
Macro-Driven Circuit Design Methodology for High-
Performance Datapaths

Mahadevamurty Nemani and Vivek Tiwari
Intel Corporation, 3600 Juliette Lane, Santa Clara, CA 95052. Ph: 408-765-0589

Email contact: Vivek.Tiwari@intel.com

ABSTRACT
Datapath design is one of the most critical elements in the
design of a high performance microprocessor. However datapath
design is typically done manually, and is often custom style.
This adversely impacts the overall productivity of the design
team, as well as the quality of the design. In spite of this, very
little automation has been available to the designers of high
performance datapaths. In this paper we present a new “macro-
driven” approach to the design of datapath circuits. Our
approach, referred to as SMART (Smart Macro Design Advisor),
is based on automatic generation of regular datapath
components such as muxes, comparators, adders etc., which we
refer to as datapath macros. The generated solution is based on
designer provided constraints such as delay, load and slope, and
is optimized for a designer provided cost metric such as power,
area. Results on datapath circuits of a high-performance
microprocessor show that this approach is very effective for
both designer productivity as well as design quality.

1. INTRODUCTION
We believe that datapath design for high-performance
applications (such as microprocessors) presents unique
challenges. We also believe that this domain is currently under-
served by commercial synthesis CAD. Besides the business
realities regarding the relative size of the high-performance vs.
general VLSI market, the reasons for this are to do with the
basic nature and limitations of synthesis tools [10][11]. These
tools are good at searching and optimizing within a defined
search space. They cannot innovate, i.e. extend the search space
on their own. However, continuous innovation is necessary in
the high-performance microprocessor domain. Only part of the
traditional 50% performance increase per generation comes
through process technology evolution. The rest comes from ever
more aggressive micro-architectures. These micro-architectures
demand ever more from circuit designers – wider datapaths in
shorter pipeline stages. New circuit families and structures are
needed each generation. This can only be done by experienced
and innovative designers, not CAD tools.

Ironically datapath design is also the area where some kind of
help from tools can yield the highest returns. This is because
datapath design is the most tedious, critical and time-consuming

aspect of the design of high-performance microprocessors.
Consider the following:

a) The datapath performance decides the overall performance
of the processor. Most of the critical paths in the overall
design go through the datapath.

b) Most of the chip power is dissipated in the datapath blocks
(and their clocks) [8].

c) Large portions of the datapath have to be manually
designed to meet the aggressive performance goals. Given
aggressive time-to-market constraints, this implies large
design teams.

Aside from the fundamental limitation of tools (described
above), why is it that the designers of high-performance
datapaths do not try to extract at least some benefit from the
automation offered by traditional logic synthesis? We believe
this is due to the following reasons:

a) Logic synthesis tools are limited to the gate level.
Designers have to go down to the transistor level to extract
the maximum performance.

b) Logic synthesis tools have been primarily restricted to
static CMOS implementations. However, CPU designers
heavily employ pass, dynamic logic (and continuously look
for newer derivatives) in order to meet performance goals.

c) Logic synthesis tools produce flattened netlists by default,
and do not respect the implicit hierarchies that a designer
intuitively works with. Limiting a tool’s scope through
“black-boxes” significantly limits its optimization
capabilities.

In light of all of the above, we believe that the best way to
address this disconnect between the requirements of custom
datapath design and the random-logic oriented synthesis tools is
through advisory tools. These tools do not intend to replace the
designer but to advise and assist him/her. In this paper, we
present a specific realization of this paradigm. We call it
SMART (Smart Macro Design Advisor).

The paper is organized as follows. The motivation for SMART
is further discussed in Section 2. Section 3 provides an overview
of the SMART flow, and Sections 4 and 5 discuss the
components of SMART in greater detail. The results of some
experiments on datapath circuits from a recent in-house high-
performance microprocessor design are presented in Section 6.

2. MACRO-DRIVEN AUTOMATION
The SMART methodology is motivated by the following
observations:

a) Datapath logic basically consists of a set of regular
structures like multiplexors (muxes), shifters, adders,

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

comparators, decoders, encoders, zero-detects, register files
etc. We refer to these as datapath macros. A design
methodology centered on an a-priori designed macro
database that’s available to the designer, could potentially
offer significant productivity benefits.

b) Typical hand design of a datapath involves, for each
instance of a macro, manual design space exploration
followed by manual optimization to meet the performance,
noise etc. requirements. Most of this latter work is in
transistor sizing. An automatic sizer that can consistently
size transistors on even the most performance-critical
blocks is thus extremely valuable to a designer.

c) Tight schedule constraints limit design space exploration,
thus, resulting in over-design. This implies wastage of
silicon area and power. Automated exploration over a high-
quality design database can thus lead to higher design
quality.

In a real design, a macro may not always be realized in exactly
the same way it exists in the database. A few structural changes
to the schematic (e.g., merging in of a few gates of condition
logic) may have to be performed to match RTL or to extract
performance gains out of the design. A macro-based design
environment should therefore support editing of macros in the
design database. In addition, the designer should be allowed to
control transistor sizes of portions of the macro while letting the
automatic sizer size the rest of the macro. This is important; for
instance, to allow the designer to improve the noise immunity of
the circuit based on the local operating conditions.

The SMART macro methodology described in this paper has
been developed with the aim of satisfying these requirements.

3. SMART METHODOLOGY OVERVIEW
The basic components of SMART of are summarized as follows:

(i) A large expandable database of the best available tried and
tested topologies for the basic set of macros. Whenever a
designer comes up with an implementation not available in the
database, it can be incorporated into the database. This
expandability is a key element of SMART’s design database.

(ii) A specially designed transistor sizing engine. The
motivation behind the design of the sizing engine is that it
should be tunable for each macro, and extendable to different
logic families. It is not aimed as a traditional general sizer [1-5]
that gives reasonable results for all kinds of circuits, but may or
may not meet the specified constraints all the time. Instead it
aims to do the best it can for each specific macro, even at the
cost of some additional customization.

(iii) A topology optimizer. The aim of this component is to
automatically tune a topology for a specific macro instance
starting from a general topology. (The topology optimizer
component is currently under development and is not discussed
further in this paper).

The basic design flow of SMART is as shown in Figure 1.
Given a macro instance with its local constraints like delays,
slopes and loads, SMART searches over the provided design
space, and provides sized solutions. It can automatically pick the
best solution based on a specified cost function (area, power) or
let the designer make his/her own choice. At that point, the
designer can further tune the design if needed. For instance, on a
particularly noisy portion of the chip, the designer may like to
manually tune certain transistor sizes.

Topology
choices

Topology Mod. &
Simple Pruning
of Design Space

runtim
e

Topology
netlist
Generation

Automated
Sizing Comparison Result

For Each Topology

Design Constraints

 Figure 1: Design flow in SMART
While there is a lot of prior work on macro generators in the
context of DSPs, we believe that there is no published work that
directly addresses the problem domain targeted by SMART.
Traditional optimization strategies are gate level and synthesis
based. SMART on the other hand, is targeted at a custom design
environment and is intended to support circuit families and
topologies normally encountered in high performance
microprocessors. Circuit innovations and logic optimizations are
not automated but are captured in the design database, which is
created by expert circuit designers based on project specific
circuit design methodologies. The automated optimizations
occur at the transistor level through an innovative sizing
approach that can handle many different circuit styles, and hence
generate full custom, high performance designs.

4. SMART DESIGN DATABASE
An important component of the SMART design advisory
methodology is its design database. As mentioned earlier, this
database contains many of the frequently used implementations
of various macros. The schematics of these implementations are
unsized. Instead, the transistors in the design are labeled with
size variables. It must be noted that labeling directly impacts the
quality of the final solution and the speed of the optimization
procedure. While associating every transistor with a unique size
variable may generate the solution with least transistor width,
this may not be practical from a layout regularity perspective.
Another important aspect is the hierarchy in the macro, which is
important also important for layout. The schematics in the
SMART database are designed keeping hierarchy in mind,
which one may not be able to get through traditional logic
synthesis tools. Regularity and hierarchy planning is where the
expertise of a circuit designer plays an important role. This
expertise is automatically incorporated into the schematics in the
SMART database. In the remainder of this section we describe
an example database of multiplexor macros.

Strongly mutexed N-first pass gate mux (Figure 2(a)) In this
topology, we assume that the select signals are strongly mutexed
(i.e., at all times one and only one signal is high. The others are
low.) In the default labeling, the input drivers are labeled as P1

(PMOS) and N1 (NMOS), the pass-gates are labeled N2

(assuming both PMOS and NMOS devices are of the same size,
and the size of the inverter in the pass-gate is a fixed relation of
N2). The output driver is sized as P3 (PMOS) and N3 (NMOS).

in0

in(n-2)

in(n-1)

s0 s(n-2) s(n-1)

out

Figure 2(a): Strongly mutexed N-first pass gate mux

Weakly mutexed N-first pass gate mux (Figure 2(b)). Here,
the input select signals are not strongly mutexed. The input
select signals are combined to generate a select signal, which
would make the select signal set strongly mutexed. This
introduces additional delay from select to output. The labeling
here is similar to that in (a), except that the NOR gate is labeled
as P4 (PMOS) and N4 (NMOS).

in0

in1

in2

s0 s1

out

Figure 2(b): 3x1 weakly mutexed N-first pass gate mux

2-input pass gate mux with encoded select (Figure 2(c)). This
topology is frequently used for 2 input muxes. In addition to an
N-first pass gate, this topology has a P-first pass gate. An
encoded select signal is used to avoid additional delay from
select to output. The labeling here follows along the lines of (a).

select out

In(0)

In(1)

Figure 2(c): 2x1 Pass Gate Mux with Encoded Select

Tri-state muxes (Figure 2(d)). This topology is used when the
load to be driven is very large or when the input signals travel
over long inter-connects. Otherwise, this topology is typically
slower than (a). In the default labeling, the tri-states are sized as
P1 (PMOS) and N1 (NMOS) and the size of the inverter in the
tri-state is a fixed relation of P1 and N1. The output driver is
sized as P2 (PMOS) and N2 (NMOS).

o

s(0) s(1) s(n-1)

in0

in1

in(n-1)

Figure 2(d): Tristate mux

Un-split domino mux (Figure 2(e)). In this topology all the
product terms are connected to a single domino node. The
output inverter is typically a high skew gate. The clock power is
an important design metric in the selection of this topology. In
the default labeling, the precharge (PMOS) device is labeled as
P1 (PMOS), evaluate device (clk-NMOS) is labeled N2 and the
remaining NMOS transistors (connected to data ports) are
labeled N1. The output driver is labeled as P3 (PMOS) and N3
(NMOS).

S(0)

In(0)

S(N-1)

In(N-1)

Clk

Clk

Figure 2(e): Nx1 Un-split domino mux

(m, N – m) Partitioned domino mux (Figure 2(f)). This
topology is typically better than (f), in terms of area and power
when the size of the mux is large. A good choice of m is m =
floor(n/2). This topology is used when high performance is
required. If the two partitions are of the same size, they can be
labeled identically, if not, we have to label them differently.
Assuming the latter, we would label the PMOS precharge,
NMOS data and NMOS evaluate devices of the top partition as
P1, N1 and N2 respectively, and the corresponding labels on the
bottom partition are P3, N3 and N4 respectively. The output
driver is labeled as P5 (PMOS) and N5 (NMOS).

D1-Domino Mux for
m Inputs

s0 s1 s2 s(n-1)

d0
d1
d2

clk

d(n-1)

D1-Domino Mux for
(n - m) Inputs

s(m+1)s(m+2)s(n-1)

d0
d1
d2

clk out

Figure 2(f): partitioned domino mux with size m and (n – m)

Figure 3 illustrates how SMART can be extended to new
datapath macros. As can be seen from this figure, there is a
customization cost associated with each macro. We believe that
this is justified, in order to bring the productivity benefits of
automation to the ever-increasing challenges of datapath design
in high-performance microprocessors.

 Identify Good
 Implementations

Design Analysis of
chosen topologies

Model Building
 for Sizing

Tuned SMART flow
 for Macro

Figure 3: Flow development for a new macro

5. SMART SIZING METHODOLOGY
One of the key components in the SMART flow is the novel
sizing engine used to optimize each topology. Since each
topology is optimized through sizing, and then compared with
other topologies using some metric, the choice of a “good
implementation” depends significantly on the performance of
the sizer. An important aspect to note about our sizing approach
is that it is tuned to work well on datapath macros.

There is a lot of prior work on the general problem of transistor
sizing. Continuous transistor sizing, in which the transistor sizes
are allowed to vary continuously between a minimum and
maximum size, has been tackled before in [1-4]. A related
problem is that of discrete of library-sizing [5]. This is a
combinatorial problem that is NP-complete. The continuous
transistor sizing methodology used in SMART has significant
differences from prior approaches. As mentioned earlier, the
sizer has been developed with the aim of performing better on
macros than a general sizer would. It also has to be extendable
to different logic families. This has been achieved by keeping
the optimization engine of the sizer independent of circuit
topology and style, but customizing the other parts (modeling,
path extraction, path compaction, and constraint generation) for
different macro topologies and logic families. The macro-
specific customization of the sizer is in accordance with the
philosophy of incurring non-recurring customization costs for

recurring benefits of better design quality (area, power), as is the
up-front analysis of macro topologies (cf. Section 4).

GP Solver

Update Netlist

Timing Analysis

Create New Delay
 specification

Unsized
schematic

Automatic Path
 Extraction

Topology
Extraction

Delay and
 Load
Constraints

Performance
Constraints

Device size
Constraints

Connectivity
Constraints

Reliability
Constraints

Constraint Generator
Library of
Models

Convergence
Achieved

NO

Update
schematic

YES

Figure 4: Overall flow of the SMART sizer

The overall flow of the sizer, implemented in our in-house
design environment, is shown in Figure 4 and is fully
automated. SMART takes in as input a description of the
topology along with the design constraints like delays, slopes,
external load etc. Using the database of models, it translates the
extracted paths into constraints for timing, slopes (important for
timing and reliability) and noise. These constraints are
posynomial. SMART minimizes a cost function (power, area)
under the above constraints. The quality of the optimization
results depends on the quality of modeling. Thus, one would
like the models to be as accurate as possible in relating the
behavior of a gate to its device sizes. However, since we need to
explore the design space as rapidly as possible, we need the
sizer to be fast, in addition to being effective. This in turn places
a restriction on the complexity of the modeling process. Keeping
these issues of accuracy versus speed in mind, we have chosen
to keep the component model “posynomial” (positive
polynomial) [6]. This makes the optimization problem a
Geometric Program [3]. The advantage of such programs is that
they can be transformed into convex problems [6, 7] that can be
solved efficiently and quickly, in a numerically stable fashion.

The optimal sizes for the netlist are generated by solving the
above optimization problem using a geometric program solver.
The delay of the generated netlist is then measured using a static
timing analysis tool. If the actual timing of the generated netlist
differs from the specification, “new” timing constraints based on
the mismatch between the current delay specification and the
current delay are generated. This is iterated until the original
performance constraints are satisfied by the design.

Given the importance of the sizing methodology to the overall
SMART flow, we discuss its key components in greater detail in
the following subsections.

5.1 Sizer modeling
As mentioned in the previous section, the SMART sizer requires
delay and slope models for basic circuit components. A
necessary constraint on our models is that they be posynomial.
A model for a component relates its timing and output slope
behavior to its device sizes and input slopes. By components we
could mean simple gates like inverters, NANDs, NORs, AOIs,
etc., (implemented in static or domino style), pass-gates and tri-

states, or, complex designs like domino muxes, pass-gate muxes
etc.. This enables us to handle a wide variety of circuits. A
typical equation template for rise delay is shown in (1) and (2).

trise = f(tint, tin_slope, Cext,, W) (1)

 tout_slope = g(tin_slope, Cext,W) (2)

Here, W is the size of the pull-up transistors of the gate, Cext is
the external load, tint is the intrinsic delay, tin_slope is the input fall
slope and f(.) and g(.) are posynomial functions. These timing
models need not be exact, since they are only used within the
inner optimization loop of the flow. The solution is always
analyzed through a timing analysis tool. Better model accuracy
leads to faster convergence.

5.2 Path extraction and complexity reduction
Among the several different types of constraints we generate for
sizing a given circuit, the most important ones are the timing
constraints. While there are several approaches to generating
timing constraints, [9], the approach taken by us has been to
specify these as constraints on the topological paths through the
network. However, a combinational circuit can have an
extremely large set of paths through it. Specifying constraints on
all the paths would generate a very large problem size. We
describe some of the techniques adopted by us to reduce the
problem size.

In order to contain the number of paths generated, we make use
of the regularity in datapath design. Using the regularity feature,
we can prune out a large number of paths generated. Regularity
allows us to constrain several nodes in the design to have the
same size properties, and thus identical to each other. Thus
paths containing identical nodes are reduced to one path during
optimization. Efficiently exploiting this feature allows us to
significantly reduce the path space.

In order to reduce the size of the problem, we model each node
in the design with their worst case pin-to-pin delay models.
However, for wide gates, there can be significant difference in
the delays between the slow and fast input pins. To make sure
that, as far as possible, a node is represented through its worst
case input pin, we impose static precedence constraints on the
input pins. This corresponds to partitioning the input pins into
two sets, fast and slow, with pins in fast set representing the
faster pins, while the pins in the slow set representing the slower
ones. We use this information to prune the path space by
eliminating the fast paths (when an equivalent slow path exists)
from the path space. This allows us to capture a small set of
meaningful paths for generation of constraints.

 It is possible for two identical nodes (A and B) in a design to
have different number of fanouts. We can impose a dominance
relation on these nodes based on the amount of capacitance they
drive, and in turn use this information to prune our path space.
We heuristically decide the dominance based on the fanout of
the nodes, as the capacitance information is an unknown during
sizing. A more accurate approach is to compare the fanout space
of two nodes when determining the dominance relationship.

Using the above approaches significantly reduces the size of the
optimization problem. E.g., on a 64 bit dynamic adder, an
exhaustive timing analysis revealed over 32,000 paths.
However, the above techniques reduced the problem size to 120
paths, i.e., a factor of over 250 reduction in the problem size.

5.3 Constraint generation
High-performance designs tend to exploit different circuit styles.
Hence it is possible for a given circuit to have a mixture of

static, dynamic and pass logic in them. In static circuits, the flow
of logic through a gate takes place only in one direction. Thus,
each “static” path generates two timing constraints, namely, rise
and fall at the output. However, in the case of pass logic we
have one set of constraints through the data port, while we have
another set of constraints through the control port. Every path
through the data port corresponds to two timing constraints, as
in a simple static path. However, for generating control to out
constraints, we will have two delay constraints for a given path
through the control port. These correspond to the rise and fall
delays at the output. In both constraints the direction of signal
transitions is the same up to the pass gate, i.e. what is needed to
turn on the pass gate. However, downstream of the pass gate, we
must consider the two the different signal directions. Thus, we
will generate two paths and four constraints for every pass gate.

Dynamic circuits need separate constraints for precharge and
evaluate paths. This is also tied to the clocking methodology and
whether domino stages use clocked evaluate (D1) or not (D2).

As can be seen from the above discussion, several issues arise
when we handle multiple circuit families and these must be
carefully handled during flow customization for different
macros. An interesting feature of SMART sizer for dynamic
circuits is that the problem formulation automatically takes into
account OTB (Opportunistic Time Borrowing) [12]. This allows
its application on even some of the most critical circuits.

6. RESULTS
In this section, we discuss a few results obtained using SMART.

6.1 Sizing results
In order to study the effectiveness of our sizing methodology,
we conducted several experiments on macros in a real
microprocessor design. In these experiments, we extracted each
macro from the design and measured its loading. The delay
through it was measured using PathMill. We used the SMART
sizer to produce a design with the same topology and
performance. We re-ran PathMill to verify the performance of
the SMART solution.

In Figures 5(a), 5(b), 5(c) we present the normalized total
transistor width improvements we obtained on some of the
macros (incrementors, zero-detects and decoders of bit-widths).
Reduction in total transistor width directly results in area and
power savings. It can be seen that large improvements in area
and power can be obtained using the SMART sizing
methodology. In all cases, the timing of the SMART solution
was within a few pico-seconds of the original design.

Incrementors

0

0.2

0.4

0.6

0.8

1

3b
itin

c

3b
itd

ec

13
bit

inc

13
bit

inc

27
bit

inc

39
bit

inc

47
bit

inc

48
bit

inc

64
bit

de
c

Circuit

T
ra

n
s

is
to

r
W

id
th

original

SMART

Figure 5(a): Results for incrementors

Ze ro D e te c ts

0

0 .2

0 .4

0 .6

0 .8

1

6b it 8b it 8b it 16 b it 16 b it 22 b it 32 b it 63 b it

C ir c u it

T
ra

n
s

is
to

r
W

id
t

or ig ina l

SMA RT

Figure 5(b): Results for zero detects

D e c o d e r s

0

0 .2

0 .4

0 .6

0 .8

1

3 to 8 3 to 8 4 to 1 6 4 to 1 6 4 to 1 6 6 to 6 4 6 to 6 4 7 to 1 2 8

C i r c u i t

T
r

a
n

s
is

to
r

 W
i

d

o r ig in a l

S M A R T

Figure 5(c): Results for decoders

In Table 1, the savings obtained for several muxes with different
topologies (cf. Section 4) are presented. For each topology we
considered multiple instances – the average savings are reported.

Topology Xtor Width
Savings

Clock Load
Savings

Strongly Mutex Passgate 15% n/a

2-Input Passgate Mux
with encoded select

25% n/a

Tri-state Mux 16% n/a

Un-split Domino 45% 39%

Split Domino 42% 28%

Table 1: Results for different mux topologies

6.2 Results for adders
As an experiment with large and complex macros, we designed a
64 bit dual-rail carry-look-ahead adder and applied the SMART
flow to it. The trade-off curve generated by SMART for this
particular topology of the 64-bit adder is shown in Figure 6.

Area Delay Curve for 64bit Dom ino Adder

1

1.074

1.1716

1.2707

0.88

1.08

1.28

1.48

1.68

1.88

0.9 1 1.1 1.2 1.3

Normalized Dela y

N
or

m
al

iz
ed

 A
re

a
(t

ot
al

 x
to

r
w

id
th

)

A-D curve

Figure 6: Results for a high-performance dynamic adder

6.3 Topology exploration example
We next present example results from a 32-bit high
performance, 2-stage dynamic (D1-D2) comparator. We
explored several alternate topologies to see if the chosen
topology was in fact optimal. As shown in Figure 7, using
SMART, we found that, the original topology performed better
than the other alternatives. Moreover, the clock was reduced by
31%, without sacrificing performance. However, it must be
remembered that under different design constraints, the original
topology may not be the optimal one. With SMART, the
exploration at a different design constraint is very easy, but to
do this manually is an extremely tedious job.

R®

� Me rce d : 32 b i t D o m ino
 C om pa rato r

� D e lay :

� P re(D 1) = 1.00

� E va l = 1.00

� P re(D 2) = 1.00

� A re a = 1 .00

� C lc ok = 1.00

� S MAR T : 32 b C om pa rat or

� D e lay :

� P re(D 1) = 1.00

� E va l = 1.00

� P re(D 2) = 1.00

� A re a = 0 .99

� C lo ck = 0.83

� S MAR T : R es izing

� S am e To p olog y

� D e lay :

� P re(D 1) = 1.00

� E va l = 1.00

� P re(D 2) = 1.00

� A re a = 0 .90

� C lo ck = 0.68

S MAR T To polo gy
 e xp lora tion

SM A RT R esiz ing

D1: Xorsum2 D1: Nand2

D 2:Nor 4 D 2:Nan d2

D1: Xorsum1 D1: Nand2

D 2:Nor 8 D 2:Nan d2

� S MAR T: 32 b D om in o
C om pa rat or

� D e lay :

� P re(D 1) = 1.00

� E va l = 1.00

� P re(D 2) = 1.00

� A re a = 1 .11

� C lo ck = 0.755

D1: Xorsum4 D1: Nand2

D 2:Nor 4 D 2:IN V

S MAR T To polo gy
 e xp lora tion

Or iginal

Figure 7: Topology exploration example

6.4 Results for complete design blocks
Finally, we present example results from using SMART for an
entire functional block from the datapath of the same processor.
This particular block has over 13,800 transistors in it, and
datapath macros accounted for 22% of the total transistor width,
and 36% of the total power. On applying SMART to the macros
in the design, we achieved about 8% reduction in the total
transistor width along with 8% power reduction on the overall
design (measured using PowerMill). A timing analysis on the
new design showed no performance penalty.

We recently used SMART as a part of the power reduction effort
on one of the steppings of a high-performance microprocessor.
We worked on four functional blocks: an instruction alignment
block (Block1), bypass blocks from the instruction execution
unit (Blocks 2 and 3), and a block from the instruction fetch unit
(Block4). We have summarized the post-layout power savings
obtained in Table 2. These savings were achieved with a short
turn around time.

Functional Block Power savings with SMART

Block1 41%

Block2 22%

Block3 19%

Block4 7%

Table 2: Results for power reduction on design blocks

7. CONCLUSIONS
In this paper we have presented our approach for extending the
scope of CAD to datapath circuits in high performance
microprocessors. This domain has been the toughest for
traditional CAD to deal with. We prescribe advisory tools as the
way to get the best of both worlds. And describe one such tool
called SMART. SMART utilizes the vast design experience
available in a company to generate the best possible design
space of topologies for datapath macros. The proposed flow uses
a novel quick sizing methodology (and an optional topology
tuning stage) to generate various solutions that meet the
designer’s performance requirements. Using the design database
of an actual microprocessor, we have presented results for
several datapath macros namely, muxes, comparators,
incrementors, decoders, adders etc., which demonstrate the
utility of our approach.

ACKNOWLEDGEMENTS
We would like to thank the other members of the SMART team
(Nithya Nagarajan, Franklin Baez, and Rakesh Patel) for all
their efforts.

REFERENCES
[1] J. Fishburn and A. Dunlop, “ TILOS: A posynomial

programming approach to transistor sizing,” in Proc.
ACM/IEEE ICCAD , pp. 326-328, 1985.

[2] S. S. Sapatnekar, V. B. Rao and P. M. Vaidya and Sung-
Mo Kang, “An exact solution to transistor sizing Problem
for CMOS circuits using convex optimization,” IEEE
Transactions on CAD, vol. 12, pp. 1621-1634, Nov. 1993.

[3] J.-M. Shyu, A. Sangiovanni-Vincentelli, J. Fishburn and A.
Dunlop, “Optimization-based transistor sizing,” IEEE
Journal of Solid-State Circuits, vol.23, Apr. 1988

[4] M. R. Berkelaar and J. A. Jess, “Gate-Sizing in MOS
digital circuits with linear programming,” Proc. European
Design Automation Conference, pp. 217-221, 1990.

[5] W. Chuang, S. S. Sapatnekar and I. N. Hajj, “Timing and
area optimization for standard-cell VLSI circuit design,”
IEEE Transactions on CAD, vol. 14, March 1995.

[6] J. G. Ecker, “Geometric programming: Methods,
computations & applications,” SIAM Review, vol.22, pp.
338-362, July 1980.

[7] K. O. Kortanek, X. Xu and Y. Ye, “An infeasible interior-
point algorithm for solving primal and dual geometric
programs,” Mathematical Programming, vol.76, 1996.

[8] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel and F.
Baez, “Reducing Power in High Performance
Microprocessors”, Proc. DAC, pp. 732-737, June 1998.

[9] A. R. Conn, I. M. Elfadel, W. W. Molzen, P. R. O’Brien,
P. N. Strenski, C. Visweswariah and C. B. Whan,
“Gradient-Based Optimization of Custom Circuits Using a
Static-Timing Formulation”, Proc DAC, June 1999.

[10] R. K. Brayton et. al. “Logic Minimization Algorithms for
VLSI Synthesis”, Kluwer Academic Publishers, 1984.

[11] G. DeMicheli, “Synthesis and Optimization of Digital
Circuits”, New Jersey: McGraw Hill, Inc., 1994.

[12] D. Harris et al., “Opportunistic time-borrowing domino
logic”, U.S. Patent No. 5,517,136, May 14, 1996.

