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Abstract

Macro-integration technique is a well established method for reconciliation of large,
high-dimensional tables, especially applied to macro-economic data at national statistical
offices (NSO). This technique is mainly used when data obtained from different sources
should be reconciled on a macro level. New areas of applications for this technique arise
as new data sources become available to NSO’s. Often these new data sources cannot
be combined on a micro level, while macro integration could provide a solution for such
problems. Yet, more research should be carried out to investigate if in such situations
macro integration could indeed be applied. In this paper we propose two applications
of macro-integration techniques in other domains than the traditional macro-economic
applications. In particular: reconciliation of tables of a virtual census and reconciliation
of monthly series of short term statistics figures with the quarterly figures of structural
business statistics.
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1. Introduction

Macro-integration is widely used for reconciliation of macro figures, usually in the form of large
multi-dimensional tabulations, obtained from different sources. Traditionally these techniques
have been extensively applied in the area of macro-economics, especially in the compilation
of the National Accounts, for example to adjust input-output tables to new margins (see,
e.g. Stone, Champerowne, and Maede (1942)). Combining different data at macro level,
while taking all possible relations between variables into account, is the main objective of
reconciliation or macro-integration. Combining different data sources also makes it possible
to detect and correct flaws in data and to improve the accuracy of estimates. The methods for
macro-integration have developed over the years and have become very versatile techniques
for solving integration of data from different sources at macro level. In this paper we propose
new applications of macro-integration techniques in other domains than the traditional macro-
economic applications.

In this paper we investigate the application of macro-integration techniques in the following
areas: reconciliation of tables for the Census 2011 and reconciliation of monthly short term
statistics figures with the quarterly structural business statistics figures.
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The paper is organized as follows: in Section 2 we will give a short outline of macro-integration
methods used in this paper, including the extended Denton method (Denton 1971). The ex-
tended Denton method we use in this paper is defined in Bikker, Daalmans, and Mushkudiani
(2013). In Section 3, we describe virtual Census 2011 data at Statistics Netherlands (SN)
and the application of a macro-integration method for these data. In Section 4, we will do
the same for the monthly series of the short term statistics figures. The conclusions can be
found in Section 5.

2. Methods

2.1. The macro-integration approach

We consider a set of estimates in tabular form. These can be quantitative tables such as aver-
age income by region, age and gender or contingency tables arising from the cross-classification
of categorical variables only, such as age, gender, occupation and employment. If some of these
tables have certain margins in common and if these tables are estimated using different sources,
these margins will often be inconsistent. If consistency is required, a macro-integration ap-
proach can be applied to ensure this consistency.

The macro-integration approach to such reconciliation problems is to view them as constrained
optimization problems. The totals from the different sources that need to be reconciled
because of inconsistencies are collected in a vector x (xi : i = 1, . . . , N). Then a vector
x̂, say, is calculated that is close to x, in some sense, and satisfies the constraints that
ensure consistency between the totals. For linear constraints, the constraint equations can be
formulated as

Cx̂ = b, (1)

where C is a c × N matrix, with c the number of constraints and b a c-vector. These
linear constraints include equality constraints that set the corresponding margins of tables
estimated from different sources equal to each other as well as benchmarking constraints that
set the estimates of certain margins from all sources equal to some fixed numbers. The equality
constraints are likely to apply to common margins that can be estimated from different sample
surveys but cannot be obtained from a population register, while the benchmarking constraints
are likely to apply when the common margins can be obtained from register data in which
case the fixed numbers are the values for this margin obtained from the register.

Consider a class of penalty functions represented by (x − x̂)′A(x − x̂), a quadratic form of
differences between the original and the adjusted vectors, here A is a symmetric, N × N
nonsingular matrix. The optimization problem can now be formulated as:

min
x̂

(x− x̂)′A(x− x̂), with Cx̂ = b.

In the case that A is the identity matrix, we will be minimizing the sum of squares of the
differences between the original and new values:

(x− x̂)′(x− x̂) =
N∑
i=1

(xi − x̂i)2

To solve this optimization problem, the Lagrange method can readily be applied. The La-
grangian is

L = (x− x̂)′A(x− x̂)− λ′(Cx̂− b) (2)

with λ a vector with Lagrange multipliers. For an optimum, we must have that the gradient
of L(λ, x̂) with respect to x̂ is zero. This gradient is:

∂L

∂x̂
= −2(x− x̂)′A− λ′C = 0
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and hence,
2(x− x̂) = −A−1C′λ. (3)

By multiplying both sides of this equation with C and using equation (1) we obtain for λ:

λ = −2(CA−1C′)−1(Cx− b),

where CA−1C′ is a square matrix that is nonsingular as long as there are no redundant
constraints. Substituting this result in (3) leads to the following expression for x̂:

x̂ = x−A−1C′(CA−1C′)−1(Cx− b). (4)

2.2. Comparison with the GREG-estimator

In survey methodology it is common to make use of known marginal totals of variables that
are also measured in the survey by the use of calibration or generalized regression (GREG)
estimation, see, e.g. Särndal, Swenson, and Wretman (1992). Following Boonstra (2004), we
will compare in this subsection the GREG-estimator with the adjusted estimator given by
Equation (4) for the estimation of contingency tables with known margins.

The situation in which calibration or GREG-estimation procedures can be applied is as follows.
There is a target variable y, measured on a sample of n units, for which the population total,
xy say, is to be estimated. Furthermore, there are measurements on a vector of q auxiliary
variables on these same units for which the population totals are known. For the application
of the GREG-estimator for the total of y, first the regression coefficients for the regression
of y on the auxiliary variables are calculated. Let the measurements on y be collected in the
n-vector y with elements yi, (i = 1, . . . , n), and the measurements on the auxiliary variables
in vectors zi and let Z be the n × q matrix with the vectors zi as rows. The design-based
estimator of the regression coefficient vector β can then be obtained as the weighted least
squares estimator

β̂ =
(
Z′Π−1Z

)−1
Z′Π−1y, (5)

with Π a diagonal matrix with the sample inclusion probabilities πi along the diagonal.

Using these regression coefficients the regression estimator for the population total of y is
estimated by

x̂y.greg = x̂y.ht + (xz.pop − x̂z.ht)
′ β̂, (6)

with x̂y.ht and x̂z.ht the ‘direct’ Horwitz-Thompson estimators,
∑

i yi/πi and
∑

zi/πi, for
the population totals of y and z, respectively and xz.pop the known population totals of
the auxiliary variables. The regression estimator x̂y.greg can be interpreted as a ‘weighting’
estimator of the form

∑
iwiyi with the weights wi given by

wi =
1

πi

[
1 + (xz.pop − x̂z.ht)

′ (Z′Π−1Z)−1 zi

]
. (7)

From (7) two important properties of the GREG-estimator are directly apparent. Firstly, the
weights depend only on the auxiliary variables and not on the target variable. This means that
the GREG-estimators for different target variables can be obtained by the same weights as
long as the auxiliary variables remain the same. Secondly, the GREG-estimates of the totals
of the auxiliary variables, x̂z.greg =

∑
iwizi, are equal to their known population totals.

For multiple target variables, yi = (yi1 . . . yip) the GREG-estimators can be collected in
a p−vector x̂y.greg and (6) generalizes to

x̂y.greg = x̂y.ht + B (xz.pop − x̂z.ht) , (8)

with x̂y.ht the p−vector with Horvitz-Thompson estimators for the target variables and B the
p×q-matrix with the regression coefficients for each target variable on the rows. Generalizing
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(5), we have for the coefficient matrix B = Y′Π−1Z
(
Z′Π−1Z

)−1
, where Y is the n×p-matrix

with the vectors of target variables, yi, on the rows.

Now, consider the case where the totals to be estimated are the cell-totals of a contingency
table obtained by the cross-classification of a number of categorical variables. For instance,
the target totals could be the numbers of individuals in the categories 1.Unemployed and
2.Employed of the variable Employment by age category and sex in some (sub)population. If
we assume, for ease of exposition, that Age has only two categories, 1.Young and 2.Old and
Sex has the categories 1.Male and 2.Female, then there are eight totals to be estimated, one
for each cell of a 2 × 2 × 2 contingency table. Corresponding to each of these eight cells we
can define, for each individual, a zero-one target variable indicating whether the individual
belongs to this cell or not. For instance y1 = 1 if Employment = 1, Age = 1 and Sex = 1, and
zero in all other cases and y2 = 1 if Employment = 2, Age = 1 and Sex = 1, and zero in all
other cases, etc. Each individual scores a 1 in one and only one of the eight target variables.

For such tables, some of the marginal totals are often known for the population and GREG-
estimators that take this information into account are commonly applied. In the example
above, the population totals of the combinations of Sex and Age could be known for the
population and the auxiliary variables then correspond to each of the combinations of Sex
and Age. The values for the individuals on these auxiliary variables are sums of values of the
target variables. For instance, the auxiliary variable for Age = 1 and Sex = 1 is the sum of y1
and y2 and will have the value 1 for individuals that are young and male and either employed
or unemployed and the value 0 for individuals that are not both young and male. Similarly,
we obtain for each of the four Age × Sex combinations zero-one auxiliary variables as the
sum of the corresponding target variables for Unemployed and Employed. In general, if there
are p target variables and q auxiliary variables corresponding to sums of target variables, we
can write the values of the auxiliary variables as

zi = Cyi, (9)

with C the q× p constraint matrix (consisting of zeroes and ones) that generates the sums of
the yi values corresponding to the auxiliary variables. Since (9) applies to each row of Z and
Y, we can write Z = YC′ and so

B = Y′Π−1YC′
(
CY′Π−1YC′

)−1
. (10)

In the case considered here, where the target variables correspond to cells in a cross-classification
of categorical variables, this expression can be simplified as follows. The rows of Y contain
a 1 in the column corresponding to the cell to which the unit belongs and zeroes elsewhere.
After rearranging the rows such that the units that belong to the same cell (score a one on
the same target variable) are beneath each other, Y can be written as

Y =


1n1 0 0 0 0 0

0 1n2 0 0 0 0
0 0 0 1n4 0 0

0 0 0 0
. . . 0

0 0 0 0 0 1nq

 ,

where nj is the number of units scoring a one on target variable j and 1nj is a column with
nj ones. In this example there are no units that score on the third target variable. When this
matrix is premultiplied by Y′Π−1 we obtain Y′Π−1Y = Diag(x̂y.ht) and B can be expressed
as

B = Diag(x̂y.ht)C
′ (CDiag(x̂y.ht)C

′)−1 . (11)

Substituting this value for B in (8) and using Cx̂y.ht = x̂z.ht we obtain

x̂y.greg = x̂y.ht +Diag(x̂y.ht)C
′ (CDiag(x̂y.ht)C

′)−1 (xz.pop −Cx̂y.ht) , (12)
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which is equal to (4) with the initial unadjusted vector (x) equal to the Horwitz-Thompson
estimators for the cell-totals, the weighting matrix (A−1) a diagonal matrix with the initial
vector along the diagonal and the values of the constraints (b) equal to the known population
totals of the margins of the contingency table that are used as auxiliary variables.

2.3. Extension to time series data

The optimization problem described in 2.1 can be extended for the time series data. Suppose
that our data consists of the N variables, each measured at T time points. We define these
data xit, (i = 1, . . . , N, t = 1, . . . , T ) as N time series, each of length T . In this case the total
number of the variables xit is N · T and the constraint matrix will have N · T columns. The
number of rows will be equal to the number of constraints as before. The matrix A will be
a symmetric, NT ×NT nonsingular matrix.

For this data we want to find adjusted values x̂it that are in some metric ς (for example
Euclidean metric) close to the original time series. For this purpose we consider the following
objective function

min
x̂

N∑
i=1

T∑
t=1

1

wit
ς(x̂it, xit), (13)

where wit denotes the variance of the ith time series at time t. We minimize this function
over all x̂it satisfying the constraints

N∑
i=1

T∑
t=1

critx̂it = br, r = 1, . . . , C. (14)

In (14), r is the index of the restrictions and C is the number of restrictions. Furthermore,
crit is an entry of the restriction matrix and br are fixed constants. Most economic variables
cannot have negative signs. To incorporate this (and other) requirement(s) in the model,
inequality constraints are included. A set of inequalities is given by

N∑
i=1

T∑
t=1

aritx̂it ≤ zr, r = 1, . . . , I, (15)

where I stands for the number of inequality constraints.

In Bikker et al. (2013) this model was extended by soft linear and ratio restrictions. A soft
equality constraint is different from the hard equality constraints (14), in that the constants br
are not fixed quantities but are assumed to have a variance and an expected value. This means
that the resulting x̂it need not match the soft constraints exactly, but only approximately. A
soft linear constraint similar to (14) is denoted as follows:

N∑
i=1

T∑
t=1

critx̂it ∼ (br, wr), r = 1, . . . , C. (16)

By the notation ∼ in (16) we define br to be the expected value of the sum
∑N

i=1

∑T
t=1 critx̂it

and wr its variance. In the case that ς is the Euclidean metric the linear soft constraints can
be incorporated in the model by adding the following term to the objective function in (13):

+

C∑
r=1

1

wr

(
br −

N∑
i=1

T∑
t=1

critx̂it

)2

. (17)

Another important extension of the model in Bikker et al. (2013) is the ratio constraint. The
hard and soft ratio constraints that can be added to the model, are given by

x̂nt
x̂dt

= vndt and
x̂nt
x̂dt
∼ (vndt, wndt), (18)
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where x̂nt denotes the numerator time series, x̂dt denotes the denominator time series, vndt is
some predetermined value and wndt denotes the variance of a ratio x̂nt

x̂dt
. In order to add the

soft ratio constraints to the objective function these are first linearized. The soft constraints
in (18) can be rewritten as:

x̂nt − vndtx̂dt ∼ (0, w∗ndt). (19)

The variance of the linearized constraint will be different, we denote it as w∗ndt. Soft linearized
ratios are incorporated in the model in case when ς is a Euclidean metric, by adding the
following term to the objective function

+

N∑
n,d=1

T∑
t=1

(x̂nt − vndtx̂dt)2

w∗ndt
. (20)

The inclusion of soft and ratio constraints in a model arises the possibility of handling macro-
economic relations of data variables that were beyond the traditional linear (in)equality con-
straints. It opens up a possibility to a number of applications to reconciliation problems in
several areas. An example of one such application is described in section 4.

3. Reconciliation of census tables

In this section we describe the Dutch Census data and formulate the reconciliation of census
tables as a macro-integration problem.

The aim of Census 2011 is to produce 60 multi-dimensional cross-classifications (we will call
these here hypercubes) about demographics and occupation. For each of these hypercubes
figures should be produced for the whole Dutch population, for each province and for each
municipality. Consisting in the end from a great number of hypercubes. For this task, data
from many different sources and different structures are combined. The majority of the
variables are obtained from the GBA (population register), however quite a few other sources
(sample surveys and registers) are used as well, such as for example the labour force survey
(LFS).

Each table consists of up to 10 variables. Most of the variables are included in many hyper-
cubes. The hypercubes have to be consistent with each other, in a sense that all marginal
distributions that can be obtained from different crosstables are the same. Consistency is
required for one dimensional marginals, e.g. the number of men, as well as for multivariate
marginals, e.g. the number of divorced men aged between 25 and 30 year.

In different hypercubes, the same variable may have a different category grouping (classifica-
tion). For example, the variable age can be requested to be included in different hypercubes
aggregated in different levels of detail: groups of ten years, five years and one year. Still, the
marginal distributions of age obtained from different hypercubes should be the same for each
level of aggregation.

In general, the data that are collected by Statistics Nederlands (SN) involve many inconsis-
tencies; the cause of this varies: different sources, differences in population coverage, different
time periods of data collection, nonresponse correction method.

Currently at SN, the method of repeated weighting is used to combine variables from different
sources and to make them consistent (Houbiers 2004). Using repeated weighting, tables are
reconciled one by one. Assuming that the tables 1 till t are correct, these figures are fixed.
Then, the method of repeated weighting adjusts table t+ 1, so that all margins of this table
become consistent with the margins of all previous tables, 1 till t. The method of repeated
weighting was successfully used for the last census in 2001. However, the number of the tables
has increased since and with the number of tables the number of restrictions also increased.
As a consequence, it is not obvious that the method of repeated weighting will work for the
Census 2011.
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The method of macro-integration has some advantages over repeated weighting. Firstly, the
method of macro-integration reconciles all tables simultaneously, meaning that none of the
figures need to be fixed during the reconciliation process. By doing so, there are more degrees
of freedom to find a solution than in the method of repeated weighting. Therefore a better
solution may be found, which requires less adjustment than repeated weighting. Secondly,
the results of repeated weighted depend on the order of weighting the different tables, while
the macro-integration approach does not require any order. Thirdly, the method of macro-
integration allows inequality constraints, soft constraints and ratio constraints, which may be
used to obtain better results.

A disadvantage of macro-integration is that a very large optimization problem has to be
solved. However, by using up-to-date solvers of mathematical optimization problems, very
large problems can be handled. The software that has been built at Statistics Netherlands
for the reconciliation of National Account tables is capable of dealing with a large number of
variables (500 000) and restrictions (200 000). This software is built around the commercial
optimization solver XPRESS.

We should emphasize that reconciliation should be applied on the macro level. First, impu-
tation and editing techniques should be carried out for each source separately on the micro
level. The aggregated tables should then be produced, containing variables at the publication
level. Furthermore, for each separate aggregated table, a variance of each entry in the table
should be computed, or at least an indication of the reliability of the entry should be defined.
For example, an administrative source will in general have the most reliable information, and
hence have a very high reliability. For the entries where no variance is available, a reliability
weight can be defined using the knowledge and experience of the expert matter specialists.
In our case the specialists group the data entries into different reliability classes and assign
weights to each class, for a more detailed description see Bikker et al. (2013). During the
reconciliation process, each entry of all tables will be adapted in such a way that the entries
that are least reliable will be adapted the most, until all constraints are met.

The procedure that we propose here is as follows:

1. For each data source define the variables of interest;

2. Use imputation and editing techniques to improve data quality on a micro level;

3. Aggregate the data to produce the tables, and calculate the variances of each entry;

4. Use reconciliation to make the tables consistent. Calculate the covariance matrix for
the reconciled table.

For step 4, we have identified a number of reconciliation problems for the census data:

I Some variables will have different classifications, for example the variable Age can be
in years, or five year intervals or ten year intervals. It is required that the number of
persons obtained from the hypercube with the variable Age with one year intervals for
example from 10 to 20 years should add up to the number of persons of this age interval
obtained from any other hypercube, where Age is measured in five or ten years intervals.
The objective function and the constraints can be set up to handle this problem.

II Before achieving consistency between all hypercubes we have to estimate each hyper-
cube. We assume that an initial estimate for each hypercube can be made. However,
this is not necessarily straightforward, especially in case of hypercubes that include vari-
ables from different data sources, for example a register and a sample. In Appendix A
we will present a real data example of how one can estimate the hypercubes.

III A problem that has to be solved in any method is the lack of information. Part of the
source information is based on samples. However, these samples may not cover each of
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the categories of the variables in the hypercubes. For instance, a sample may not include
any immigrant from Bolivia, while this sample may be the only source for some of the
variables in the census. In Daalmans (2013) a solution for this problem is described in
more detail.

3.1. The objective function

We distinguish two steps while making the census hypercubes:

1. At first the hypercubes should be made from all available sources;

2. Then all hypercubes should be adjusted so that the same margins are equal;

Building of the census hypercubes from different sources could be carried out using many
different methods, like weighting or post-stratification. In Appendix A we present a simple
example of making a hypercube using two different data sources. In this section we will not
discuss these methods. From the macro-integration point of view the second step of making
the hypercubes is of our interest.

Using the notation from the previous section we can now apply the macro-integration method
for reconciliation of the hypercubes by their common marginals. In the previous section we
defined the objective function (13) using an arbitrary metric. Here we use a Euclidean metric.

We introduce the following notation for census data. For j = 1, . . . , N , a hypercube is defined
by H(j). A marginal hypercube of H(j) will be defined by M (j). A variable in the hypercube

H(j) is defined by x
(j)
i , where the subindex i denotes the variable, for example Province or

Age and the super index (j) identifies the hypercube where the variable is included. For
example, if we have two hypercubes H(1) and H(2), the variables from H(1) will be defined by

x
(1)
1 , x

(1)
2 , . . . , x

(1)
m , assuming that the hypercube H(1) consists of m variables. Suppose now

that the hypercube H(2) consists of n variables and it has three variables x
(2)
1 , x

(2)
2 and x

(2)
4

in common with the hypercube H(1). Denote the marginal hypercube of H(1) consisting of

these variables by M
(1)
1,2,4:

M
(1)
1,2,4 = x

(1)
1 × x

(1)
2 × x

(1)
4 .

Reconciling the hypercubes H(1) and H(2) so that their common marginal hypercubes are the
same will mean the finding of hypercubes Ĥ(1) and Ĥ(2) such that:

ς(H(1), Ĥ(1)) + ς(H(2), Ĥ(2)) (21)

reaches its minimum under the condition that:

M̂
(1)
1,2,4 = M̂

(2)
1,2,4. (22)

In the case when the first marginal hypercube M
(1)
1,2,4 consists of the variables from a register,

that are fixed and should not be reconciled, then instead of the condition in (22) we will have
the following

M̂
(2)
1,2,4 = M

(1)
1,2,4. (23)

We can now define the objective function for the reconciliation of the hypercubes H(j), j =
1, . . . , N . We want to find the hypercubes Ĥ(j), j = 1, . . . , N such that:

min
Ĥ

∑
j

ς(H(j), Ĥ(j)), (24)

under the restriction that, all common marginal hypercubes are the same

M̂
(j1)
i,k,...,l = · · · = M̂

(jk)
i,k,...,l. (25)
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These marginal hypercubes can include some register variables. However, there is no register

data available for the combination of the variables x
()
i , x

()
k , . . . , x

()
l . On the other hand, for

the marginal hypercubes that consist of a combination of variables for which register data is
available, we will have the following restriction:

M̂ (j1)
p,q,...,s = · · · = M (jn)

p,q,...,s. (26)

If we transform the hypercube H(j) into a vector h(j) = (h
(j)
1 , . . . ,h

(j)
cj )′ we can rewrite the

objective function in (24) using the notation of the previous section. For all h(j), j = 1, ..., N ,
we want to find vectors ĥ(j), j = 1, ..., N such that:

min
ĥ

N∑
j=1

cj∑
i=1

1

wij

(
ĥ
(j)
i − h

(j)
i

)2
, (27)

where wij is the weight of h
(j)
i .

3.2. Reconciliation of two hypercubes

Suppose we want to create two hypercubes, each with three variables. Hypercube one H(1)

consists of variables Gender, Age and Occupation and the second hypercube, H(2) of the
variables Gender, YAT (year of immigration) and Occupation. For convenience, we combine
the original categories of these variables and consider the coding as presented in Table 1.
From these variables the only one that is observed in the survey is Occupation, the other

Table 1: Categories of the variables
Gender 1 Male

2 Female

Age 1 < 15 years
2 15-65 years
3 > 65 years

Occupation 0 Not manager
1 Manager

YAT 0 Not immigrant
1 Immigrated in 2000 or later
2 Immigrated before 2000

three variables are obtained from the register and are therefore assumed to be fixed. The
survey we use here is the LFS (labour force survey) and the register is the GBA (population
register). As we mentioned already we assume that the figures obtained from GBA are
exogenous, what means that these values should not be changed.

We aim to find the hypercubes Ĥ(1) and Ĥ(2) such that

ς(H(1), Ĥ(1)) + ς(H(2), Ĥ(2)) (28)

is minimized under the restrictions that the marginal hypercubes of Ĥ(1) and Ĥ(2) coincide
with the corresponding marginal hypercubes of the register. Hence we want to achieve that:

M̂
(1)
Gender, Age = M register

Gender, Age (29)

and

M̂
(2)
Gender, YAT = M register

Gender, YAT. (30)
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Table 2: Hypercube 1
Sex Age Occup 0 I II III IV V
1 1 0 1761176 1501748 1501748 1501748 1501748 1501748
1 2 0 5181009 5065650 5065650 4924068 4907253 4916858
1 2 1 674373 507128 507128 648710 665525 655920
1 3 0 584551 831315 831315 1016430 1016072 1016276
1 3 1 13011 207889 20788 22774 23132 22928
2 1 0 1661478 1434236 1434236 1434236 1434236 1434236
2 2 0 5755370 5521997 5484427 5254234 5247781 5251467
2 2 1 241251 -37570 0 230193 236646 232960
2 3 0 534231 976868 986261 1370781 1370724 1370757
2 3 1 2037.85 399226 389833 5313 5370 5337

In addition, the hypercubes should be reconciled with each other:

M̂
(1)
Gender, Occupation = M̂2

Gender, Occupation; (31)

The first step before the actual reconciliation process is weighting up the sample to the
population. The total number of GBA persons is NGBA = 16 408 487 and the total number
of LFS persons is NLFS = 104 674. The initial weight is

w =
16 408 487

104 674
= 156 758.

Table 3: Hypercube 2
Sex YAT Occup 0 I II III IV V
1 0 0 6723037 6505428 6505428 6378041 6362791 6371502
1 0 1 609945 444221 444221 571608 586858 578147
1 1 0 179174 213134 213134 291188 290865 291049
1 1 1 12697 98543 98543 20489 20812 20628
1 2 0 624524 680151 680151 773017 771417 772331
1 2 1 64741 172253 172253 79387 80987 80073
2 0 0 6965385 6889146 6879753 6870198 6864427 6867723
2 0 1 215699 184908 194301 203856 209627 206331
2 1 0 232472 253743 244350 319060 318945 319010
2 1 1 4232 70951 80344 5634 5749 5684
2 2 0 753222 790213 780820 869994 869369 869726
2 2 1 23357 105796 115189 26015 26640 26283

The results of the weighting are presented in Tables 2 and 3 under the column 0. Since we
consider these figures as the starting figures before the reconciliation process, we call these
model 0. These figures have marginals consistent with each other but not with the register
data, see Table 4. For example, the total number of men is 8214119 from Table 2 and 3 and
8113730 in Table 4.

We applied the optimization solver XPRESS for the problem defined in (28-31) using the
Euclidean distance for ς and applying the weight 1 for all figures. The results of this reconcil-
iation are presented in Tables 2 and 3 under the column I. We observed negative figures after
the reconciliation, therefore we added the restriction that all figures have to be nonnegative
to the previous setting and applied the solver. Results of this optimization problem are pre-
sented in Tables 2 and 3 under the column II. Next we used weights equal to the initial value
of each figure. The results of this execution are to be found under the column III in Tables 2
and 3. Applying more realistic weights led to different results, compared with models I and
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Table 4: Register
Sex Age YAT Total
1 1 0 1437385
1 1 1 48553
1 1 2 15810
1 2 0 4619201
1 2 1 255335
1 2 2 698242
1 3 0 893063
1 3 1 7789
1 3 2 138352
2 1 0 1369468
2 1 1 49026
2 1 2 15742
2 2 0 4502083
2 2 1 267916
2 2 2 714428
2 3 0 1202503
2 3 1 7752
2 3 2 165839

II, the figures with smaller values are adjusted less and the figures with bigger values are
adjusted more.

Since we want to preserve the initial marginal distribution of the variable Occupation, the
next step is to add a ratio restriction. We only added one ratio restriction, that is the relation
between the managers and non managers for the whole population. At first we added this
restriction as a hard constraint and afterwards as a soft constraint to the model. The results
of these reconciliation problems are presented in columns IV and V of Tables 2 and 3. For
the soft restrictions the weight we choose is equal to 707405400, which is in the order of 100
times the largest register value. This value is found by trial and error. By choosing this value
the ratio constraints significantly influences the results, but its effect is clearly less than that
of a hard ratio constraint.

Table 5: Ratio restriction
Model scenario Ratio
Target value 16.631
Model outcome: no ratio (III) 17.091
Model outcome: hard ratio (IV) 16.631
Model outcome: soft ratio (V) 16.891

In Table 5 the ratios of the number of ’not manager’ over the number of ’manager’ is calculated
for the models III, IV and V. The target value of the ratio is the ratio observed in LFS. As
we could expect the value is best achieved in model IV, when the hard ratio restriction has
to be fulfilled.

To compare the results of the models with each other we calculated the weighted quadratic
difference between the reconciled values of models III, IV and V and the values of model 0,
the hypercubes after the weighting, see Table 6.

The weighted squared difference in Table 6 is calculated as follows

2∑
j=1

cj∑
i=1

1

wij

(
ĥ
(j)
i − h

(j)
i

)2
, (32)

here we sum over two hypercubes, ĥ
(j)
i are the reconciled figures of model III, IV or V and h

(j)
i
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Table 6: Weighted squared difference
Model scenario Difference
Model 0 - Model III 1955390
Model 0 - Model IV 1956704
Model 0 - Model V 1956696

are the values of model 0. The weighted squared difference is smallest for model III, which
implies that without the ratio restriction reconciled figures are closer to the original figures.
We could anticipate this result since the ratio restriction (as any additional restriction would
do) forces the original figures towards the distribution of the ratio and therefore the outcome
of the model with the hard ratio restriction differs most from the initial values.

4. Reconciliation of turnover figures

The second application of our macro-integration method is reconciliation of turnover figures
for short term statistics (STS). Currently Statistics Netherlands is investigating the possibility
of using a macro-integration method for this reconciliation. Monthly STS figures are partly
based on a sample and partly on full-scale business reports. Small and middle sized businesses
are included in the sample and all of the large businesses are approached. From these figures
the business statistics department estimates the monthly turnover index for each sector for
the Netherlands. On the other hand, we also have quarterly and yearly turnover figures of
structural business statistics (SBS) based on register information. The monthly STS figures
on a macro level should be consistent with the quarterly SBS figures. This condition should
hold for the monthly and quarterly changes. For subject matter specialists the precise values
of these figures are less important than the changes. Also, since the monthly and quarterly
figures are obtained from different sources, the obvious choice is to consider the changes. In
our application, quarterly figures are considered to be reliable and assumed to be fixed. In
general, only those quarterly figures will be fixed that are already published.

Figure 1: Monthly turnover figures for household appliances manufacture

Let us consider three STS monthly series of turnover indices for the industry ”household ap-
pliances manufacture”, see Figure 1. These monthly figures are: the index of total turnover
ITm,i, the index of domestic turnover IDm,i and the index of the foreign turnover IFm,i. We con-
sider these figures for nine months, (i = 1, . . . , 9). For each series we have the corresponding
quarterly SBS index, defined as ITq,k, IDq,k and IFq,k, (k = 1, . . . , 3). These quarterly values are
the benchmarks for our monthly series, since we will take these quarterly turnover indices as
fixed.

On the other hand for the quarterly SBS turnover figures, subject matter specialists put the
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following constraint on the three indices:

ITq,k = 0.375 · IDq,k + 0.625 · IFq,k, for k =, 1 . . . , 3. (33)

These equations reflect the relative share of the domestic and foreign turnover in total turnover
in the base period.

Here we consider two different approaches for reconciliation of the STS series. In the first
approach we assume that the monthly total turnover index has been adjusted pro rata already
and we will apply a macro-integration method to reconcile domestic and foreign monthly
indices. In the second approach we will take the original figures of the monthly total turnover
index and apply a macro-integration method to reconcile the three time series (total, domestic
and foreign turnover) simultaneously.

4.1. Pro rata approach

Suppose that the monthly total turnover figures ITm,i are adjusted pro rata, and the pro rata

estimate ĨTm,i satisfies the following constraint:

ITq,k =
1

3

3k∑
i=3(k−1)+1

ĨTm,i, for k = 1, . . . , 3. (34)

So we have original figures of monthly domestic and foreign turnover indices and pro rata
adjusted figures of the total turnover indices, see Table 7. The quarterly figures are given in
Table 8. We want to find the estimates ÎDm,i and ÎFm,i of our monthly series such that:

1. Monthly changes of domestic and foreign turnover indices are preserved as much as
possible;

2. Average of monthly domestic and foreign turnover indices are equal to the corresponding
quarterly turnover index;

IAq,k =
1

3

3k∑
i=3(k−1)+1

ÎAm,i, for k = 1, . . . , 3, A ∈ {D,F}. (35)

3. All quarterly figures and monthly total turnover figures are fixed and monthly figures
of domestic and foreign turnover indices can be adjusted;

4. For each month, the following constraints should hold:

ĨTm,i = 0.375 · ÎDm,i + 0.625 · ÎFm,i, for i =, 1 . . . , 9. (36)

We can now specify the objective function for this problem. We assume here that the metric
ς in (13) is the Euclidean metric:

min
ÎD ÎF

9∑
i=2

((ÎDm,i − ÎDm,i−1)− (IDm,i − IDm,i−1))
2

vD
(37)

+
((ÎFm,i − ÎFm,i−1)− (IFm,i − IFm,i−1))

2

vF
,

under the constraints defined in (35) and (36). Here vD and vF denote the weights of the
series ÎDm,i and ÎFm,i, respectively. In this example we have two kinds of hard constraint: within
the same time period and over three time periods. We have no soft constraints. The first
term in (37) will guarantee that the monthly changes ÎDm,i − ÎDm,i−1 is preserved as much as

possible and the second term serves the same purpose for ÎFm,i series.
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Figure 2: Original and reconciled domestic turnover figures

Table 7: Monthly turnover indices of industry ”household appliances manufacture”
Month Domestic turnover Foreign turnover Total turnover

1 118.64 89.84 90.6
2 109.92 87.85 87.5
3 101.85 100.34 92.5
4 83.35 89.08 82.3
5 81.65 84.90 79.5
6 97.63 108.97 99.8
7 67.26 93.10 89.3
8 74.06 88.07 88.0
9 111.83 117.04 120.3

Table 8: Quarterly turnover figures
Quarter Domestic turnover Foreign turnover Total turnover
1 89.5 90.62 90.2
2 85.6 88.16 87.2
3 92.7 103.10 99.2

We consider two different pairs of weights for the monthly series. Accordingly, we have two
different scenarios for the data integration problem. At first we assume that both series have
the same weights equal to 1. In the second scenario we assume that the weights for the
domestic turnover series is equal to 1 and the weight of the foreign turnover is equal to 0.1.

Using the statistical software package R we programmed an iterative algorithm described
in e.g. De Waal, Pannekoek, and Scholtus (2011), Ch. 10 to solve the lineair optimization
problem defined in (35)-(37), with the weights vD = vF = 1 for scenario 1 and vD = 1 and
vF = 0.1 for scenario 2. To illustrate the preservation of changes we present the original and
the reconciled series separately for domestic and foreign turnover in Figures 2 and 3. Observe
that in scenario 1 both time series are equally reliable. However, in scenario 2 we assume that
the foreign turnover figures are more reliable than the domestic turnover. As a result, the
reconciled foreign turnover figures in scenario 2 have much better preserved monthly changes
than the domestic turnover figures. Using the weights we can include extra information in
the model. If in our example we know that the source for one series are more reliable than
the other series, we can include this information in the model by adapting the weights.

4.2. Macro-integration approach

If instead of the pro rata adjusted series we consider the original figures for the total turnover
and include these series in the objective function as well, we will obtain a new integration
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Figure 3: Original and reconciled foreign turnover figures

problem. In this case we will have three time series to benchmark. We want to find the
estimates of the series ITm,i, I

D
m,i and IFm,i such that:

min
ÎT ÎD ÎF

9∑
i=2

((ÎTm,i − ÎTm,i−1)− (ITm,i − ITm,i−1))
2

vT
(38)

+
((ÎDm,i − ÎDm,i−1)− (IDm,i − IDm,i−1))

2

vD

+
((ÎFm,i − ÎFm,i−1)− (IFm,i − IFm,i−1))

2

vF
.

Here vT denotes the weight of the series ITm,i. In the previous subsection we first adjusted the
monthly total turnover figures pro rata. In the optimization problem (35)-(37) these figures
were fixed. In this example we do not adjust the total turnover figures beforehand, we want to
reconcile these simultaneously with the other figures. Therefore for this problem, (36) should
change into constraints that include the estimates of the total turnover indices:

ÎTm,i = 0.375 · ÎDm,i + 0.625 · ÎFm,i, for i =, 1 . . . , 9. (39)

In addition, constraints in (35) should now also hold for ÎTm,i, the estimates of the total
turnover indices:

IAq,k =
1

3

3k∑
i=3(k−1)+1

ÎAm,i, for k = 1, . . . , 3, A ∈ {T,D, F}. (40)

For the macro-integration problem in (38)-(40) we defined two different scenarios according
to the weights of the series. In the first scenario we consider the following weights:

vT = 0.1 and vD = vF = 1.

And for the second scenario:

vT = vF = 0.1 and vD = 1.

The estimates for these two scenarios were almost identical, see for example ÎT1 and ÎT2 in
Table 9. It seems that the optimal estimates were found and the weight did not make much
of a difference.

Remark In Figure 4 we compare the original figures of the total turnover with the adjusted
figures from two different approaches described above. Adjusted figures are according to
the macro-integration method, scenario 1 and the pro rata method. We can observe that
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Table 9: Reconciled figures of total, domestic and foreign turnover for scenarios 1 and 2.
Month ÎT1 ÎT2 ÎD1 ÎD2 ÎF1 ÎF2

1 90.43 90.59 93.89 93.30 88.36 88.96
2 87.12 87.09 88.49 88.63 86.30 86.16
3 93.05 92.93 86.12 86.57 97.20 96.74
4 79.35 79.43 75.20 74.88 81.84 82.16
5 78.41 78.49 80.04 79.77 77.44 77.72
6 103.84 103.68 101.56 102.15 105.20 104.60
7 86.81 86.69 74.17 74.60 94.39 93.95
8 89.18 89.07 83.02 83.41 92.87 92.47
9 121.61 121.83 120.91 120.09 122.04 122.88

Figure 4: Original and adjusted monthly total turnover figures

the estimate obtained by the macro-integration method follows the monthly changes of the
original time series better than the pro rata adjusted estimate, even though the difference
between these estimates is minor. From the two methods described above, we would suggest
to use the full macro-integration method. It has several advantages:

1. The estimated time series of the total turnover follow the monthly changes of the original
series;

2. The original figures of the total turnover do not have to be adjusted beforehand, implying
that the integration process incudes one step less.

3. The choice of the weights could become less important and this may lead to better
estimates.

This example illustrates the use of a macro-integration method for time series STS data. SN
is currently carrying out research on how to apply macro-integration of STS figures in the
production process.

5. Conclusions

Reconciliation of tables on a macro level can be very effective, especially when a large num-
ber of constraints should be fulfilled. Combining data sources of different structures on a
macro level is often easier to handle than on a micro-level. When data are very large and
many sources should be combined, macro-integration seems to be the only technique that
is effective. Macro-integration is also more versatile than (re-)weighting techniques using
GREG-estimation in the sense that inequality constraints and soft constraints can be incor-
porated easily.
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The two examples considered in this paper are of great importance for SN: For the census,
further developing the macro-integration approach is very important, since the application
of the repeated weighting method at SN is currently already hampered by its limitations.
For this reason SN is using a combination of the weighting method and the macro-integration
method. We feel that in the future macro-integration could be the only method used to ensure
consistency of tables on macro level.

The second application is equally, if not more, important for SN. For the past couple of years,
SN has had an additional data source for business statistics figures. The use of register data
has increased considerably over the last years. Also the quality of data has improved, and
through intensive communication between SN and the registers, our knowledge of the register
variables has increased. At the same time, SN has taken measures to improve the quality of
the surveys. Improving the quality of the monthly and quarterly data creates the possibility
for reconciliation of the survey data with the register data. At this moment SN is taking steps
to implement this reconciliation.
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A. Census data example

In this section we will construct a simple hypercube using two data sources. Consider two
data sets: one is obtained from GBA (population register) register and the other is from LFS
(labour force survey). The first data set consists of three variables: Province, Sex and Age
and the second data set contains one additional variable: Occupation.

Table A.1: Categories of variable Province
Unknown 1
Groningen 2
Friesland 3
Drenthe 4
Overijssel 5
Flevoland 6
Gelderland 7
Utrecht 8
Noord-Holland 9
Zuid-Holland 10
Zeeland 11
Noord-Brabant 12
Limburg 13

For simplicity assume that the three common variables have the same categories in both data
sets. Province has 13 categories, see Table A.1. The variable age is grouped in five year
intervals and has 21 categories: 0− < 5, 5− < 10, ..., 95− < 100, 100+. Sex has 2 categories
and occupation 12 categories, see Table A.2.

Table A.2: Categories of variable occupation
Not stated 1
Armed forces occupations 2
Managers 3
Professionals 4
Technicians and associate professionals 5
Clerical support workers 6
Service and sales workers 7
Skilled agricultural, forestry, and fishery workers 8
Craft and related trades workers 9
Plant and machine operators, and assemblers 10
Elementary occupations 11
Not applicable 12

The data are initially available on the micro level. The total number of GBA persons is
NGBA = 16 408 487 and the total number of LFS persons is NLFS = 104 674. Both data sets
were aggregated up to the publication level. The cross tables obtained are three and four
dimensional hypercubes. The values of hypercube obtained from the second sample is then
adjusted using the same weights for each cell. The initial weight is then defined as follows:

w =
16 408 487

104 674
.

We assume that the figures of the first data set (obtained from the GBA) are exogenous.
That means these values will not be changed.

Suppose that in the variables defined by x
(j)
i the subindex i will define the identity of the

variable for example Province and the super index will define the data set where the variable
will originate from. In our example we have two data sets, hence j = 1 or 2. For convenience,



Austrian Journal of Statistics 47

the variables Province, Sex and Age are numbered by 1, 2 and 3. In the first data set these

variables are defined by x
(1)
1 , x

(1)
2 and x

(1)
3 . Similarly, in the second data set the variables

Province, Sex, Age and Occupation are defined as x
(2)
1 , x

(2)
2 , x

(2)
3 and x

(2)
4 . We define the

marginal distribution of the variable x
(j)
i as follows:

x
(j)
i,1 , . . . , x

(j)
i,ri
,

the second index here defines the categories of the variable. For example, the variable Province
x1 has 13 categories, r1 = 13. Each hypercube will have a crosstable of variables, containing

Table A.3: A part of the second hypercube
Province Sex age Occupation Number of persons

2 2 8 12 51
2 2 8 3 12
2 2 8 4 22
2 2 8 5 23
2 2 8 6 22
2 2 8 7 18
2 2 8 8 1
2 2 8 9 2
2 2 8 10 1
2 2 8 11 9

the values

x
(1)
1,j × x

(1)
2,k × x

(1)
3,l , j = 1, . . . , 13, k = 1, 2, l = 1, . . . , 21.

For example, when j = 2, k = 2 and l = 8 we have that

x
(1)
1,2 × x

(1)
2,2 × x

(1)
3,8 = 20422

this means that there live 20422 women of age between 35 and 40 in the province Groningen.
In the second data set we also have the extra variable Occupation. In case when j = 2, k = 2
and l = 8 the number of persons in each category of the variable Occupation are presented in
Table A.3. Note that it is the part of the hypercube consisting of four variables. Observe that
there are no persons in this hypercube with the categories 1 and 2 for the variable Occupation.

x
(2)
1,2 × x

(2)
2,2 × x

(2)
3,8 ×

12∑
i=1

x
(2)
4,i = 161

We want to combine these two data sets into one. We can do this using the macro-integration
method. For this simple example it is similar to post stratification methods. However, for the
complete model, when we will have to make more than 60 hypercubes consistent with each
other, the macro integration method is easier to generalize.

The reconciliation problem is defined as follows: We have variables x
(1)
1 , x

(1)
2 and x

(1)
3 and

x
(2)
1 , x

(2)
2 , x

(2)
3 and x

(2)
4 . We want to find the estimates x̂

(2)
1 , x̂

(2)
2 , x̂

(2)
3 , x̂

(2)
4 of x

(2)
1 , x

(2)
2 , x

(2)
3 and

x
(2)
4 , such that: ∑

k,l,h,i

(
x̂
(2)
1,k × x̂

(2)
2,l × x̂

(2)
3,h × x̂

(2)
4,i − x

(2)
1,k × x

(2)
2,l × x

(2)
3,h × x

(2)
4,i

)2
(41)

is minimized, under the restriction that the marginal distributions of the same variables from
the sets 1 and 2 are the same:

(x̂
(2)
i,1 , . . . , x̂

(2)
i,ri

) = (x
(1)
i,1 , . . . , x

(1)
i,ri

), for i = 1, 2, 3. (42)
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Here we only require that the estimates x̂
(2)
1 , x̂

(2)
2 , x̂

(2)
3 , x̂

(2)
4 should be as close as possible to

the original values for each cell of the hypercube and the marginal distributions of the first
three variables should be equal to the marginal distributions of these variables obtained from
the first hypercube (register data).

We could make the set of restrictions heavier if we would add the restriction on the marginal
distribution of the fourth variable to (42);

(x̂
(2)
4,1, . . . , x̂

(2)
4,r4

) = (x
(2)
4,1, . . . , x

(2)
4,r4

). (43)

By this restriction we want to keep the marginal distribution of the variable occupation as it
was observed in LFS.
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