mainly on the matrix properties.

The stress level in TaC/stellite composite is increased by
about 100% from 5% hardphase volume fraction to 40%,
while for the TiC/stellite this increase reached about 64%.
Since the stress is compressive it is not seemed to be
dangerous for the composite with hard ceramic inclusions.
The variation of the von Mises stress and rxx stress
component from the surface through the thickness of the
model shows the extreme of stress level just above the
composite/substrate interface and the change for stress
sign occurs in the substrate (Fig. 11). The rxx stress in the
substrate material may exceed the elastic limit near the
boundary with composite layer, especially for the hard-
phase volume fraction greater than 20%. This shall result
in the redistribution of stress at the composite/substrate
boundary and would influence the microscopic stress
field.

Fig. 9a,b. Distribution of rxx macroscopic residual stress (a) and
von Mises (b) residual stress calculated for 21% TaC/stellite
composite layer

Fig. 10. Variation of macroscopic residual stress with hard
phase volume fraction change for 21% TaC/stellite and 24%
TiC/stellite composites

Fig. 11. Thermal residual stress profile across the surface of 21%
TaC/stellite and 24% TiC/stellite composite
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5.3
Microscopic stress representation in the unit cell
The results of the microscale thermal residual stress dis-
tribution are obtained for the composite unit cell taken
from the boundary of composite/substrate interface (ele-
ment 88 in Fig. 8), where the stress reaches the highest
values according to the results of stress variation through
the surface of the layer (see Fig. 11).

The local stress state in the micro scale is complex and
depends on the hardphase volume fraction. Generally,
ceramic inclusions contain most compressive residual
stresses of magnitude few times higher than the macro-
scopic stress in composite layer. The matrix stays under
weak tension in regions laying far from the inclusions or in
compression close to the hardphase boundary as well as in
regions laying between inclusions located close each other.
There is no stress component which could dominate the
overall composite stress response so the von Mises stress
shall be the general indicator of the stress severity. Fig. 12
shows von Mises rM thermal residual stress distribution
within the unit cell for 21% TaC/stellite and 24%
TiC/stellite composites with a 3D plots of stress distribu-
tion.

It can be seen from these pictures that stress con-
centrates in regions laying between the particles and also

near the inclusion/matrix boundary. In order to estimate
the local stress in composite, von Mises stress was aver-
aged and calculated separately for the hardphase and for
the inclusion for the given unit cell. The variation of this
averaged stress with hardphase volume fraction is pre-
sented in Fig. 13 for both analyzed composites. The in-
crease of inclusion content results in considerable increase
of the average stress in inclusions. The increase of the
average rM residual stress from 5% to 40% hardphase
volume fraction is lower than for the global stresses, but
the magnitude of the maximal rM stress is 3 to 4 times the
average stress in inclusion. Such localized high stresses
can cause the early cracking of ceramic even the stress is
compressive.

Also, high stresses may lead to the formation of a local
plastic zone around the inclusions, which will result in the
redistribution of this stress from the hardphase/inclusion
boundary. Another reason for such a high stress con-
centration, especially at the high volume fractions, might
be the shape of the inclusion boundary, which is not
smooth because of randomly generated inclusion pixels in
the process of volume fraction change. Thus, the torn
shape of the boundary works as the additional source of
geometric concentrator increasing the stress at the inclu-
sion/matrix interface. The ceramic-metal interface is a

Fig. 12a,b. Distribution of local von Mises residual stress within the unit cell for 21% TaC/stellite (a) and 24% TiC/stellite composites (b)
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region where high stress concentration occurs. So better
estimation of the stress severity would be obtained if the
averaging scheme could be narrowed to the stress values
taken exactly from the boundary.

5.4
Selection between 2D and 3D model
All previous results were obtained for 2D plane stress
models. We have repeated the applied calculation scheme
for a 3D model of 21% TaC/stellite composite. The unit cell
was extruded in the ‘‘z’’ direction creating a 3D re-
presentation of 2D plane structure. The global structure is
also extended in the ‘‘z’’ direction to form a cubic sub-
strate with 1 mm composite layer as shown in Fig. 14.

The homogenized properties calculated for the 3D model
differ from those obtained in 2D analysis by 2 to 9% in the
same x-y plane. In out of x-y plane the differences raised
from 5 to 20%. The results of stress distribution in 3D
model, for x-y plane are similar to those obtained in the 2D
analysis except the stress level, which reaches more ex-
treme values than for 2D case. From Fig. 15 presenting von
Mises stress distribution we can see the extreme stresses
exist also in the center of the model, which results from
both xx and zz stress components as opposed to the edge
planes, where one of the stress components reaches zero.

The difference between these two models is also seen in
the stress variation across the surface of the layer for the
x-y plane as shown in Fig. 16. The rM stress profile tends
to have sharp stress change at the composite/substrate
boundary for the 3D model. The point of maximum rM

stress is shifted from the near-boundary to the boundary
in comparison with the 2D case. The rxx stress variation
for 3D case is characterized by lower than 2D stress level in
the composite layer with similar profile as for the 2D
model.

The microscopic stress results obtained in 3D analysis
shows similar to 2D model stress distribution in the unit
cell, which is seen in Fig. 17 for rM stress. The average
local rM stress is about 2 times higher in the hardphase
and about 1.5 times the average rM stress in the matrix for
the 3D case anlysis.

The stress results calculated for 2D and 3D models show
that a good agreement is obtained for the stress field both
in macro and microscale. The selection between 2D or 3D
analysis case should be carefully considered according to
the complexity of the problem and computer efficiency.
For a simple model analysis the 2D case could give sa-

Fig. 13. Variation of the average microscopic von Mises residual
stress within the unit cell for 21% TaC/stellite and 24% TiC/stellite
composites

Fig. 14. 3D model of global composite structure for calculation of
stress state.

Fig. 15. von Mises global stress distribution for 3D 21% TaC/stellite
composite

Fig. 16. Comparison of thermal residual stress profiles across the
surface of 21% TaC/stellite composite for 2D and 3D case stress
analysis
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tisfactory results, especially for the purpose of comparison
with other composite systems It is worthwhile to notice
that the calculation time for 3D case is much longer than
2D one, as a result of the total node numbers, which for 2D
case equaled about 30000 while for 3D case 90000. This
analysis has been conducted on HP 9000/715 workstation
and the total computing time was 7 to 8 times longer for
3D model.

5.5
Analysis extension for other hardphases
The present method of homogenization combined with the
digital-image processing and finite element calculations
appears to be suitable to apply for other inclusion mate-
rials even though we do not have their microstructures. By
using the microstructure of one composite material we can
substitute its properties with other, so that different in-
clusions can be analyzed. This will give us comparable
results of the thermomechanical behavior of composites
with different hardphases. Such modeling may simplify the
process of initial selection of inclusion material for a given
matrix or a matrix for a given hardphase.

As an example we present the results of such analysis,
which are based on the TiC/stellite composite micro-
structure with 24% of inclusion volume fraction. To ana-
lyze the effect of inclusion material we substituted TiC
properties by TaC, SiC and HfC ceramics assuming iden-
tical microstructure. Selected ceramics have different
thermal expansion coefficients and different Young’s
modulus, so the combined effect of these properties on the
stress level can be examined. We have studied the Young’s
modulus ratio and the CTE mismatch effect as they have
the main influence on the stress state in MMC.

In the macroscopic stress analysis, the effect of the dif-
ference in the coefficients of thermal expansion (CTE)
between the steel substrate and composite layer, and the
effect of the ratio of composite Young’s modulus Eh to the
Young’s modulus of steel substrate Esub are presented in
Fig. 18a and Fig. 18b respectively. It is seen form these
pictures that the high Young’s modulus of TaC inclusion
contributes to the elevated stress level in the composite.

We may assume that the smallest ratio of Eh=Esub will not
guarantee the lowest stresses, which is clearly seen for the
SiC/stellite composite having the lowest CTE of SiC cera-
mic among analyzed inclusions.

Therefore, the CTE mismatch between the composite
and substrate will play the main role in the generation of
stresses, although the high Young’s modulus of TaC in-
clusion is responsible for higher stress level comparing to
HfC and TiC inclusions which have higher CTE mismatch.
The influence of high Young’s modulus of inclusion on the
stress increase is seen especially at higher volume fractions
where the effect of inclusion properties on the effective
properties of composite become evident which is opposed
to the low volume fractions. Similar trends are observed
for the average microscopic stress within the unit cell as
seen in Fig. 19, where the von Mises stress is plotted se-
parately for the matrix and inclusions. Herein, the CTE
mismatch refers to the difference between the matrix and
the hardphase while the Young’s modulus ratio to the
hardphase and matrix.

The results of the CTE mismatch show clearly that the
Young’s modulus of TaC hardphase ceramic substantially
increased the stress level in the hardphase, although the
influence of the CTE mismatch seems to affect the stress
level in a higher degree, which is shown for SiC inclusion.
In both scales of stress analysis the CTE mismatch has the

Fig. 17. Von Mises local stress distribution within the x-y plane for
3D 21% TaC/stellite composite

Fig. 18a,b. Influence of thermal expansion coefficient mismatch
between the substrate and composite layer (a) and Young modulus
ratio of the composite to the substrate (b) on the von Mises stress in
the composite layer calculated for 24% TiC, HfC, TaC and SiC/stellite
composites
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primarily effect on the stress level in the analyzed com-
posites. The Young’s modulus effect becomes visible for
high ratios of Ep=Em. This is seen in Fig. 19a for the HfC
and TaC/stellite systems which have similar CTE mis-
match, but the stress level sharply increased in TaC/stellite
composite because of high Young’s modulus of TaC
ceramic. In the above analysis we assumed no influence of
temperature on the CTE and Young’s modulus (E) of
composite material. The CTE of most ceramics and metal
increases with temperature while the E decreases. There-
fore, some authors use the product of (CTE � E) as a
constant value over the analyzed range of temperature and
treat it as a measure of joint effect of both the CTE and E
on the stress level in a structure. Such relation is presented
for studied composites in Fig. 20 and shows that the rM

stress reaches minimum for CTE � E � 2: Although the
CTE and E effect on the stress level is not equal we may use
this simple relation in the evaluation of stress for many
composite systems.

6
Summary
We have presented some aspects on modeling macro and
microscopic thermal residual stresses in the metal matrix
composites by the homogenization method with applica-
tion of digital image-base technique. The process of de-
position advanced composite materials onto the substrate
material by using plasma spraying combined with electron

beam remelting method is very attractive for producing
surface layers with enhanced strength and resistance to
external loads comparing to traditionally used materials.
The embeding of ceramic inclusions in the metal matrix
inevitably leads to the generation of internal stresses
during the formation and in service life of composite
structures. Upon the scale of mismatch in thermophysical
properties of composite’s constituents, the high stress may
reduce substantially the service life of the structure. In the
extreme case the composite may be damaged by crack
propagation through the matrix or inclusions. Therefore
the stress estimation in the MMC structures becomes im-
portant.

In the present work the homogenization method was
limited to the linear elastic range. The application of
elastic-plastic analysis for that kind of microstructures
could be difficult to conduct nowadays as it requires much
larger computer memory and calculation times. The as-
sumption of linear elasticity is valid only for hard inclu-
sions like advanced ceramics which we may treat as elastic
bodies. The stress field in the global structure was calcu-
lated using homogenized properties (E; G; V; a) of studied
composites. It is shown that these properties strongly de-
pend on the hardphase volume fraction. The results of
stress level indicate that the plastic field may be built up in
a thin layer of substrate material just close to the boundary
with composite layer. As a result the global stress level in
the composite layer may change, which will affect the
microscopic stress within the composite’s unit cell.

Upon the results of microscopic stress distribution in
the unit cell of studied composite systems, we may say that
the residual stress field is complex while inclusions are
generally under compression. There is a high stress con-
centration at regions close to the inclusion/matrix
boundary. The magnitude of the stress in the stellite ma-
trix is much above the matrix elastic limit, which suggests
that a local plastic field may be developed around ceramic
inclusions and as a consequence the stresses shall be re-
distributed from the region of stress concentration.

The change of hardphase volume fraction is a very at-
tractive feature of the analysis. Without the need to pro-
duce composite structures with specified hardphase
volume fractions we can simulate the thermomechanical

Fig. 19a,b. Influence of thermal expansion coefficient mismatch
between the matrix and inclusion (a) and Young modulus ratio of the
inclusion to the matrix (b) on the average von Mises stress within the
unit cell calculated for 24% TiC, HfC, TaC and SiC/stellite composites

Fig. 20. The relation between the product of homogenized properties
CTE�E of stellite-based composite reinforced with different ceramic
inclusions and von Mises stress calculated for global and local scale
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response of composite materials in the process of com-
posite design. This is especially important for simulation
of stresses in composite layers which are produced by
direct deposition onto the substrate material, because of
the difficulty to control the real hardphase volume frac-
tion. The calculations we have conducted for TaC/stellite
and TiC/stellite composites with hardphase volume frac-
tion ranging from 5 to 40% reveals that the thermal re-
sidual stresses both in the macroscale (global structure)
and in the microscale (unit cell) of different composite
systems, do not vary substantially for the low (5%) hard-
phase volume fractions. With the further increase of
hardphase content in the matrix the difference is ex-
panding to reach the maximum at the highest volume
fractions of inclusions.

In the analysis of thermal residual stresses the main role
play the properties of constituent materials. The most
important is the mismatch in thermal expansion coeffi-
cients between the hardphase and the matrix in the mi-
croscopic stress analysis and between the composite layer
and the substrate material in the macroscopic stress
analysis. Also, the stiffness of the local and global struc-
tures characterized by Young’s modulus ratios affects the
stress generation in the ceramic/stellite composite sys-
tems. Therefore, the selection of the hardphase material
for a given matrix is of essential meaning. We have shown
the influence of hardphase material on the stress level for
by selecting TaC, TiC, SiC and HfC ceramic inclusions
with 24% volume fraction in the stellite matrix and as-
suming identical composite microstructure. It is evident
that the increase of mismatch in the thermal expansion
coefficient between the matrix and the inclusion as well as
the increase of inclusion stiffness leads to the higher
stresses in the composite, although the CTE mismatch
seems to dominate the stress generation. On the other
hand, if we consider the composite specific stiffness, then
we will see that HfC and TaC ceramics have very high
density, which can make them less attractive than con-
ventional materials.

The selection between 2D and 3D models for the stress
analysis requires consideration of the efficiency of com-
puter calculations versus obtained results. We have shown
that the 2D model applied in the stress analysis gives
comparable results with the 3D one allowing for the sub-
stantial reduction of computing time and memory.
Therefore, the application of 3D models shall be carefully
considered according to the analysis we are going to
conduct and expected results.

It is important to remember that the stress analysis
presented in this paper refers to the thermal residual
stresses generated during the composite fabrication. In the
service life of the composite structure other stress fields
may develop resulting from the external service loads.
These stresses will superimpose with the residual stresses,
which can lead to a new, different stress state. If we expect
the composite structure to work under tensile loads then
the compressive residual stresses are preferred in the
composite as the overall stress level will be reduced. Al-
though tensile stresses are generally more dangerous for
the brittle ceramic materials, the high compressive stresses
within the composite layer are not preferred too, because

they can results cracking or delamination a thin composite
layer from the substrate.

The method presented in this paper can be an adequate
tool to compare the macro (global) and microscopic
(local) stress state in the metal matrix composites with
hard inclusions, as well as to obtain the homogenized
composite properties. We shall emphasize, that this kind
of analysis is unique as it allows the real microstructures
of composite materials to be analyzed. The presented
calculation scheme may be applied to other kinds of
loading or the combined effect of multiple loads can be
analyzed.

Further development of this method would allow to ac-
count for the plastic deformation in the elastic-plastic
analysis. At the present stage of computer, it is still a
difficult task to deal with realistic complex micro-
structures.
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