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Abstract The European reduced activation ferritic/martensitic steel Eurofer97 in irradiated states displays
significant nonlinear material behavior involving irradiation hardening, loss of strain hardening, and uniform
elongation, as well as irradiation-induced embrittlement. Nonlinear behavior of irradiated steel modeled on the
continuum scale will help to estimate the maximum operating range of the irradiated components beyond the
onset of localized plastic flow. In this work, a thermodynamic framework for modeling irradiation-influenced
deformation is established based on irradiation defect density and a thermodynamically consistent finite strain
formulation of an existing viscoplastic model using the Dual Variables concept is presented. The model is
implemented in ABAQUS allowing the simulation of tensile tests conducted on irradiated and unirradiated
materials which shows the model’s ability to capture the post-yield and post-necking behavior observed in
experiments up to ductile failure.

Keywords Irradiation hardening · Clausius–Duhem entropy inequality · Finite strain · Finite elements

Notations

F Deformation gradient tensor
Fe Elastic part of deformation gradient
Fp Plastic part of deformation gradient
R Orthogonal rotation tensor
U Right stretch tensor
V Left stretch tensor
L Spatial velocity gradient tensor
D Deformation rate tensor
W Skew-symmetric spin tensor
Q Incremental orthogonal rotation tensor
T Second Piola-Kirchhoff stress tensor
S Cauchy stress tensor
E Green Lagrange strain tensor
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A Almansi strain tensor
Γ̂ Strain transformed onto R̂a
εin Inelastic part of strain tensor
Σ Over-stress tensor
σ Stress tensor
σ

′
Deviatoric part of stress tensor

Z Kinematic hardening tensor
CCT M Consistent tangent modulus
C Elasticity tensor
P Mandel-type effective stress tensor
Φ̂ Mandel-type strain tensor
S∗
0 Input stress provided by ABAQUS to UMAT

QHW Hughes-Winget rotation tensor
ΔεHW Hughes-Winget strain increment tensor
S1 Stress at the end of time increment
X Position vector in reference configuration
x Position vector in current configuration
x̂ Position vector in R̂a
q Heat flux vector
Rr Reference configuration
Ra Current configuration
R̂a Intermediate configuration
X Mapping function of continuum body
t Time
W Stress power
γ Specific rate of entropy production
e Specific internal energy
ρ Mass density
s Specific heat per unit time
θ Absolute temperature
η Specific entropy
Pirr Irradiation-induced power
ξ Thermodynamic change due to irradiation
φ Irradiation dose
sirr Heat generated due to irradiation
ϕ Tangent of the σH−φ curve
Ψ Specific free energy relation
T Temperature
�irr,NH Contribution to free energy from defects that do not contribute to hardening
�e Elastic free energy function
�Kin

p Kinematic hardening free energy function
� I so

p Isotropic softening free energy function
� I rr

p Irradiation hardening free energy function
ri Conjugate variable of ψi
𝓃 Conjugate variable of N
Y Conjugate variable of d
F Yield criterion
p Accumulated plastic strain
Σeq Von-Mises equivalent of Σ
d Damage variable
σH Irradiation hardening
E Young’s modulus
k Initial yield stress
K Viscous parameter
n Strain rate sensitivity parameter
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ψ Isotropic softening variable (=ψ1+ψ2)
H Kinematic hardening parameter
C Kinematic hardening parameter
R Kinematic hardening parameter
m Kinematic hardening parameter
ψs Increase of the cyclic softening capacity
h Isotropic softening parameter
c Isotropic softening parameter
mψ Isotropic softening parameter
ψr Isotropic softening parameter
ψs,∞ Isotropic softening parameter
cs Isotropic softening parameter
Ns Saturation value of N
Nr Defects that cannot be resolved
Nl Defect removal parameter
hN Defect hardening coefficient
a Defect nucleation parameter
b Defect removal parameter
rN Defect removal parameter
qN Defect removal parameter
Δl0 Gauge displacement
l0 Initial gauge length
A0 Initial gauge cross section
Amin Minimum gauge cross section
L Load
σeng Engineering stress
εeng Engineering strain
σtrue Mean true stress
εtrue Mean true strain
〈 〉 McAuley bracket
|| Von-Mises equivalent
∇x Gradient of vector
∇·x Divergent of vector
( )Δ Lower Oldroyd time derivative
( )∇ Upper Oldroyd time derivative
( )

◦
Jaumann derivative

1 Introduction

The reduced activation ferritic martensitic (RAFM) steel Eurofer97 is used to make the European test blanket
modules (TBM) for ITER and the breeding blankets of future fusion reactors like the DEMOnstration fusion
reactor DEMO. Eurofer97 (Fe–9Cr–1.1W–0.2V–0.12Ta) has good thermomechanical properties and resists
irradiation-induced swelling [1,2]. After low-temperature neutron irradiation, the material exhibits strong
material hardening and a reduction in uniform and total elongation [3,4]. Irradiated material has higher yield-
stress and ultimate-tensile-stress (UTS) than unirradiated material, but softens rapidly after UTS, reducing
fracture strain. Irradiation-induced hardening is caused by dislocation pinning by irradiation defects, while
softening is caused by dislocation movement and interaction with defects [5]. Dislocations move forward and
clear defects in localized areas when a critical stress is reached. This process, known as channeling, creates
channels of soft material surrounded by defect-rich hard material [6,7]. Dislocations at grain boundaries
interact, nucleating voids that grow and coalesce into microcracks. Channeling is the primary deformation
mechanism, while void coalescence is the primary damage mechanism [6]. Loss of uniform elongation is a
component failure criterion in the nuclear industry [8]. Given the high cost of replacing components and the
probable reactor downtime, it is important to precisely predict their maximum operating range particularly
when uniform elongation/deformation is lost, e.g., due to irradiation. Continuum techniques allow modeling
at the component scale, which describes post-yield and flow softening behavior. This would help to estimate
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component life and build enhanced breeding blanket design criteria. Existing micromechanical continuum-
based models use crystal plasticity to describe material properties for single crystals [9,10] and polycrystals
[11], and self-consistent plasticity theory [12]. These approaches combine microstructure observations with
computationally expensive simulations at different scales to capture dominant physical mechanisms at a finer
length scale and pass this information to a higher length scale model until a coarse FE-mesh can predict
the macroscopic mechanical properties with physical fidelity. More complex multiscale techniques may be
essential when addressing damage initiation and grain boundary effects. They also require very large-scale
simulations to mimic necking due to their mesh dependency to suit the microstructure-related parameters
set on the nanometer scale. These methodologies are more appropriate for fundamental investigation, but
too expensive and impractical for engineering analysis, which requires economical and quick models for
components much larger than a tensile sample.

This work uses constitutive equations based on established material theory for continuum scale modeling
and can be calibrated with mechanical tests. This approach is important for design and development because
it can be used with common FEM codes to simulate component deformation and damage under operating
conditions. A viscoplastic framework is used to define a well-posed initial value problem (IVP) and keep
field equations hyperbolic, allowing faster calculations and reduced mesh dependency. The elasto-viscoplastic
model from [13] proposes constitutive equations for defect nucleation and annihilation to model irradiation’s
small-strain effect (below 5%). In this work, the constitutive system of equations by [13] is extended to the
finite strain framework, where large deformations and rotations can be handled. The Dual Variables approach
[14] is used to ensure a thermodynamically consistent finite strain model formulation. Currently, there is
no thermodynamic framework to account for the changes in the internal energy of irradiated material due
to interactions between energetic neutrons and lattice atoms and due to the energy dissipation during defect
annihilation by plastic deformation. In this work, a modified thermodynamic framework is proposed to account
for this change in internal energy, with defect density introduced as an internal variable in the material’s free
energy function.

The paper is organized as follows: Sect. 2 discusses finite strain and Dual Variables. Section3 presents
the thermodynamic framework for modeling irradiated materials and the finite strain model. Also covered is
model integration. Section4 compares tensile test results on unirradiated and irradiated materials with model
simulations. Section5 discusses the results, and Sect. 6 concludes.

2 Finite strain framework

The model developed relies on basic theoretical concepts related to the kinetics of finite strain framework
and the Dual Variables approach, which are introduced briefly here. Let us consider a continuum body, which
consists of an infinite number of material points, undergoing deformation. In continuummechanics, the vector
X is used to define the reference configuration Rr and x is the vector that defines the actual configuration Ra ,
with the motion of the body x = X (X, t) during time t is described using the mapping function X (X, t). The
derivative of X with respect to X provides a second-order tensor known as the deformation gradient,

F = ∂X (X, t)

∂X
= ∂x

∂X
. (1)

The polar decomposition of F = RU = VR yields the symmetric right and left stretch tensors U and V
alongwith a rotation tensorR. The spatial velocity gradient tensorL = Ḟ F−1 can be decomposed cumulatively
into the symmetric deformation rate tensor D and the skew-symmetric spin tensorW using

D = 1

2

(
L + L T

)
, W = 1

2

(
L − L T

)
. (2)

Themultiplicative decomposition ofF = Fe Fp into the elastic andplastic components allows the definition
of the intermediate configuration, R̂a , which is a stress-free state resulting from the local unloading process.
The invariance postulation of [15] demands the invariance of constitutive relationships against any rotations
of the intermediate configuration. The Dual Variables approach [14] proposes that a strain tensor and its best-
associated stress tensor, the corresponding stress power, have invariance properties. The stress power per unit
volume in Rr is W = T · Ė, where E = (

FTF − I
)
/2 is the Green Lagrange strain and I is the second-

order unity tensor. The associated stress tensor is T, the second Piola-Kirchhoff stress tensor. Stress and strain
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Fig. 1 Deformation decomposition and internal variables of the finite strain model

tensors, which are naturally associated in this way, are called Dual Variables. The transformation of the strain
tensor [14] along, Rr → R̂a → Ra is illustrated in Fig. 1, which is given by

E
FT−1
p E F−1

p−−−−−−−→ Γ̂
FT−1
e Γ̂ F−1

e−−−−−−−→ A (3)

where the transformation Rr → R̂a is inelastic and R̂a → Ra is elastic. Here, Γ̂ is the strain tensor transformed
onto R̂a and A is the Almansi strain tensor acting on Ra . The corresponding dual-stress tensors with respect
to R̂a and Ra are the second Piola-Kirchhoff stress tensor T̂ and the Cauchy stress tensor S = Fe T̂ FT

e ,
respectively. Hence, the invariant stress power in the various configurations can be summarized and written as

W = T · Ė︸ ︷︷ ︸
Ref erence

= T̂·
Δ

Γ̂︸︷︷︸
I ntermediate

= S · D︸︷︷︸
Actual

. (4)

The time derivatives of the strain tensors are given by the lower Oldroyd time derivative [16] of the form

( )Δ = ˙( ) + L̂
T
p ( ) + ( ) L̂p for R̂a & ( )Δ = ˙( ) + LT ( )+ ( )L for Ra . (5)

The Oldroyd time derivative of A is the deformation rate tensor D (
Δ

A = Ȧ− LA− ALT = D) and that of
the plastic strain Γ̂ p is the plastic part of the deformation rate D̂

(
Γ̂ p

)Δ = ˙̂
Γ p + L̂

T
p

(
Γ̂ p

)
+
(
Γ̂ p

)
L̂ p = D̂ p. (6)

The material time derivatives of stress tensors are given by the upper Oldroyd derivatives

( )∇ = ˙( ) − L̂
T
p ( ) − ( ) L̂p for R̂a, ( )∇ = ˙( ) − LT ( ) − ( )L for Ra . (7)

3 Modelling of irradiated materials

In this section, the thermodynamic framework to model an irradiated metal is constructed. The thermodynamic
formulation of the finite strain model and consistency criteria are derived using this framework. A simplified
model for small elastic deformations is developed for implementation in FE programs.
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3.1 Thermodynamics

The local form of the first law of thermodynamics [16] for an unirradiated material is

ė = 1

ρ
T · Ė − 1

ρ
∇ · q + s (8)

where e is the specific internal energy, q is the heat flux vector, s is the specific heat per unit time, ρ is the mass
density. Thermodynamic potentials and the system’s internal energy can be described by a pair of conjugate
variables, typically a force and the resulting system displacement. Alterations to a mechanical system’s energy
are represented by the product of quantities from these pairs. The stress power, T · Ė, describes the transfer of
mechanical or dynamic energy resulting from work done.

A radiation damage event is the transfer of energy from high-velocity particles (neutrons) to a solid, causing
atom reorganization [17]. For crystalline materials, radiation damage is measured in displacements per atom
(dpa) [18]. Most of the absorbed energy is dissipated as heat, but the rest is consumed to create defects in
the lattice [18] such as voids, defect clusters, dislocation loops, etc., at the cost of formation energy unique to
each defect type. Tensile tests demonstrate that these defects cause irradiation hardening, loss of ductility, etc.
Irradiation-induced hardening, generated by the pinning of dislocations by defects, is indicated by σH [4] and is
a function of the irradiation defect density N , given by, σH = h

√
N [19]. h is a material-dependent parameter

which varies with temperature. Plastic deformation removes defects and softens irradiated materials [5,20,21].
In this work, it is postulated that the system absorbs kinetic energy from incident neutrons to form defects and
releases it during plastic deformation. The material’s thermodynamics must account for all these exchanges to
guarantee energy conservation. The energy can be calculated by adding the products of defect population and
defect formation energy for each type of defect. Due to a lack of reliable methods for precisely estimating the
types of defects and their population for a given irradiation dose, this is currently impossible. Alternatively,
this work proposes a conjugate pair of variables whose product quantifies the energy transferred to the system.
This energy, together with the material’s stress power, is dissipated during inelastic deformation. The extrinsic
quantity of irradiation damage dose, measured in dpa, can be employed to measure the thermodynamic change.
The thermodynamic force needed to bring about this change is denoted as ξ . It is an intrinsic quantity measured
in MPa/dpa and a function of φ. The product of this conjugate pair,

Pirr (φ) = ξ φ̇, (9)

is a power term measured in MPa/s or J/s (considering volume) and is therefore referred to as the irradiation-
induced power in this work. Introducing Pirr into first law (8) satisfies the law of energy conservation

ė = 1

ρ

(
T · Ė + ξ φ̇

)− 1

ρ
∇ · q + stotal . (10)

Here, stotal = s + sirr where sirr represents the heat generated due to the neutron–atom and atom–atom
interactions as a result of irradiation. In this form, the change in internal energy results not only from the
mechanical work and heat exchange in the control volume but also from the work done in the creation of
irradiation defects. The corresponding Clausius–Duhem entropy inequality for Eq. (10) for positive entropy
production is

− �̇ − Ṫ η + 1

ρ

(
T · Ė + ξ φ̇

) − q
ρ T

· ∇T ≥ 0. (11)

Here, � = e− T η is the specific free energy, η is the specific entropy, and T is the absolute temperature.
Some defects, like point defects, do not contribute to material hardening, whereas others do. Although elimi-
nating any defect type dissipates energy, this work will focus on defects that contribute to material hardening.
The contribution to free energy from defects that do not affect hardening is removed from � and defined as
�irr, NH . For an isothermal process with uniform heat distribution, the inequality reduces to

− ρ �̇ + T · Ė + ( ξ φ̇ − ρ �̇irr, NH
) ≥ 0. (12)

Subtracting �̇irr, NH from the irradiation-induced power leaves us with the portion of power responsible for
hardening that is available for dissipation during plastic deformation. To determine the dissipating power term,
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Table 1 Conjugate pairs of variables

State variable Conjugate

Elastic strain Ee→Γ̂ e→Ae T → T̂ → S
Kinematic hardening α̂i→αi Ẑi→Zi
Isotropic softening ψi ri
Irradiation defect density Ni 𝓃i
Damage d Y

Table 2 Free energy functions

Elastic Ψe = 1
2ρ (1 − d) C

[
Γ̂ e

]
· Γ̂ e

Kinematic Ψ Kin
p = A(p)

2ρ α̂i · α̂i

Isotropic softening Ψ I so
p = 1

2ρ β
(
ψ2
2 − ψ2

1

)

Irradiation hardening Ψ I rr
p = 1

2ρ ϑ N 2
i

we propose the following relation that connects the irradiation-induced power to the irradiation hardening, σH
and neutron dose, φ through the term ϕ, which is proposed to be the tangent of the σH − φ curve

ξ φ̇ − ρ �̇irr, NH = ϕ φ̇, ϕ = dσH

dφ
. (13)

The revised entropy inequality,

− ρ �̇ + T · Ė + ϕ φ̇ ≥ 0, (14)

is used to determine the finite strain model’s constitutive relations and thermodynamic consistency criteria.

3.2 Thermodynamic formulation of finite strain model

The constitutive model is defined on R̂a to be invariant to rotations [22,23]. First, the strain tensor Γ̂ is
decomposed into its elastic and plastic components

Γ̂ = Γ̂ e + Γ̂ p. (15)

The Helmholtz free energy � of the irreversible solid system is defined as a function of a set of internal
state variables (ISV) which are chosen based on physically observed behavior as

� (t) = �̂
(
Γ̂ e, α̂i , ψi , Ni , d

)
. (16)

Table 1 lists the chosen set of ISVs and their conjugateswith respect to each configuration. Among these, the
irradiation defect-density, Ni , and its conjugate,𝓃i , are proposed to be included to account for the irradiation-
induced hardening. The elastic and plastic components of the free energy function are given in Table 2. Using
Eqs. (4) and (14), the entropy inequality at R̂a changes to

T̂ ·
Δ

Γ̂ +ϕ φ̇ − ρ �̇ ≥ 0. (17)

The partial derivatives of � with respect to its ISVs provide the following relations, resulting in the
decomposition of the entropy inequality into two parts, describing the elastic and inelastic material behavior
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T̂ = ρ
∂�e

∂Γ̂ e
, Ẑi = ρ

∂�Kin
p

∂α̂i
, ri = ρ

∂� I so
p

∂ψi
, ni = ρ

∂� I rr
p

∂Ni
, Y = ρ

∂�Dam
p

∂d
. (18)

The elastic behavior is determined from Eq. (17) using the first term in Eq. (18) and �e from Table 2. For
describing the inelastic deformation, an effective measure of stress, T̂/ψ(1 − d), is adopted in place of T̂,
considering the relaxation due to the isotropic softening and damage. Simplification of Eq. (17) leads to the
definition of the Mandel-type stress tensor,

P̂ =
(
I + 2Γ̂ e

)
T̂ (19)

which reduces to T̂ under the assumption that elastic deformation is minimal in finite strain plasticity, V̂e≈I,
Γ̂ e≈0 [23]. Using Eqs. (17), (18) and the free energy functions from Table 2, the plastic part of entropy
inequality (17) is obtained as

(
T̂

Ψ (1 − d)
− �̂i

)
· D̂ p +ϕφ̇ − ri ψ̇i − 𝓃i Ṅi

︸ ︷︷ ︸
I sotropic

+
(
(I + 2Φ̂) D̂ p − ˙̂αi

)
· Ẑi︸ ︷︷ ︸

Kinematic

− Y ḋ︸︷︷︸
Damage

≥ 0 (20)

where �̂i =
(
I + 2 Φ̂

)
Ẑi is a Mandel-type kinematic hardening tensor with Φ̂ being a strain-type tensor.

The viscoplastic yield potential� of themodel [24] is based on the over-stress tensor Σ̂ = T̂
D
/ψ(1−d)−�̂

with T̂
D = T̂ − tr

(
T̂
)
I being the deviatoric part of the stress tensor,

� = Σeq − σH − k (21)

where Σeq is the von Mises equivalent of Σ̂ , σH is the irradiation hardening variable, and k is the initial yield
stress of the unirradiated material. Applying the normality rule, we obtain the flow rule and the inelastic strain
rate

Δ

Γ̂ p = D̂ p = 3

2

〈
Σeq − σH − k

K

〉n Σ̂

Σeq
, (22)

ṗ =
√
2

3
D̂p · D̂p =

〈
Σeq − σH − k

K

〉n
(23)

where p is the accumulated plastic strain variable and n, K are the temperature-dependent viscous parameters.
The McAuley brackets, 〈 〉 operate as: 〈x〉 = x+|x |

2 . The kinematic hardening tensor should be handled with
the finite strain framework. Here, the Chaboche adoption of the nonlinear hardening rule by Armstrong and
Frederick [25] is used. Its relationship with its conjugate variable is obtained using Eq. (18) and �Kin

p from
Table 2 as

Ẑi = A (p) α̂i (24)

where A (p) = C a f (p) is a plasticity-dependent functionwithC anda as temperature-dependent parameters.
The thermodynamic consistency is achieved by deriving the following Oldroyd time derivative of Ẑ using the
kinematic part of the entropy inequality, which is discussed in appendix:

∇
Ẑ = C f (p)

{
a D̂p + 2 D̂p

(
Φ̂ − α̂i

)
− b ṗ Ẑ + a

∣∣∣Ẑ
∣∣∣
m−1

Ẑ
}

(25)

where b and m are further temperature-dependent material parameters. For small elastic deformations, the
assumption of Φ̂ = α̂ is made [23,26], which leads to a relationship similar to Armstrong-Frederick

∇
Ẑ = Hi D̂p − Qi ṗ Ẑ + R |Z|m−1 Z (26)
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by combining the parameters for simplicity. The isotropic softening variables, being scalar quantities, are not
affected by rotation. Therefore, they are described through the evolution of two independent variables that are
related to their conjugate variables using Eq. (18) and � I so

p (Table 2):

r1 = −β ψ1, r2 = β ψ2, (27)

with β being a positive-valued, temperature-dependent material parameter. With the consideration that the
isotropic softening variable is purely plasticity driven, the evolution equations of isotropic softening variables

ψ̇1 = −h ṗ,

ψ̇2 = c (ψs − ψ2) ṗ − rψ |ψ2 − ψr |mψ−1 (ψ2 − ψr ) (28)

are taken from [24]. Here, ψs = 1 − ψs,∞
(
1 − exp

(
−cs εineq,max

))
represents the increase of the cyclic

softening capacity corresponding to increasing inelastic strain, with εineq,max being the highest value of the von

Mises strain equivalent of D̂p during the load history and c, mψ, ψr , ψs,∞ and cs are temperature-dependent
material parameters. The irradiation behavior being isotropic is described by a scalar variable, defect density
Ni whose evolution for ‘i’ type of defects is given by the relation from [19]

Ṅi (φ, p) = ai
(
Ns,i − Ni

)
φ̇ − bi

(
Ni − Nl,i

)
ṗ − rN ,i N

qN ,i . (29)

Here, the first term describes the formation of defects, Ni due to an irradiation dose,φ, reaching a saturation
value of Ns,i . The second term describes the removal of the portion of defects given by the variable Nl,i . The
third term describes the healing of defects at high temperatures. The parameters ai , bi , rN ,i , qN ,i , Ns,i are
material and temperature dependent. In this work, the following relation is proposed between Nl,i and p to
better describe the influence of defect removal on stress–strain curve, with Nr,i and Ne being dimensionless,
temperature and material-dependent parameters

h2N ,i N l,i
=
〈
max
0<τ<t

√
h2N ,i N i (τ ) ·

(
1 − Nr,i

(
2 − e−Ne p

))〉2
. (30)

Finally, the irradiation hardening σH is obtained from Ni for nH defect types contributing to the irradiation-
induced hardening using the distributed barrier hardening (DBH) model [27]

σH =
nH∑
i

σH,i with σH,i =
√
h2N ,i N i . (31)

We assume that irradiation hardening is dominated by irradiation-induced dislocation loops. Therefore,
nH= 1 is a reasonable assumption [28,29]. The conjugate 𝓃 of N is got from Eq. (18) and � irr

p in Table 2.

𝓃 = γ N (32)

Here, 𝓃 has MPa as its unit, while N has a unit of mm−3.
The thermodynamic consistency conditions for the evolution of ψ1, ψ2 and N are determined from the

isotropic part of Clausius–Duhem entropy inequality (20), which is simplified using Eqs. (19), (22) and (23)
into

Σeq ṗ + ϕ φ̇ − ri ψ̇i − 𝓃 Ṅ ≥ 0. (33)

From Eq. (21), we obtain the relation Σeq ≥ σH + k. With Eqs. (13), (27), (28), (32) and (33), we deduce
the following consistency criteria needed to meet the entropy inequality when ṗ ≥ 0 and φ̇ ≥ 0. A detailed
derivation is provided in the Appendix.

1.

ψ1 = 0, ψ2 = 1 at t = 0 (34)

are the initial boundary conditions for the isotropic softening equations.
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2.

k − β [ψ1 + cψ2 (ψs − ψ2)] ≥ 0 → c ≥ k − β ψ1

β ψ2 (ψs − ψ2)
(35)

here,ψs ≤ ψ2 and this relation determines the condition to be fulfilled by the parameter c must fulfill.
3.

γr β ψ2 |ψ2 − ψr |mψ ≥ 0 ⇒ γr > 0, ψ2 > ψr ∵ β > 0, ψ2 > 0 (36)

suggests that ψ2 lies in the range [ψr , 1] (ψr ≤ ψ2 ≤ 1).
For the irradiated case, in addition to the above-discussed conditions we have the following conditions to

fulfill:

1.

d σH

d φ
− γ N · a (Ns − N ) ≥ 0 → a (Ns − N )

[
h

2
√
N

− γ N

]
≥ 0 (37)

a ≥ 0, Ns ≥ N , γ ≤ h

2 N
√
N

(38)

where a ≥ 0 is necessary for defect formation. Since γ is positive, the condition for the selection of the γ
is

2.

0 ≤ γ ≤ h

2 N
√
N

. (39)

σH + γ N · b (N − Nl ) ≥ 0 → b ≥ − σH

γ N (N − Nl)
(40)

Since only available defects can be cleared, Nl ≤ N . Experiments show that Nl is always lower than the
maximum possible hardening; thus, Nl < Ns . As a result, the right-hand side of the equation will always
be less than 0. Therefore, the required condition for the parameter is simply b ≥ 0.

3.

γ rN N
qN+1 ≥ 0 (41)

Since γ > 0, N ≥ 0, we obtain the condition that rN must always be positive, i.e., rN ≥ 0.
For themodel to be implemented inFEprograms, the evolution equations of tensor variables are transformed

to Ra using Eq. (3), while the equations of scalar variables remain unaltered. The Hookean hyperelasticity

equation,
Δ

T̂ = C :
Δ

Γ̂ e, is used to describe stress evolution and, on transformation to Ra , becomes

∇
S = R̂e

∇
T̂ R̂

T
e = ∂C

∂T
Ṫ :Ae + C:

[
D − Dp

]
(42)

where C is the elasticity tensor. For the isothermal process, the first term on the right side reduces to zero. The
transformation of Eq. (26) provides the evolution equation for the kinematic hardening variable

∇
Z = R̂e

∇
Ẑ R̂

T
e = Hi Dp − Qi ṗ Z + R |Z|m−1 Z. (43)

To integrate the model, a suitable integration algorithm is adopted and discussed in the next section.
The damage in irradiatedEurofer97 undermonotonic loading is primarily due to accelerated void nucleation

and coalescence. To describe this, a ductile damage law is the most suitable. Popular models [30,31] used
to model void coalescence are defined for rate-independent plasticity, which is in conjugation with damage-
induced softening and highly mesh dependent. The proposal of a ductile damage law is targeted in future
works, as an extension to the viscoplastic framework. Therefore, this paper does not examine thermodynamic
relations for ductile damage.
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3.3 Corotational integration algorithm

The stress response of deformation models must be incrementally objective, i.e., independent of finite-volume
rotations and only contain material response. Therefore, a corotational integration algorithm is required to
handle these finite rotations. The model is implemented in ABAQUS using the user subroutine UMAT [32].
Under theNLGEOMoption,ABAQUSuses the corotational algorithmofHughes andWinget [33] to determine
the relative rotation, QHW , and the strain increment, ΔεHW = Δt DHW , based on the constant deformation
rate, DHW , between the local material configurations at t0, the beginning and t1, the end of the increment. The
inputs provided by ABAQUS to UMAT include the Cauchy stress, S∗

0 = QHW S0 QT
HW , and the user state

variables (Ap, �i , p, �, N ) at t0. The user is required to provide S∗
1 = S∗

0 +C :ΔεHW, e at t1. Along with S∗
1,

the UMAT must return a consistent tangent modulus, CCT M for the faster convergence of Newton iterations
in the global system. Since the Hughes and Winget algorithm requires very small time increments to produce
reliable results, this work employs an alternative integration algorithm developed by [34] that offers a stable
and efficient computation of stress and state variables by proposing bar transformation of tensor variables and
takes advantage of the available QHW and ΔεHW . The Runge–Kutta explicit integration scheme of order 5 is
used to obtain results closest to the analytical solution within a specified tolerance.

First, the Oldroyd derivatives from Eqs. (42) and (43) are reformulated using Eqs. (2) and (6) to obtain the
objective Jaumann derivatives as used by ABAQUS

◦
S = DS + SD + C:

[
D − Dp

]
(44)

◦
Z = DZ + ZD + Hi Dp − Qi ṗ Z + R |Z|m−1 Z. (45)

Next, the following algorithm is used to integrate the developed model:

1. Initial stressS0 is obtained from S∗
0 and Q1, S0 = QT

1 S∗
0 Q1.

2. Deformation rate, D is calculated using D = ΔεHW /Δt .
3. The trial value of stress is calculated, S1, tr ial = S0 + C : ΔεHW
4. Integrate Eq. (29) to determine irradiation hardening σH .
5. The yield criterion, F = Σeq − k − σH ≥ 0, is used to check for material yield. In the absence of yield,

S1 = S1, tr ial is set and the state variables remain unchanged. The elastic tensor is passed as the CCT M .
6. If material yields, constitutive equations (23), (28), (29), (44) and (45) are integrated to obtain the results

S1, Ap,1, �i,1, p1, �i,1, N1 at t1. The consistent tangent modulus, CCT M= ∂σ/∂ε, is computed using the
constitutive equations from a numerical approximation procedure of [35].

7. The tensor variables are finally rotated forward to the configuration at t1: S∗
1 = QHW S1QT

HW , Z∗
i,1 =

QHW Zi,1QT
HW , A∗

p,1 = QHW Ap,1QT
HW . Using a simplified approach by [36], the consistent tangent

modulus is also rotated to t1: C
′
CT M = QHW QHW CCT M QT

HW QT
HW .

8. The results of stress S∗
1, internal state variablesAp,1, �i,1, p1, �i,1, N1 and tangent modulus C

′
CT M are

returned to ABAQUS as outputs of UMAT.

Using this implementation, simulations are performed to emulate the results of tensile test experiments.

4 Model application to experiments

Tensile tests were performed on unirradiated and irradiated specimens to calibrate themodel. Using the UMAT,
the tensile tests are simulated to assess the model’s capability to describe the post-yield and post-necking
behavior under large strains while also describing the reduction in the minimum cross-sectional area.

4.1 Tensile test experiment

Camera-monitored tensile tests were performed at SCK CEN as a part of the collaboration under the M4F
projects (European Horizon2020) on unirradiated and irradiated samples of Eurofer97 at 300 ◦C with a strain
rate of 0.2mm/min to assess the influence of neutron irradiation on the material’s tensile properties. Table 3
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Fig. 2 Geometry of the tensile specimen

Fig. 3 Engineering stress–strain curve of unirradiated and irradiated samples tested at Ttest = Tirr = 300 ◦C. The irradiation
conditions are given in the figure legend

lists the test parameters, which show that the test temperature is 300 ◦C. Figure2 shows the specimen’s geom-
etry. Figure3 shows the engineering stress–strain

(
σeng− εeng

)
relationships determined from experimental

load–displacement data. Compared to the unirradiated specimen, the irradiated specimen has a higher yield
stress, a brief strain hardening phase and a steep softening post the ultimate tensile strength (UTS). Fracture
strain decreases with irradiation dose, indicating embrittlement. Analyzing optical images recorded at discrete
deformation levels yields the mean true stress–strain relationships for unirradiated and 0.65 dpa irradiated
samples. The Bridgman correction [37] is applied to determine the true stress–strain. Figure 4 shows these
stress–strain relationships. The irradiated specimen’s true fracture strain is only slightly lower than that of
the unirradiated specimen, and its maximum Bridgman true stress is very close to that of the unirradiated
specimen. The irradiated specimen’s hardening modulus (∂σtrue/∂εtrue), on the other hand, is significantly
lower than that of the unirradiated specimen.

True stress–strain data is needed to calibrate the finite strain model. This is composed of the uni-axial
theoretical true stress

(
σT = σeng[1 + εeng]

)
and theoretical true strain

(
εT = ln

[
1 + εeng

])
up until necking

andBridgman corrected true stress–strain data after necking. Themodel stress can be decomposed intoσT /ψ =
k + σH + σvis + Z ,with σH = 0 for an unirradiated specimen and σvis = K

(
ε̇p
)1/n , the viscous stress. Since

Eurofer97 has low strain rate sensitivity, σvis = 1 MPa is assumed for the unirradiated specimen. From the
yield stress σy of the unirradiated specimen, the initial yield stress k is calculated. As the strain hardening of

Table 3 List of tests including testing parameters: irradiation dose and temperature, test temperature, and displacement rate

Sample name Irradiation temperature,
Tirr [◦C]

Irradiation dose
[dpa]

Test temperature,
Ttest [◦C]

Displacement
rate [mm/min]

C10 300 0 300 0.2
205 300 0.65 300 0.2
208 300 1.18 300 0.2
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Fig. 4 True stress, Bridgman corrected true stress plotted against true strain, along with horizontal and vertical error bars for the
a unirradiated sample and b irradiated sample

Table 4 Irradiation hardening (Tirr =300 ◦C) in irradiated specimen, measured at the end of the linear elastic regime (yield),
and at 0.2% strain

Dose (dpa) 0.65 1.18

σH (MPa) Yield 210.74 251
R0.2 154.58 238.5

Table 5 Material parameters of the finite strain model determined for Eurofer97 at 300 ◦C

Parameters Aktaa-Petersen (2011) Parameters This work

E 200000 k(MPa) 337.5
R (MPa1−m s−1) 8.2 × 10−36 nunirr 5.75
m 4.32 nirr 2.84
h 3.47 × 10−2 K (MPa s1/n) 28.238
c 1.81 H1 (MPa) 333933.75
rψ
(
s−1
)

7.6 × 10−28 Q1 2164.44
ψr 0.754 H2(MPa) 7538.73
mψ 1.0 Q2 125.83
ψs,∞ 0.293 H3(MPa) 529.99
cs 2764 Q3 0.577
b 51.025 a 0.1585
rX
(
MPa2(1−qx)/s

)
10−70 h

√
Ns(MPa) 554.7

qX 1.0 Nr 0.4243
Ne 1.46

the material is not affected by irradiation hardening [38], the parameters for kinematic hardening and isotropic
softening are calibrated using data from the unirradiated specimen. Since the isotropic softening parameters
are known [13], ψ can be calculated for the given plastic strain, allowing σT /ψ to be determined. Since the
loading is uniaxial andmonotonic, parameters Hi and Qi are curve-fitted using the estimated Z and the integral
form of the Armstrong-Frederick law

Z =
3∑
i

Zi =
3∑
i

Hi

Qi

(
1 − e−Qi p

)
.

Since the model’s viscous effects regulate the development of the neck, the viscous parameters K and n must
be computed iteratively for the model’s load–displacement result to match the experimental data. Due to the
low strain-rate dependence of the material, the parameters must be kept to a low value [39].

Next, the parameters related to the irradiation-induced material changes are determined. The irradiation
hardening, σH (shown in Table 4), was determined by comparing the R0.2 of both unirradiated and irradiated
samples. Based on the σH values obtained in this study and the saturation value (554MPa) at higher doses (>10
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Fig. 5 Axisymmetric model of one-fourth tensile specimen cross section with boundary conditions

dpa) from [19,40], the parameters a and h
√
Ns are fitted using the relation σH = h

√
Ns ( 1 − exp (−a φ))0.5

[19]. As the parameter b is known [19], Nr is obtained iteratively until the UTS predicted by the model
matches the experimental results. Since irradiated materials have lower strain rate sensitivity [41], K and n
are determined again iteratively. Table 5 shows the list of model parameters at 300 ◦C.

4.2 Numerical simulation of tensile test

To simulate the tensile tests, an axisymmetric model is chosen to take advantage of the specimen symmetry,
as illustrated in Fig. 5. The solid axisymmetric element type CAX4 with 4 nodes is chosen. To limit element
distortion, a fine mesh with an aspect ratio of 1:5 is utilized in locations where large deformation is expected.
The material parameters listed in Table 5 are utilized to simulate the model. A velocity displacement of
3.33×10−3 mm/s is applied on the top of the shoulder along the y-axis, as seen in Fig. 5. The σeng is calculated
from the load distribution on the loading edge, L=σloading edge×Ashoulder and the cross-sectional area of the
gauge A0. The engineering strain, εeng is obtained from the change in gauge length Δl0 and the initial gauge
length l0

σeng = L

A0
, εeng = Δl0

l0
. (46)

The mean true stress–strain is calculated using the minimum cross-sectional area at the neck, Amin

σtrue = L

Amin
, εtrue = ln

(
A0

Amin

)
(47)

Since the model cannot predict ductile damage, the results of the simulation up to the experimental fracture
strain are extracted and presented in the following discussions.

4.2.1 Unirradiated specimen

The simulated deformation of the unirradiated sample tested at 300 ◦C is shown in Fig. 6, including axial
displacement, radius reduction, and accumulated plastic strain. Figure7 compares the simulation’s stress–
strain relationship with experimental results. The post-yield strain hardening and flow softening after necking
are well represented. The predicted minimum neck diameter agrees with experimental results, allowing an
accurate prediction of mean true stress–strain. Figure8a shows the evolution of kinematic hardening, Z, using
three variables. While two variables are sufficient to describe deformation up to the UTS, a third variable is
required to describe material hardening until failure, as shown in the mean true stress–strain plot. Figure8b
shows the evolution of isotropic softening. Sincematerial softening is not detected duringmonotonous loading,
the suitably calibrated kinematic hardening compensates for the isotropic softening.

4.2.2 Irradiated specimen

The specimen irradiation to 0.65 dpa and 1.18 dpa at 300 ◦C followed by their tensile test at 300 ◦C is simulated.
Figure9 shows the deformation of the specimen (0.65 dpa), illustrating the neck development at the middle
of the gauge section. The same is observed from the simulation for 1.18 dpa. Figure9c shows the distribution
of defect density in the specimen after deformation, with no change in regions with no inelastic deformation
and a minimum in regions with severe inelastic deformation, as seen in Fig. 9b. The simulated engineering
stress–strain curves of both irradiated specimen are plotted in Figs. 10a and 11a, which compare extremely well
to the experimental curves. The predicted mean true stress–strain is compared with experimental results for an
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Fig. 6 Simulation results of the unirradiated sample with tension applied along the Y-axis: a deformed and undeformed body, b
axial displacement (mm), c radial displacement (mm) and d accumulated plastic strain

Fig. 7 Comparison of simulated tensile test results with experiment results of unirradiated sample at 300 ◦C: a engineering
stress–strain, b mean true stress–strain
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Fig. 8 Evolution of a effective kinematic hardening with an inset plot of the constituting variables, and b isotropic variables and
effective isotropic softening

irradiation of 0.65 dpa in Fig. 10b, confirming that the material hardening due to irradiation and the material
softening due to defect annihilation post-yield are well represented by the model. The kinematic hardening
and isotropic softening are the same as they are in the unirradiated case. The evolution of irradiation hardening
concerning defect nucleation during irradiation and defect annihilation during plastic deformation is shown in
Fig. 12. For φ = 0.65 dpa, a maximum hardening of 173 MPa is reached, and for φ = 1.18 dpa, a maximum
hardening of 229 MPa is attained. During the initial part of the load history, inelastic deformation removes a
portion of this hardening at an accelerated rate. When the annihilation reaches a threshold controlled by Nr , it
slows down to a steady rate until the end of the load history. In other words, at the experimentally established
fracture strain, residual irradiation-induced defects would still be present.

5 Discussion

Experiment and simulation results are used to draw conclusions about Eurofer97’s behavior in unirradiated
and irradiated states, with a focus on its deformation mechanism.

True stress–strain: Fig. 13 summarizes the true stress–strain predicted by the model at integration points
from the center of the neck where triaxiality and plastic deformation are highest, demonstrating the influence of
irradiation defect removal on hardeningmodulus under inelastic deformation. The small hill-like response near
theUTS is due to the combination of strain hardening and irradiation hardening reduction. Experiments [38,42]
and simulations of micromechanical models [9,10,43] confirm these phenomena in irradiated specimens.

Minimum diameter prediction: The predicted mean true stress–strain plots compared against experimental
results in Figs. 7, 10 and 11 indicate that reduction in gauge radius is predicted accurately. Figure14 compares
true strain to engineering strain to examine neck development in unirradiated and irradiated specimens. The
absence of runaway behavior indicates that neck development is diffused in nature. In irradiated samples, the
neck develops significantly earlier, and the rate of gauge diameter reduction increases proportionally with
irradiation dose, resulting in higher local strain rates at smaller total elongations.

Triaxiality: Due to a concentration of inelastic deformation and defect removal, triaxiality is greatest
near the neck. Figure15 demonstrates that the presence of irradiation defects has a substantial impact on
the triaxiality evolution in the neck. Future research will investigate the role of irradiation-induced material
changes in reducing material ductility, given that ductile damage is among others triaxiality-driven.

Irradiation hardening: The projected irradiation hardening prior to plastic deformation exhibits some scat-
tering when compared to the experimental results (Fig. 12). Due to the complexity of the defect type and
population formed at low doses, irradiation hardening is extremely nonlinear at low irradiation doses, resulting
in significant experimental scatter [44,45]. As irradiation hardening saturates (~554MPa) at higher doses (>10
dpa) [19,40], themodel predictions will bemore consistent with experiments performed on specimens exposed
to higher irradiation doses.

Strain rate sensitivity: Viscosity controls neck development and stress–strain curves. When the Considère
instability criterion ismet, local strain rate and viscous stress increase, affecting the progression of the instability
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Fig. 9 Tensile test simulation of the irradiated sample (0.65 dpa, Tirr = Ttest = 300 ◦C) loaded along y-axis: a gauge radius
reduction (mm), b accumulated plastic strain, c defect density distribution (MPa2) and d) irradiation hardening distribution (MPa)

Fig. 10 Tensile test simulation results of specimen irradiated to 0.65 dpa at 300 ◦C, a engineering stress–strain, b mean true
stress–strain



538 R. R. Rajakrishnan et al.

Fig. 11 Tensile test simulation results of specimen irradiated to 1.18 dpa at 300 ◦C: a engineering stress–strain, b mean true
stress–strain

Fig. 12 Evolution of irradiation hardening with a defect nucleation during irradiation compared with experimental results and b
defect annihilation during plastic deformation

Fig. 13 Comparison of stress with respect to plastic strain at each integration point in unirradiated and irradiated materials
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Fig. 14 Development of mean true strain with respect to engineering strain

Fig. 15 Triaxiality development at the necking region with defect removal under inelastic deformation with respect to a accumu-
lated plastic strain and b irradiation hardening

and the formation of the neck. Overestimating viscous stress delays the neck development and overestimates
the total elongation for the same minimum gauge diameter. Because Eurofer97 has a low strain rate sensitivity,
[39] suggests maintaining low values for the viscous parameters n and K . Optimized parameters allow for the
emergence of instabilities and the formation of a diffused and localized neck.

Corotational system: By using corotational formulation and integration, the engineering stress–strain curve
relaxes significantly in the later load history when the neck elements undergo finite rotations.

Performance: The model was integrated using an explicit algorithm that limited time increments. Smaller
time steps restrict plastic strain increments, ensuring system stability and convergence while achieving a
solution close to the analytical solution.

Damage: The presented model is lacking the component that describes the ductile damage mechanism,
which would aid in predicting the specimen’s fracture. In addition, the damage model will help us to determine
the effect of irradiation on triaxiality and, consequently, the fracture prediction.

6 Conclusion

Afinite strain framework is established in order to develop amodel for describing the time-dependent plasticity
and damage in the irradiated material.

The proposed inclusion of irradiation-related power term in the law of energy conservation, which is
based on the introduction of instantaneous defect density as an internal state variable of the material’s free
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energy, accounts for the energy exchange arising from the nucleation and annihilation of irradiation defects.
The resulting equation of the modified-entropy inequality is used to derive the finite strain formulation of
an existing deformation model. The conditions necessary to fulfill the thermodynamic consistency criteria
are presented. The model is implemented in the ABAQUS finite element code to simulate tensile tests on
unirradiated and irradiated specimens at elevated temperatures. The post-yield and post-necking behavior
is well captured by the engineering stress–strain and true stress–strain curves produced from the simulation
results. The role of viscosity effects on diffuse and localized neck formation is found to be a crucial component.
Since the model does not yet include the part describing ductile damage, it shall be considered in subsequent
works by coupling the model with a suitable damage model for void nucleation and coalescence caused by
viscoplastic deformation.
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7 Appendix

7.1 Thermodynamics

The balance of entropy in its local form is:

η̇ = stotal
θ

− 1

ρ
∇ · q

T
+ γ. (48)

Using the specific entropy, η, the absolute temperature T , and the specific free energy relation � = e − T η,
modified first law Eq. (10) can be rewritten for the specific rate of entropy production, γ as

θ γ = −�̇ − Ṫη + 1

ρ

(
T · Ė + ξ φ̇

)− q
ρ T

· ∇T . (49)

With the positive entropy production according to the second law of thermodynamics, i.e., γ ≥ 0, we have the
following modified form of Clausius–Duhem entropy inequality

− �̇ − Ṫ η + 1

ρ

(
T · Ė + ξ φ̇

) − q
ρ T

· ∇T ≥ 0. (50)

7.2 Kinematic hardening

�Kin
p (t) = A (p)

2ρR
α̂i · α̂i (51)

Ẑi = ρR
∂�

∂α̂i
= A (p) α̂i (52)

http://creativecommons.org/licenses/by/4.0/
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Kinematic part of entropy inequality (20) using the Oldroyd derivative from Eq. (7):

⎛
⎜⎝D̂p −

(
Ẑ
)∇

A (p)
+ 2 D̂p

(
Φ̂− α̂i

)
⎞
⎟⎠ · Ẑi ≥ 0 (53)

D̂p−
(
Ẑ
)∇

A (p)
+2 D̂p

(
Φ̂ − α̂i

)
= κp Ẑi (54)

Choosing A (p) = C a f (p) and κp = b
a ṗ +

∣∣∣Ẑ
∣∣∣
m−1 ≥ 0.

(
Ẑ
)∇ = C f (p)

{
aD̂p + 2 D̂p

(
Φ̂ − α̂i

)
− b ṗ Ẑ + a

∣∣∣Ẑ
∣∣∣
m−1

Ẑ
}

(55)

7.3 Isotropic softening and irradiation defect density

� iso (t) = 1

2ρR
β
(
ψ2
2 − ψ2

1

) + 1

2ρ
· γ N 2 (56)

Here β is a positive definite material parameter.

r1 = ρR
∂� iso

∂ψ1
= − β ψ1, r2 = ρR

∂� iso

∂ψ2
= β ψ2 (57)

𝓃 = ρR
∂� iso

∂N
= γ N (58)

Substituting the above in the isotropic part of the entropy inequality from Eq. (20)

ṗ (k + σH ) + dσH

dφ
φ̇ − β ψ1 h ṗ − β ψ2

[
c (ψs − ψ2) ṗ − rψ

(ψ2 − ψr )] − γ N
[
a (Ns − N ) φ̇ − b (N − Nl) ṗ − rN N

qN
] ≥ 0 (59)

ṗ [k − ψ1β h − cψ2 β (ψs − ψ2)] + β ψ2 rψ (ψ2 − ψr ) + ṗ
[
σH + γ N · b (N − Nl )

]

+φ̇

(
dσH

dφ
− γ N · a (Ns − N )

)
+ γ rN N

qN+1 ≥ 0 (60)

The term dσH/dφ is determined as follows

σH = h
√
N → dσH

dφ
= h

2
√
N

dN

dφ
(61)

N (φ, p) → Ṅ = dN

dφ
φ̇ + dN

dp
ṗ (62)

Comparing with Ṅ evolution equation (29), we have

dN

dφ
= a (Ns − N ) ,

dN

dp
= −b (N − Nl) (63)

dσH

dφ
= h

2
√
N

a (Ns − N ) (64)
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