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Abstract― This paper presents the dynamic modeling of a 

continuous three-dimensional swimming eel-like robot. The 

modeling approach is based on the “geometrically exact beam 

theory” and on that of Newton-Euler, as it is well known within 

the robotics community. The proposed algorithm allows us to 

compute the robot’s Galilean movement and the control 

torques as a function of the expected internal deformation of 

the eel’s body. 
 
 

 

Key words― Locomotion, biomimetic, eel-like robot, hyper-

redundant robot, Newton-Euler algorithms, Lie groups. 

 
I. INTRODUCTION 

n this paper, we will present the preliminary results of a 

multi-disciplinary research project supported by the 

French CNRS. The goal of the project is to design and 

control a three dimensional eel-like robot. As many authors 

working in the biomimetic robotics community have noted, 

eel-like robots present an interesting perspective for 

improving the efficiency and maneuverability of underwater 

vehicles [1-5]. The prototype we are designing will be a 

hyper-redundant robot made by connecting many parallel 

platforms. Moreover in order to guarantee efficient 

propulsion, it will be covered with a continuous deformable 

organ, which will mimic the eel’s skin. This paper 

essentially deals with the macroscopic modeling of the 

future prototype. By “macroscopic” we mean a “high-level” 

model, which can be used as the basis for a preliminary 

design of the system and its control strategy. In particular, 

the macroscopic model does not take into account the 

detailed technology of the prototype but rather an ideal 

dynamic behavior useful to fix the guidelines of the project. 

The new results reported in this paper are multiple. Firstly, 

and contrary to most previous research on the same topic, 

the investigated robot is capable of three-dimensional 

swimming. Secondly, it is based on a continuous model 

adapted to the macroscopic modeling of the future hyper-

redundant prototype and to the continuous character of its 

skin. Some authors, using the concept of backbone curves 
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[6-8], have previously studied continuous modeling of 

hyper-redundant manipulators. In order to apply this kind of 

idea to the dynamics of the 3-dimensional framework, we 

adopted here the geometrically exact theory of beams in 

finite deformation, originally by J.C. Simo [9-11]. The idea 

consists in considering the eel robot as a beam defined by a 

continuous assembly of rigid cross sections and controlled 

through distributed laws of internal strains or torque. With 

this choice, just as in works dealing with articulated 

locomotion systems [12-14], the head dynamics of the 

continuous eel are derived on a fiber bundle. But in our case, 

while the fiber is still the group SE(3) of the head 

displacements, the shape space is no longer a finite 

dimensional manifold but rather a functional space of curves 

in a Lie algebra. In fact, the shape space will be 

parameterized by the field of the infinitesimal 

transformations of the cross sections along the eel’s 

backbone. Moreover, in accordance with the works of Simo, 

the eel’s body dynamics will be written on the space of 

position-orientation of the beam cross sections with respect 

to the earth frame, i.e. a functional space of curves in a Lie 

group. However, contrary to the numerical approach 

proposed by Simo to integrate the dynamics of passive 

beams, the dynamics problem considered here is not solved 

with the standard numerical tools of nonlinear structural 

dynamics but using the “Newton-Euler philosophy” of rigid 

robotics [15-17]. Finally, the proposed approach turns out to 

be a generalization of the Newton-Euler based algorithm of 

Luh and Walker [15] applied to the case of a continuous 

robot with a mobile base (here imitating the eel’s head). The 

algorithm gives the motion of the eel and the control torque 

evolution as outputs in terms of the deformation time-law of 

its body as inputs. As is well known from rigid robotics, the 

recursive nature of the Newton-Euler approach allows us to 

obtain efficient and fast algorithms, which are very simple to 

implement. Moreover, it gives us a straightforward link to 

the modeling of the future poly-articulated prototype. 

Finally, as far as the interaction of the fluid with the eel is 

concerned, for control requirements, we need to model the 

contact in a simple manner regarding the robustness of our 

future closed loop controllers. Two simple analytical models 

suited to our purposes exist. Both are based on the Fluid 

Mechanics’ theory of the slender body [18]. The 

biomechanics community suggests the first one, the second 

is offered by the ocean-engineering community. The first is 

a result of the “Large amplitude elongated body theory of 

fish locomotion” by Lighthill [19]. This model is based on 

the basic assumption of the existence of some slices of fluid 

transversally transported with the cross sections of the eel. 
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Then from kinetic conservation laws, the undulation of the 

eel’s body generates the propulsion by reaction. 

Nevertheless, this model has been restricted until now to 

planar swimming. Hence, in order to investigate three-

dimensional swimming, we use the second model, which is, 

today, devoted to the dynamics of underwater flexible cables 

[20]. In this second model, like in Lighthill’s planar solution, 

fluid forces are introduced through a local analytical model 

written for each transverse slice of the cable. Moreover this 

model takes into account, not only some inertial terms (like 

the Lighthill model does), but also some drag (transversal) 

and viscous (tangential) forces.      
The paper is organized as follows: we will start by briefly 

presenting the relationships between nonlinear beam theory 

and hyper-redundant robots designed by the assembly of 

parallel platforms (section II). Then, some basic definitions 

and notations about the macroscopic beam model of the 

prototype are given (section III). Based on this model, the 

fluid-structure interaction is modeled (section IV). Section V 

is devoted to the continuous kinematic model of the eel. In 

section VI, we give the eel’s head dynamics based on the 

principle of virtual works. In the Newton-Euler algorithm, 

these dynamics give the boundary conditions of the 

continuous kinematic models. Then the dynamic model of 

the eel’s body is presented (section VII). It is based on the 

calculus of variations applied to a Cosserat medium [21], 

and leads us to a set of “partial differential equations” 

directly linked to those of Reissner’s beam [22]. Finally, all 

these results are combined in section VIII in order to obtain 

the computed torque algorithm. The paper ends with 

numerical examples (section IX) and some concluding 

remarks (section X). 

     
II. BEAM’S KINEMATICS AND HYPER-REDUNDANT ROBOTS 

We will consider here the case of a hyper-redundant robot 

produced by a serial assembly of parallel platforms. The 

robots investigated like so are of “snake-like” or “elephant 

trunk” type. In this context the rigid platforms mimic the 

vertebrae while the kinematics between any two platforms 

play the role of inter-vertebral kinematics. We develop the 

dynamics analysis using the geometrically exact theory of 

nonlinear beams, as developed in the eighties by J.C. Simo 

[9-11]. In this theory, the beam is considered as a continuous 

assembly of rigid sections of infinitesimal thickness, i.e. a 

one-dimensional Cosserat medium [21]. In the context of 

robotics, the sections imitate the robot’s vertebrae and the 

beam kinematics, that of the inter-vertebral kinematics. 

Pushing the analogy forward, the centroidal line of the beam 

plays the role of the backbone of the snake-like robot. In this 

framework, one of the first tasks is to relate parallel 

platforms with the corresponding beam kinematics, where 

some of them are not related to any standard beam theory. In 

order to present these correspondences briefly, let us first 

introduce a few definitions related to the geometrically exact 

beam theory. Firstly, the material abscissa along the beam 

axis is denoted by X, which positions a particular cross 

section in a reference configuration 
oΣ  (see Figure 1). The 

reference configuration is considered to be straight and 

represents a Galilean reference to which we fix the earth 

frame: 1 2 3( , , , )gF O E E E= . Secondly, to each X section, we 

materially fix a mobile ortho-normed frame 

1( ( ), ( ),XF G X t X= 2 3( ), ( ))t X t X , where G(X) is the center 

mass of the X section, and 
1t  supports the beam axis 1E  

when it is in the configuration 
oΣ . Let us point out that 

XX F  is not the field of Frenet-Serret frames since each 

XF  is actually attached to the X cross section and not 

deduced from the geometry of the deformed backbone 

curve. 

 The advantage of this choice is that the torsion is no 

longer geometric but actually related to the torsion strain 

field of the beam. Now, let us introduce the rigid 

transformations of SE(3) mapping the cross sections before 

deformation onto their configurations after deformation 

(defining the whole deformed configuration of the eel 

( )tΣ (see Figure 1)): 

            
( ) ( )

[0,1] ( )
0 1

R X d X
X g X

 
∈ =  

 
               (1) , 

 

where R is the rotation matrix mapping the X mobile basis 

before deformation onto that after, and d is the vector 

displacement field of the section centers. With the adopted 

parametrization (1), the deformation of the beam is defined 

by the field of twist [ ]0,1 ( ) (3)X X seη∈ ∈  modeling the 

infinitesimal changes of the mobile frames situation when 

sliding along the beam’s material line of centroids, i.e., s.t.: 
 

   / .g X g η∂ ∂ =                               (2) , 

which can be expressed as: 
  

           
ˆ/ /

.
0 0 0 1 0 0

R X d X R d K ∂ ∂ ∂ ∂    Γ
=            

             (3) , 

 

where we introduced the skew-symmetric tensor: 
ˆ ( / )TK R R X= ∂ ∂ associated to the axial vector K. The last two 

components 2K  and 3K  of K stand for the curvatures of the 

beam in the two planes 1 3( , , )( )G t t X  and 1 2( , , )( )G t t X , 

while 1K  is the rate (per unit of material length) of rotation 

of the section around its normal vector, i.e. the torsion strain 

field. As for the infinitesimal translations between two 

sections, we introduced the vector ( / )TR d XΓ = ∂ ∂ , whose 

first component 
1Γ  is related to the stretching of the beam 

while the two others are related to its transverse shearing 

[11]. An eel-like robot can then be considered as a beam 

controlled by a desired time evolution of η : 

( , ),  dt X t Xη ∀ , under the assumption that local 

controllers are able to impose the desired strains Γ  and K  

instantaneously. We shall see later, in the particular case of 

our eel-like robot, how to relate the strain law ( , )K Γ with 

that of the motor torques. Now, let us relate the general 

beam kinematics (2)-(3) to the corresponding hyper-

redundant robots. 

To do this, we shall introduce a few possible parallel 

structures, starting from the most general case to the most 

specific one, by constraining the time evolution of η  more 



 3

and more. In the most general case, all six components of 

the vectors K and Γ  can be defined by some arbitrary time 

evolutions. The corresponding parallel platform is of 

“Gough-Stewart type” [23], and the beam kinematics is that 

of Timoshenko-Reissner [22,24]. Another interesting case 

consists in imposing 
2 3 0Γ = Γ = , in this case the inter-

vertebral kinematics allows a three d.o.f. rotation and 

stretching along the backbone. The corresponding 

continuous model is that of an extensible Kirchoff beam 

[25]. The next interesting kinematics is deduced by 

imposing 
1 1Γ = . In this case we have 1/r X t∂ ∂ =  (where r is 

the position field of the beam axis (see Figure 1)), and the 

Kirchoff beam is non-stretchable while the corresponding 

parallel platform is of “spherical joint type”. Finally for the 

purpose of three-dimensional manipulation or locomotion, 

the minimal kinematics consists in imposing 1 0K = , in this 

case the robot cannot twist around its backbone, nevertheless 

it can roll around it, by combining the two bending 

curvatures 2K  and 3K . In this case, the platform is of 

“universal joint type”. If we go further, by imposing 2 0K =  

the robot is a planar one as those designed for planar 

swimming in [4]  

Finally, note that the constraints imposed by robot 

architecture design can be interpreted as specific time 

evolutions, and that from a dynamics point of view, these 

constraints will induce internal reaction forces and torque 

fields playing the role of Lagrange multipliers. In the same 

manner, time evolution of the internal d.o.f. will be imposed 

by the corresponding internal control torques and forces. 

This point will be discussed at the end of the paper taking 

case of our eel-like robot. 

 
III. BASIC DEFINITIONS AND NOTATIONS 

First and foremost, note that throughout the paper, any 

tensor fields depend on time and the space variable X. 

Moreover, time dependency can be explicit when the fields 

are known through their time evolution, or implicit, if their 

time evolutions require us to integrate the dynamics. In the 

first case, time appears explicitly as an argument of the field, 

but not in the second case. Finally the derivative operators 

“ . / X∂ ∂ ” and “ . / t∂ ∂ ” will be indicated by a “prime” and a 

“dot” respectively. In this section, we will give all the 

geometric and inertia characteristics of the macroscopic 

model of the prototype. Firstly we will introduce the 

following basic definitions from the continuous approach of 

the geometrically exact beam theory. 
 

A. Basic definitions 

In accordance with Figure 1, we will use the following 

frames: 
 

• The Galilean frame (fixed to the earth), written as 

1 2 3( , , , )gF O E E E= , 

• The mobile frame of the section (vertebra) X of the eel’s 

body, indicated as 1 2 3( ( ), ( ), ( ), ( ))XF G X t X t X t X= , 

• The mobile frame of the eel’s head, which is written as 

1 2 3( , , , )o o o o oF O t t t= , (it is the mobile frame of the section 

0X = of the body). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With these three sets of frames we define the set of curves, 

which defines the configuration space of the eel (summation 

convention on repeated indexes is adopted): 
 

           
3[0,1] (3)

( ( ) ( ) , ( ) ( ) )i i i i

SO

X r X r X E R X t X E

→ ×
= = ⊗

R
     (4) , 

 

where “ ⊗ ” is the tensor product.  
 

In the following we will note more simply:  
 

                  ( 0) oR X R= = ,   ( 0) or X r= =                 (5)  , 

 

which describe the orientation and position of the head in 

relation to the earth. 
 

B. Geometric and inertial characteristics of the eel-like 

robot 
 

We suppose that a continuous beam of rigid elliptic shape 

cross sections represents the prototype. The mass 

distribution is supposed to be homogeneous and of unit 

density. Using these assumptions, the center of mass of any 

section coincides with the geometric center of the ellipse. 

For the same reasons, the inertia principal axes of the inertia 

tensor density along the beam coincide with the ellipse axes. 

Thus, taking the mobile vectors basis 2t  and 3t  aligned with 

the small and great ellipse axis respectively, forces the 

inertia density to be as follows: 
 

         1 1 1 2 2 2 3 3 3/dI dX J t t J t t J t tρ ρ ρ= ⊗ + ⊗ + ⊗        (6)  , 

 

where ρ  is the mass per unit of volume of the material 

and ,  1, 2,3iJ i =  are the geometric second order moments 

of the section around ,  1, 2,3it i = . Finally, with these 

assumptions, the centers of mass and buoyancy are 

collocated and the whole robot is neutrally buoyant. This 

means that the simulated prototype is assumed to be able to 

control its density to allow neutral buoyancy at all depths. 

 

 
Figure 1: Frames and parameterisation. 
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C. Inter-vertebral kinematics 

Based on an analysis of three-dimensional swimming of 

fish, we adopted a spherical inter-vertebral kinematics. With 

this choice, the corresponding beam theory is that of non-

stretchable Kirchoff beams [25], while the parallel platforms 

are of “spherical joint type”. Thus, the control inputs of the 

dynamics problem is the time evolution of the twist-

curvature tensor field: 
 

                     ˆ,  ( , ) ( / )T T

dX K X t R R X R R′∀ = ∂ ∂ =            (7) , 

 

In the following, for any 3V ∈R , V̂  will denote the skew-

symmetric tensor s.t.: 3 ˆ,  U VU V U∀ ∈ = ×R , and 

conversely for a skew-symmetric tensor ξ  of so(3), ξ ∨  will 

denote the associated pseudo-vector of 3  s.t. 

V Vξ ξ ∨= × . Finally, the “spherical kinematics” imposes 

the mechanical design constraint: 
 

                                    1/r X r t′∂ ∂ = =                        (8) , 

 

which forces the beam to verify the Kirchoff and non-

extensibility assumptions. 

 
IV. FLUID-STRUCTURE INTERACTION MODEL 

To model the contact forces between the fluid and the eel’s 

body, we will adopt a standard generalization of the Morison 

model [26] applied to the case of under-water flexible cables 

of circular cross section [20]. This model takes into account 

not only the transverse reactive (inertial) forces like 

Lighthill’s model [19], but also the resistive (viscous) 

tangential ones. However, it excludes the influence of the 

vortexes shaded in the eel’s wake. In order to apply this 

model to the case of the eel, we added a slight modification 

to it that takes into account the elliptic profile of the eel’s 

sections (see Appendix). In this model, based on the 

“slender body approximation” of Fluid Mechanics [18], the 

fluid forces are modeled “slice-by-slice” through the field of 

(left invariant) wrench density along the eel’s backbone 

( *(3)so  is the dual space of the Lie algebra of SO(3), i.e. the 

space of torques): 

 

    3 *]0,1[ (3)so→ ×R  ,  ( / , / )ext extX df dX dc dX  , 

with:          

      
3 3

1 1 1 1

2 2

/ext ld ldi n i i lmi i i

i i

df dX C V V t C v V t C t
= =

= − − − ϒ∑ ∑     (9) , 

 

where we introduced the velocity and acceleration of each 

section mass center in the corresponding section frame: 
 

                
3

1 1

1

i i n

i

r V t V t v
=

= = +∑  , 
3

1

i i

i

r t
=

= ϒ∑                 (10) , 

 

with nv , the section velocity normal to the eel axis, and ldiC  

and lmiC , are coefficients depending on the mass per unit of 

volume of the fluid, the shape and size of the profile (here 

elliptic) and the Reynolds number of the moving profile in 

the fluid. At this point, it is worth noting that the local model 

(9) generates some drag and lift resultant forces on the 

global eel dynamics. For instance, let us consider the 

simplified case where the eel is straight (rigidified) and fixed 

at rest in a steady flow of velocity v with an angle of attack 

α  (see Figure 2). In these conditions (  1,  0r v E r= − = ), the 

resultant of local forces (9) turns out to be after 

computations: 
1

2 2

1 3
0
( / )ext d lF df dX dX C v E C v E= = − −∫  

 
Figure 2: Eel in a straight rigidified configuration fixed in a steady flow. 

 

where dC  and 
lC  are respectively two α  dependent drag 

and lift coefficients, expressed as: 
 

1
2 2

1 3
0
( c c s s )d ld ldC C C dX= − +∫ α α α α ,    

1

1 3
0
( c s )s cl ld ldC C C dX= −∫ α α α α . 

 

Note that these expressions of global drag and lift 

coefficients are approximations within the slender body 

theory, which do not take into account the influence of the 

eel’s wake. However contrarily to the Lighthill model [19], 

they take into account tangential viscous resistance as it is 

shown by imposing 0α =  in dC . Finally, the acceleration 

terms of (9) are the added mass forces of [20] as they are 

extended to elliptic cross sections in [27].  
 

As far as the field of fluid torque is concerned, we take 

into account the drag and added inertia torques generated by 

the rotation of the planar elliptic cross sections around their 

normal axis: 

                
1 1 1 1 1 1 1

/
ext ad am

dc dX C t C t= − Ω Ω − Ω            (11) , 

 

where we introduced the angular velocity and acceleration of 

the section in its mobile frame: 
 

                ,    i i i it tω ω= Ω = Ω                 (12) . 

 

We can summarize all these terms by the following contact 

law: 

// 0
.

// 0

dragext lm

dragext am

df dXdf dX c r

dc dXdc dX c ω
      

= −      
     

    (13) , 

 

where we introduced the density of drag wrench, which 

generates some global drag and lift (see the previous 

simplified example): 

1E

3E

2
E

1E

3E

2 2E t= 1
t

3tv

α

cross section

eel



 5

      

3

1 1 1 1

2

1 1 1 1

/

/

ld ldi n i idrag

i

drag

ad

C V V t C v V tdf dX

dc dX
C t

=

 
− −   =   

   − Ω Ω 

∑
      (14) , 

and also the sectional added mass tensors depending on the 

geometry of the section profile and the fluid characteristics: 
 

    2 2 2 3 3 3  lm lm lmc C t t C t t= ⊗ + ⊗ , 1 1 1 am amc C t t= ⊗     (15) , 

 

where with an X dependent profile of sections (as in our 

case), the parameters of (15) will vary along the eel’s 

backbone. It is worth noting that as in the case of lift and 

drag resultant forces, the added mass contributions of (13) 

will be superimposed slice-by-slice. For instance, if we 

consider the case where the eel is a rigid ellipsoid (where the 

lengths of its three axis supported by 1t , 2t and 3t  are 

respectively 2A, 2B, 2C), then the resultant of all the slice-

by-slice added mass contributions when calculated at the 

ellipsoid center mass G, can be broken down as the 

following 6 6×  matrix in the eel’s frame centered on G:   
 

ˆ ( ) 0

ˆ 0 ( )

T

aia a

aia a G

diag mm ms

diag Ims I

   
=   

  
, 

 

where with standard expressions of 2 3,  lm lmC C  and 1amC  for 

an elliptic section, (given later in section IX.A): 1 0am = , 

2

2 4 / 3am ACρπ= , 2

3 4 / 3am ABρπ= , 2 3

3 4 /15aI C Aρπ= , 
2 3

2 4 /15aI B Aρπ= , and 2 2 2

1 2 ( ) /15aI B C Aρπ= − .  Finally 

note that these expressions are nothing else than those of the 

added masses and inertia of a general ellipsoid [28] where 

/B A  and / 0C A → , i.e. within the “slender body theory”. 

In the case of the eel, this approximation essentially models 

the reactive transverse fluid forces on which undulatory 

swimming is based [19].  
 

In order to complete this approximated model let us now 

consider the forces applied to the two ends of the eel, i.e. its 

nose and its tail. Because the nose, i.e. section 0X = is 

geometrically reduced to a material point, we only take into 

account some dragging and added mass forces onto the head 

aligned with its axis, i.e.: 

 

, , 1 1 1(0) (0)d head d head of C V V t= − , 
, , 1 1(0)m head m head of C t= − ϒ   (16), 

 

where the parameters 
,d headC  and 

,m headC  depend on the shape 

of the head. Finally, because the wake influence is 

neglected, the wrench applied to the terminal section 1X =  

is assumed to be zero.  
 

V. CONTINUOUS KINEMATIC MODEL OF THE EEL 

In this section, we develop the continuous version of the 

kinematic models of open robotic chains. All these models 

can be interpreted as p.d.e.s in space and time. Nevertheless, 

when we deal with the dynamic algorithm, these p.d.e.s will 

be interpreted as spatial o.d.e.s and numerically integrated at 

each step in a time loop.  
 

A. Continuous geometric model 

From (7) and (8) we obtain the two following models. 
  
Model of orientations: 

ˆ   ,   (0)d oR RK R R′ = =                   (17) . 

Model of position: 

     1   ,   (0) or t r r′ = =                     (18) . 

 

B. Continuous Kinematic model of velocity 
 

Model of angular velocity: 

Time-differentiating (17) and introducing the field of 

angular velocities: 

                           
ˆ : [0,1] (3)

ˆ( ) ( ) ( )
T

so

X R X R X X

ω

ω

→

=
             (19) , 

 

we find (see [29] for more details about the demonstration):  
 

                                 ˆ ˆˆ ˆ[ , ]k kω ω′ = +                             (20) , 

 

with ˆ ˆ T

dk RK R=  and [.,.] , the Lie bracket of so(3). Finally, 

we can rewrite (20) in terms of axial vectors as: 
 

dk k RKω ω′ = + × =                        (21) , 

 

with the boundary condition given by the eel’s head angular 

velocity ( 0) ( )T

o o oX R Rω ω ∨= = = . 

 

Model of linear velocity: 
 

By time-differentiating (18): 
 

1r tω′ = ×                                (22) , 

 

with the boundary condition given by: ( 0) or X r= = .  

                                              

C. Continuous kinematic model of acceleration: 

Time-differentiating (21) and (22), gives the two following 

models. 
 

Model of angular acceleration: 
                                 

d dk k k RK RKω ω ω ω′ = + × + × = + ×   ,     

                     ( 0) ( . . )T T

o o o o oX R R R Rω ω ∨= = = +             (23) . 

 

Model of linear acceleration: 
 

                  1 1( )r t tω ω ω′ = × + × × ,  ( 0) or X r= =        (24) . 

 

Let us note that (23) and (24) are two p.d.e.s whose space 

integration at each step of time will give the acceleration 

field along the eel’s backbone. Thus, they represent two 

o.d.e.s, which are the continuous counterparts of the forward 

recurrences of acceleration of a multibody system, where X 

replaces the body index. Nevertheless, contrary to the case 

of manipulators, (23) and (24) are not initialized by some 

imposed boundary conditions but rather by the acceleration 
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of the eel’s head. Hence, we have to derive the head’s 

dynamics in order to compute (at each step in time) the 

head’s acceleration (see section VI).  
 

D. Decomposition of acceleration 

As we shall see in the next section, the computation of the 

head’s dynamics requires us to break down acceleration 

along the eel’s body into two components, one depending on 

the head’s acceleration, the other containing the terms 

relative to velocity and internal strain (curvature and twist) 

acceleration.  Such decomposition is based on the following 

parametrization of the eel’s configuration: 
 

                                ( ) ( )o eR X R R X=                          (25) , 

                                ( ) ( )o er X r r X= +                          (26) , 

 

where ( )eR X  and ( )er X  are the orientation and position of 

the X section respectively, in relation to the head frame. 

Finally, the spatial differentiation of (25) and (26) shows 

that 
eR  and er  are, at any time, the solutions of (17) and (18)

, with ( 0) 1R X = =  and ( 0) 0r X = = . 

 

Decomposition of angular acceleration 
 

If we insert (25) into (19), we find, after time 

differentiation: 

                              ( ) ( )o eX Xω ω ω= +                       (27) , 

 

where oω  is the angular acceleration of the head and eω  is 

the solution of the following p.d.e. obtained by spatial 

differentiation of (27): 
 

                         e k k kω ω ω ω′ ′= = + × + ×                  (28) , 

 

and so, eω  is simply the solution of (23), with 

( 0) 0Xω = = . 

 

Decomposition of linear acceleration 
 

Now inserting (26) into the definition of r  leads us to the 

introduction of a new acceleration term eγ  defined by: 

 

                           o o e er r rω γ= + × +                            (29) . 

  

Then, differentiating (29) with respect to the space variable, 

and taking (24) into account with the fact that 1er r t′ ′= = , 

we find: 

                  1 1( ))e e t tγ ω ω ω′ = × + × ×                     (30) . 

 

Thus, eγ  is the solution of (24) with the boundary 

condition ( 0) 0r X = = , and with ω  replaced by eω . 

Finally, the decomposition of acceleration (27) and (29) can 

be summarized by the following matrix relation: 
 

                        
ˆ1

0 1

o ee

o e

rr r γ
ω ωω

−      
= +     

      
                (31) . 

 

Hence, from (31) we see that eγ  and eω  are two 

acceleration terms containing relative acceleration due to the 

deformation of the body and all the Coriolis-centrifugal 

terms. 
 

VI. THE EEL’S HEAD’S DYNAMICS 

In this section we adopt the following definition of the eel 

configuration space: ˆ: (3) { :[0,1] (3)}SE K so= ×C , i.e. a 

principal fiber bundle with (3)SE  the Euclidean head 

displacement and ˆ{ :[0,1] (3)}K so , the shape space of 

twist-curvatures along the beam. The dynamics of the head 

are easily derived from the principle of virtual works: 

 

        ,  ,  dyn extW W rδ δ δφ δ= ∀                  (32) , 

 

where ( )TRRδφ δ ∨=  and rδ  are the virtual angular and 

linear displacement fields applied to the cross sections while 

the time is maintained. The left-hand side of (32) represents 

the virtual work of acceleration quantities while its right 

counterpart is the virtual work of external forces here due 

only to the contact with fluid. Note that the control torque 

field does not produce any virtual work, since at this point, 

the internal deformations are directly imposed through the 

time strain law (7). Applying this principle with (31) and the 

following form of the virtual displacement field:  
 

                           
ˆ1

.
0 1

oe

o

rr r δδ
δφδφ

−    
=    

     
                    (33) , 

 

which is compatible with (31) and with the “fixed time 

constraint” imposed by the application of the principle [30]. 

Finally, we obtain the eel’s head’s dynamics: 
 

   
ˆˆ1

ˆˆ

TT

oa a

oa a

rm msm ms

ms Ims I ω
     

+           
  

     
e ea dl

e ea dl

f f f

c c c

      
+ − =             

 (34) , 

 

which correspond to the Newton-Euler equations of the 

whole robot driven by the forced deformations. In (34) we 

introduced the following definitions: 
 

the inertia tensor: 
 

           
1

0

ˆˆ 11

ˆ ˆ ˆˆ

T

e

T

e e e

A Arm ms
dX

Ar I Ar rms I

ρ ρ
ρ ρ ρ

−   
=   +  

∫  (35) , 

 

the wrench produced by Coriolis-centrifugal and strain 

acceleration: 
 

         
1

0

1 0
 

ˆ 1 ( )

e e

e e e

f A
dX

c r I I

ρ γ
ρ ω ω ρ ω

    
=    + ×    

∫      (36) , 

 

the added mass tensor induced by the head acceleration: 
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1

0

ˆˆ

ˆ ˆ ˆˆ

T

lm lm ea a

e lm am e lm ea a

c c rm ms
dX

r c c r c rms I

  − 
=   −  

∫  

                                    
, 0

0 0

lm headc 
+  

 
                       (37) , 

 

the wrench produced by added mass submitted to Coriolis, 

centrifugal, and strain acceleration: 
 

                         
1

0
 

1 0

ˆ 1

ea lm e

ea e am e

f c
dX

c r c

γ
ω

    
=    

    
∫           (38) , 

 

the wrench of drag and lift forces generated by the density of 

local drag wrench: 
 

1
,

0

/1 0

ˆ /1 0

dragdl d head

dragdl e

df dXf f
dX

dc dXc r

      
= +      

     
∫  (39) . 

 

Remark: “body deformation dependency” 
 

Note that (35)-(39) take into account the influence of body 

deformation. For instance, transforming the local drag 

wrench from the X cross section to the eel’s head ( 0X = ) 

produces the term under the integral of (39). Hence, (39) 

first depends on body deformation through the relative 

position vector e or r r= − . Moreover, (35)-(39) are intrinsic 

equations, i.e. are not projected in any frame. For instance, 

projecting (39) in the eel’s head frame (this is what is done 

for numerical purpose), we have: 
 

1
,

0

( / )0
 

ˆ ( / ) 0

Xo o
dragedl d head

Xoo

drage e edl

df dXRf f
dX

dc dXr R Rc

     
= +            

∫  , 

 

where XT  denotes the matrix of the components of the 

tensor T in the mobile base of the X cross section. In 

particular, oT  is the matrix of the components of T in the 

mobile basis of the section X=0, i.e. in the vector basis of the 

eel’s head. Hence, the resultants (35)-(39) also depend on 

body deformation through the orientation field eR . Finally, 

it can be noted that except the basic assumptions about the 

local contact model, no simplification is made in (35)-(39). 

These are the characteristics of the geometric exact theory. 

For instance, plunging the eel into the void and imposing 

some time varying deformations should conserve six “first 

integrals”, i.e. the components of the linear and angular 

moments in the earth frame. This has been verified on the 

simulator with a precision of 610− . 

 
VII. THE DYNAMICS OF THE EEL’S BODY 

In this section we adopt the following definition of the eel 

configuration space: 3: {( , ) :[0,1] (3)}r R SO= ×C R , i.e. a 

space of curves in a Lie group. We have previously 

supposed that the internal strains were instantaneously 

imposed on the vertebrae through their time evolutions (7). 

In order to obtain the time control torque law required to 

verify this evolution, we are now going to derive the 

dynamics of internal forces and momentum. This can be 

done in a straightforward manner from a variational calculus 

applied to the following augmented Lagrangian: 
 

1

1
0

1
( , ) (( ) , ( ) )

2

T T T T

d

Ar n
L r r t K K dX

I M

ρ
ω

ρ ω
   

′= + − −   
   

∫  

 (40) , 

where the first term stands for the kinetic energy of the eel; 

the second takes into account the constraints imposed to the 

inter-vertebral kinematics by the design (8) and the control 

(7). In order to force these constraints, we introduced the 

following field: 
3 *[0,1] (3)

( ( ) , ( ) )T T T

so

X n X M X

→ ×R
  , 

 

where, n is the field of internal forces in the earth frame and 

M  is the field of control torque in the vertebra (cross 

section) frames. Then posing the “extended Hamilton 

principle” [31]: 
 

          ,     ,  ,  , 
f f

i i

t t

ext
t t

L dt W dt r n Mδ δ δ δφ δ δ= ∀∫ ∫    (41) , 

 

where the external contribution is due to the fluid (13), we 

obtain the partial differential equations of the eel’s body 

which represent the Newton-Euler equations of each section: 
  

]0,1[X∀ ∈ : 

1

/( )

/( ) ( ) ( )

draglm

dragam

df dXA c r n

dc dXI c I RM t n

ρ
ρ ω ω ρ ω

′  −   
+ =     ′− + × + ×    

 (42) , 

which has to be completed with the constraints: 
 

  ,  ( ) ( , )dX K X K X t∀ =      ,        1 0r t′ − =          (43) , 

 

and the boundary conditions on the head given by (16): 
                            

, ,(0)

(0) 0

d head lm head on f c r

M

+   
=   

   
             (44) , 

and on the tail: 

                                       
(1) 0

(1) 0

n

M

   
=   

   
                        (45) . 

 

Finally, before detailing our algorithm, let us note that the 

set of equations (42)-(45) defines a closed formulation 

enabling us to solve the direct dynamic problem of the eel, 

i.e. to compute the motion of the sections based on the 

knowledge of the internal torque law. This could be 

achieved for instance through the geometrically exact 

approach of finite elements as proposed in [11]. Instead, this 

set of equations will be used to solve the inverse problem, 

consisting in computing the internal control torque law 

corresponding to some expected deformation. In this case, 

we shall use (42) as spatial o.d.e.s integrated at each step of 

a simulation time loop. Let us note that in such a case, only 

the equations (42) with one of the two boundary conditions 

(44)-(45) are required since the constraints (43) are 

implicitly taken into account through continuous kinematics, 
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while the second of the two boundary conditions is taken 

into account via the eel’s head dynamics. 

 
VIII. COMPUTATIONAL ALGORITHM 

Based on the previous results, we can derive an algorithm 

whose inputs are the state variables of the eel’s head, and the 

desired time evolution of its body’s curvature and twist (and 

their time derivatives), i.e.: 
 

( , , , )o o o or r R ω ,          

and: 

   ,   ( ( , ), ( , ), ( , ))d d dX t K X t K X t K X t∀           (46) . 

 

The outputs of the algorithm are head acceleration and the 

required control torque for imposing (46), i.e.: 
 

( ( ), ( ), ( , ) )o o dt r t t M X t Xω ∀                 (47) . 

 

The algorithm is based on three integration numerical 

loops, the first one is in time and allows us to update the 

state of the head, and the two others are in space and are 

included in the first. The first space integration loop 

computes head acceleration. The second space integration 

loop calculates the control torque distribution applied to the 

vertebrae. 
 

A. First space integration loop 

 

The first space loop starts with the following spatial 

o.d.e.’s deduced from the p.d.e.’s of section V, now 

considered at the fixed current time t of the time loop.   
 

Computation of the configuration 
 

• In orientation:  

                              ˆ
dR RK′ =   , (0) oR R=                (48) , 

• in position: 

                                1   ,  (0) or RE r r′ = =                    (49) . 

 

Computation of the velocities 
 

• In orientation: 

                     dRKω′ =    ,  (0) oω ω=             (50) , 

• in position:  

                      r rω′ ′= ×  ,  (0) or r=                (51) . 

 

Computation of the acceleration: 
 

• In orientation:  

                        e d dRK RKω ω′ = + × , (0) 0eω =           (52) , 

• In position:  

                       ( )e e r rγ ω ω ω′ ′ ′= × + × ×  , (0) 0eγ =      (53) . 

 

Computation of the head dynamics: 

 

Let us note that the tensors and wrenches of (34) can be 

computed at each step of the time loop by integrating the 

following system of o.d.e.’s with respect to the space 

variable from the head to the tail: 

 

3
ˆˆ1

ˆˆ

TT

a a

a a

m msm msd

dX ms Ims I

   
′ = +   

     
I  

           
ˆ1 ( 1 )

ˆ ˆ ˆ( 1 ) ( 1 )

lm lm e

e lm am e lm e

A c A c r

r A c I c r A c r

ρ ρ
ρ ρ ρ

+ − + 
=  + + − + 

 (54) , 

and: 

e ea

e

e ea

f fd

c cdX

    
′ = −    

     
F  

                 
1 0 ( )

ˆ 1 ( ) ( )

lm e

e am e

A c

r I c I

ρ γ
ρ ω ω ρ ω

+  
=   + + ×  

       (55) , 

and finally: 

                       
/1 0

ˆ /1

drag

dl

drage

df dX

dc dXr

  
′ =   

  
F                    (56) , 

 

where I  denotes inertia and added mass tensor, e−F  is the 

wrench of Coriolis-centrifugal and strain forces produced by 

material and added mass, and dlF  is the wrench generated 

by the local drag forces and torques applied along the eel. 

And where (54) and (56) are initialized by the following 

boundary conditions compatible with (44) and (16), with 

, , 1 1m head m head o oc C t t= ⊗ : 

 

              
, 0

(0)
0 0

m headc 
=  

 
I ,    

,
(0)

0

d head

dl

f 
=  

 
F       (57) . 

While: 

                                     
0

(0)
0

e

 
=  

 
F                                (58) . 

 

For simulation purpose, (54)-(56) are projected into the 

head frame. Finally, once the equation (48) replaced by its 

parameterization in terms of a quaternion field (noted q ), all 

the equations from (48) to (57) can be solved by integrating 

the following first order system: 
 

1 1 1( , ( , ), ( , ), ( , ))d d dx f x K X t K X t K X t′ = , 1 1( 0) ox X x= =  

 (59) ,  

where: 

    
1 ( ) ( , , , , , , ( ) , , )T T T T T T T T T T

e e e dlx X r q r vectω γ ω= I F F  , 

and: 

            
1 ( , , , ,0,0, ( (0)) ,0, (0))T T T T T T T

o o o o o dlx r q r vectω= I F    (60) , 

 

with ( )vect I , the 6 1×  vector of the independent 

components of the tensor I ; and (0)I , (0)dlF  given by 

(57). At the end, from this first space loop we obtain the 

head acceleration ( , )o or ω from: 

 

1( )
o

dl e

o

r

ω
− 

= − 
 

I F F , 

 

which initializes the second space loop. 
 

B. Second space integration loop 
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From the following o.d.e.’s: 
 

                   
d dRK RKω ω′ = + × , (0) oω ω=                (61) , 

 

                ( )r r rω ω ω′ ′ ′= × + × × , (0) or r=               (62) , 

 

we recover the fields of Galilean acceleration of the eel’s 

body. Then inserting r  into the first p.d.e. of (42) gives: 

 

                      ( ) /lm dragn A c r df dXρ′ = − − +              (63) . 

 

Next integrating (63) in relation to X at each step time, 

gives the field of internal forces applied to the vertebrae. At 

this step, inserting n and ω  in the second p.d.e. of  (42) and 

integrating : 
 

(( ) ( ))T

d amM K M R I c Iρ ω ω ρ ω′ + × = − − + ×  

                           
1( / )T

dragR t n dc dX− × −                        (64) , 

 

with respect to X, gives the field of control torque: 

( , ), dt M X t X∀ , required to force the expected 

curvature-twist law: ( , ),  dt K X t X∀ .  

 

Finally, once completed by (48)-(51), (61)-(64) are solved 

by integrating the following first order system: 

 

2 2 2( , ( , ), ( , ), ( , ))d d dx f x K X t K X t K X t′ =             (65) , 

where: 

2 ( ) ( , , , , , , , )T T T T T T T T Tx X r q r r n Mω ω=  , 

and: 

               2 ( , , , , , , (0),0)T T T T T T T T

o o o o o o ox r q r r nω ω=          (66) , 

 

with (0)n , given by (44).  

Once the second space loop is completed, the head 

acceleration is time-integrated twice over in order to update 

the state of the head. Then the time is shifted by one step and 

the algorithm resumes… 
 

Remark: 
 

Let us note that (63) and (64) play the role of the backward 

recursive equations of inter-body wrenches of a serial 

manipulator [15]. Nevertheless, contrary to the case of a 

manipulator, where the boundary conditions on wrenches are 

known at the end of the structure and are unknown at the 

base, in our case we know the boundary wrenches at both 

ends, so forward or backward integration is equivalent. In 

the following, we choose to adopt a forward recursive 

equation on wrenches initialized by (44). It follows that the 

second boundary condition (45) will be a verification test. 

 
IX. NUMERICAL RESULTS 

In this section, we report some numerical results obtained 

by the algorithm of section VIII. The objective of these 

examples is to prove that despite the non-linear character of 

the eel dynamics we can easily realise three-dimensional 

gaits by combining some elementary curvature laws, while 

maintaining the twist at zero. Before presenting the 

numerical results, let us describe the robot characteristics. 
 

A. Geometric description of the eel-like prototype: 
 

In order to take into account the continuous property of the 

skin of the prototype, we consider the previous macroscopic 

modeling with the following geometry (see Figure 3): 
 

 

 

 

 

 

  

 
 

 

where the total length of the robot is of 2L =  meters, its 

total mass is 21,7 kg, its density is 1. The cross section is of 

elliptic shape (of great axis maximal length equal to 15 cm) 

on the interval 1 3[ , ]X X , while the head ( 1[ , ]oX X X∈ ) and 

the tail ( 3[ , ]X X L∈ ) are respectively half of a sphere (of a 

diameter of 15 cm), and that of an ellipsoid (of great and 

small axis length equal to 10 cm and 5 cm, respectively). 

Finally, denoting the small and great axis’ lengths of the 

elliptic section by b and c, the model (9)-(13), is used with: 
  

1 1(1/ 2) ( ) / 2ldC C b cρ π= + , 
2 2(1/ 2) 2ldC C cρ= , 

3 3(1/ 2) 2ldC C bρ= , 2 2 2

1 4(1/ 2) ( )adC C b cρ= − , 

2

2 5lmC c Cρπ= , 2

3 6lmC b Cρπ= , 2 2 2

1 7( / 8)( )amC c b Cρ π= − , 
 

with from [28,32], 
1 0.01C = , 

5 6 7 1C C C= = = , and 

2 3 4 1C C C= = = ; which correspond to the values of a 

cylindrical obstacle plunged in a flow with a Reynolds of 

approximately: 510eR , i.e. an eel velocity of 11 ms−  

approximately. 
 

B. First example: Nominal planar propulsion: 
 

Following the standard uses of biomechanics literature 

about anguilliform locomotion [33,34], we started our 

numerical investigations with planar forward propulsion. 

This planar motion is produced by a curvature law of the 

following form: 

                        
1 2 30,  ( ) ( )K K K X h tα= = = ,                (67) , 

 

with α  given in terms of X, by: 2

1 2 3X Xα α α α= + + , 

where the iα ’s are arbitrary constant coefficients. The time 

varying law h is defined by:  
 

1( , ) ( ) ( , )oh X t h t h X t=  , 

 

where 
oh  is a starting function that allows the eel to start 

smoothly from rest to nominal propulsion mode: 
 

Figure 3: Geometric shape qof the eel-like prototype, 
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( ) 0 , for: 

( ) (( ) /( ))

/  (1/(2 ))sin(( ) /( ))  

for: 

( ) 1 , for:   

o i

o i f i

o i f i

i f

o f

h t t t

h t t t t t

h t t t t

t t t

h t t t

π

 = <


= − −
 − − −
 ≤ ≤
 = >

      (68)  . 

 

This term multiplies the propulsion term, inspired by the 

experimental observation of the animal [33]: 
 

                   1( , ) sin 2
X t

h X t
T

π
λ

  = −    
                (69) . 

 

This second term represents the propagation of curvature 

waves from the head to the tail with a constant time 

frequency 1/T  and wavelength λ . Simulation is achieved 

with the following numerical values: 1 1α = , 2 0.75α = − , 

3 1α = , 0 it s= , 1 ft s= , 1 mλ = , 1 T s= . In Figure 4 we 

report several configurations of the eel in the plane obtained 

every 1.25 sec., while Figure 5 represents the time evolution 

of the eel’s head twist in the earth frame. 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

C. Second example: Plane turning law: 
 

In order to make the eel turn in the plane (Figure 6), we 

add a constant offset to the previous propulsion term. This is 

the continuous version of the joint law adopted in [4]. The 

constant curvature offset is imposed progressively through 

the starting law (68). Hence, the curvature law is now: 

 

1 2 3 3,0,  ( ) ( ) ( )of oK K K X h t K h tα= = = + . 

 

 

 

 

 

 

 

 

 

 
 

 

D. Third example: Submergence 
 

The goal of this example is to achieve submergence from 

one given altitude to another (see Figure 7). This is 

accomplished by adding to the propulsive law of the first 

test, a curvature law 
2 ( )t K t  around the second axis of 

the eel section frames. Hence the resultant curvature law is: 
 

1 2 2 30,  ( ),  ( ) ( )K K K t K X h tα= = = , 

with: 
 

2 1

2 1 2 2 1 2

2 2 3 2 2 3

2 2 3

( ) 0 , for: 

( ) ( , ,0, ) , for: 

( ) ( , , ,0) , for: 

( ) 0 , for: 

off

off

K t t t

K t P t t K t t t

K t P t t K t t t

K t t t t

= <
 = ≤ <
 = ≤ <
 = ≤ <

 ,   and :  

2 4 5 2 4 5

2 5 6 2 5 6

2 6

( ) ( , ,0, ), for: 

( ) ( , , ,0), for: 

( ) 0, for: 

off

off

K t P t t K t t t

K t P t t K t t t

K t t t

= − ≤ <
 = − ≤ <
 = ≥

 , 

 

where ( , , , )i j i jP t t f f  is a fifth order polynomial that 

interpolates  f  from ( )i if t f=  to ( )j jf t f=  with first and 

second order derivatives equal to zero, while guaranteeing a 

second order time continuity.  

 

 

 

 

E. Fourth example: Spiral 
 

 

 

 

 

Lastly, we surmised a three-dimensional plunging 

following a spiral. This is achieved using the following 

curvature law, which superimposes the turning curvature law 

of example 2 with, a 
2K ’s time evolution given by: 

2 2, . ( )of oK K h t= , where 
oh  is the starting time function. 

 

1 2 2, . 3 1 3,0  ,   ,   ( )( ( ) ( , ) )of o o ofK K K h K h t X h X t Kα= = = + . 

 

Figure 8 shows the results of this test with: 2, .ofK =  

3, . 0.5ofK = : 

 

 

 

 

 

 

 

 

 

 
 

 

  
 

Figure 7: Eel’s configuration obtained every 0.5 sec.. 

  
Figure 6: Eel’s configuration every 1.25 sec.. 

 

Figure 4: Eel’s configuration every 1.25 sec. 

 
 

Figure 8: Eel’s configuration every 1sec.. 

 

Figure 5: Head’s velocity in the fixed frame.
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The Figure 9 give the time evolutions of the three 

components of the control torque field M evaluated at 

/ 2 1X L m= = . 

 

 

 
Figure 9:  Time evolution of the internal torque 

for the section at X=1m in its mobile frame. 
 

Finally, Figure 10 validates the whole dynamic balance of 

the eel. The computation of internal force n and torque M is 

computed all over the back-bone (here at 10 t s= ) using a 

forward space integration and we obtain ( ) ( ) 0n L M L= =  as 

pointed out in the remark of section VIII. 

 

 
Figure 10: X profile of the second component of the internal force and 

torque at 10t s= (in the section frame). 
 

X. CONCLUSION 

This paper presents a dynamic model of a swimming eel-

like robot. Contrary to the prior results about the biomimetic 

robotics of the eel, the proposed solution to the dynamics is 

capable of modeling an ideal three-dimensional continuous 

prototype. The design of the prototype will be based on the 

serial assembly of many parallel platforms of “spherical 

joint type”, and the multi-body system will be covered with 

a continuous flexible organ copying the eel’s skin. The 

continuous approach has the advantage of providing a 

macroscopic model of the prototype, and in particular giving 

an overview of swimming dynamics without entering into 

the details of the modeling of complex internal hybrid 

(parallel and serial) kinematics and their dynamics. This 

advantage has already been tested in the framework of our 

project. Macro-continuous modeling allows us to rapidly 

investigate the locomotion and the control of the ideal 

prototype. Moreover it is extensively used today to assist in 

designing the future prototype. In order to get an exact 

model (from kinematics to dynamics), we based our 

development on the “geometrically exact theory” of non-

linear beams, a new promising paradigm of non-linear 

structural mechanics. Based on the assumption of Cosserat 

medium, this theory gives an exact model of finite rotations 

of some rigid “micro-solids” right from the beginning of the 

analysis. In our case, these micro-solids are the beam cross 

sections copying the vertebrae of the fish. This choice, 

allows us to obtain a three dimensional dynamic model 

which will be used in the future to control three-dimensional 

swimming, a problem to our knowledge never investigated 

in robotics. Moreover, based on the literature of fluid 

mechanics, a simplified, but quite complete model of the 

fluid-structure contact is adopted. The geometrically exact 

approach is developed in the Newton-Euler formalism, as it 

is well known among the robotics dynamics community. 

Based on these modeling choices, the proposed algorithm 

allows one to compute the motion of the eel and the control 

torque distribution from the knowledge of the desired 

internal deformation imposed to its body. Finally, this 

algorithm constitutes a generalization of the computed 

torque approach of articulated manipulators. The 

generalization here concerns the continuous character of the 

hyper-redundant robot’s model and also the mobility of the 

base, which plays the role of the eel’s head.  
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APPENDIX 
 

The purpose of this Appendix is to show that in the case of 

an eel’s circular cross section, the basic model (9) and (11), 

exactly reduces to the model of fluid forces of circular cross 

sectional cable of [20]. As a matter of fact, introducing the 

coefficients of section IX.A into (9) and (11) (with P the 

cross section perimeter) first gives: 
 

2

1 1 1 1 2 2 5 2 2

1 1
/ (  ) ( 2 2 ) 

2 2
ext ndf dX C P V V t C c v V C c tρ ρ π= − − + ϒ

2

3 3 6 3 3

1
( 2 +2 ) 

2
nC b v V C b tρ π− ϒ , 

 

2 2 2 2 2 2

4 1 1 1 7 1 1

1 1
/ ( ( ) ) ( ( ) ) .

2 8
extdc dX C b c t C c b tρ ρ π= − − Ω Ω − − Ω

 

Then, let us consider a circular cross section by making:  
 

• 2 2b c D= = : diameter of the circular cross section, 
 

• P Dπ= : perimeter of the circular cross section 
 

• 2 2b c Aπ π= = : cross section area, 
 

• 2 3 nC C C= = : normal drag coefficient of the circular 

cross section, 
 

• 5 6 mC C C= = : added mass coefficient of the circular 

cross section, 

gives: 

1 1 1 2 2 2

1 1
/ (  ) ( +2 ) 

2 2
ext t n n mdf dX C D V V t C D v V C A tρ π ρ= − − ϒ

3 3 3

1
( +2 ) 

2
n n mC D v V C A tρ− ϒ , 

 

/ 0extdc dX = , 

 

which is quite simply the model of [20] with 
1tC C= : the 

“tangential drag coefficient”. 

 

 




