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Macrocell Path Loss Prediction Using Artificial

Neural Networks
Erik Östlin, Member, IEEE, Hans-Jürgen Zepernick, Member, IEEE, and Hajime Suzuki, Member, IEEE

Abstract— This paper presents and evaluates artificial neural
network models used for macrocell path loss prediction. Mea-
surement data obtained by utilising the IS-95 pilot signal from a
commercial code division multiple access mobile network in rural
Australia is used to train and evaluate the models. A simple neu-
ron model and feed-forward networks with different number of
hidden layers and neurons are evaluated regarding their training
time, prediction accuracy, and generalisation properties. Also,
different backpropagation training algorithms, such as gradient
descent and Levenberg–Marquardt, are evaluated. The artificial
neural network inputs are chosen to be distance to base station,
parameters easily obtained from terrain path profiles, land usage
and vegetation type and density near the receiving antenna. The
path loss prediction results obtained by using the artificial neural
network models are evaluated against different versions of the
semi-terrain based propagation model Recommendation ITU-R
P.1546 and the Okumura–Hata model. The statistical analysis
shows that a non-complex artificial neural network model per-
forms very well compared to traditional propagation models in
regards to prediction accuracy, complexity and prediction time.
The average ANN prediction results were: 1) maximum error:
22 dB, 2) mean error: 0 dB and 3) standard deviation: 7 dB. A
multi-layered feed-forward network trained using the standard
backpropagation algorithm was compared with a neuron model
trained using the Levenberg–Marquardt algorithm. It was found
that the training time decreases from 150, 000 to 10 iterations
whilst the prediction accuracy is maintained.

Index Terms— Path loss prediction, point-to-area, field strength
measurements, artificial neural network, feed-forward network,
backpropagation, Recommendation ITU-R P.1546, Okumura–
Hata model.

I. INTRODUCTION

A successful roll-out of a cellular mobile radio system

depends largely on a well planned and designed cellular

structure. For every type of radio access technology, the

cellular design has to be supported by the physical layer [1].

Thus, reliable and accurate models are crucial to predict radio

channel characteristics for where the cellular mobile radio

system is to be deployed. In particular, large-scale fading

Manuscript received September, 2009; revised March, 2010. This paper
was presented in part at the 60th IEEE Vehicular Technology Conference, Los
Angeles, CA, USA, September 2004. The review of this paper was coordinated
by Prof. T. Kürner.

Copyright c©2010 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org.
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characteristics have to be predicted reliably to enable the use

of base stations (BS) with optimised characteristics, such as

position, height, transmitted power, and antenna pattern.

Traditionally, path loss prediction models have been based

on empirical and/or deterministic methods. Empirical models,

such as Bullington, Longley–Rice, Okumura, and Okumura–

Hata models [2] are computationally efficient, but may not be

very accurate since they do not explicitly account for specific

propagation phenomena. On the other hand, deterministic

models, such as those based on the geometrical theory of

diffraction [3], integral equation [4], and parabolic equa-

tion [5], can, depending on topographic database resolution

and accuracy, be very accurate, but lack in computational

efficiency. Therefore, artificial neural networks (ANNs) have

been proposed in order to obtain prediction models that are

more accurate than standard empirical models whilst being

more computationally efficient than deterministic models. In

recent years, ANNs have been shown to successfully perform

path loss predictions in rural [6], suburban [7], urban [8] and

indoor [9] environments.

An ANN prediction model can be trained to perform well

in environments similar to where the training data is col-

lected. Therefore, to obtain an ANN model that is accurate

and generalises well, measurement data from many different

environments should be used in the training process. The

performance will also strongly depend on the chosen input

parameters. Commonly, the well-known feed-forward structure

is used together with the backpropagation training method-

ology incorporating the standard gradient descent algorithm.

A drawback with multi-layered feed-forward networks that

contain numerous neurons in each layer is the required training

time [10]. Also, an overly complex ANN network may lead

to data overfitting and hence generalisation problems [11].

Often in the literature, the utilised feed-forward networks

seem to be unnecessarily complex (e.g., three hidden layers

and numerous neurons), or sometimes the network size is

not even mentioned at all. Therefore, in this work, different

sized ANNs are trained by using different backpropagation

training algorithms, such as gradient descent and Levenberg–

Marquardt. Also, different training data selection strategies are

incorporated to investigate what ANN complexity is needed

to achieve high prediction accuracy whilst maintaining good

generalisation properties. The goal is to obtain an ANN

that is not overly complex, but still generalises well and is

accurate enough for the application of cellular mobile radio

network planning. For this purpose, propagation measurements

obtained by utilising the IS-95 [12] pilot signal of a commer-

cial code division multiple access (CDMA) mobile telephone
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network in rural Western Australia are used to train the

ANN radio wave path loss prediction models. This extensive

collection of measurement data has previously been used to

evaluate and propose modifications to the Recommendation

ITU-R P.1546 [13]. One general finding is that a non-complex

ANN, such as the neuron model, or a feed-forward network

with one hidden layer and only a few neurons, will likely

provide sufficient path loss prediction accuracy for a typical

rural macrocell radio network planning scenario. Also, when

training these ANNs using an efficient training method, such

as the Levenberg–Marquardt algorithm, the required number

of iterations in the training process may be reduced from

approximately 150, 000 to 10, which corresponds to reducing

the training time from many hours to a few seconds. Therefore,

when incorporating large amounts of training data, the training

process will be much more efficient. It was also observed

in the statistical analysis that feed-forward networks with

several hidden layers and numerous neurons may lead to

inferior generalisation properties compared to the less complex

structures. This common phenomenon is most often caused

by overtraining; i.e., the model performs very well on data

that is similar to the training data, but is not flexible enough

to favorably adapt to data different from the training data.

Therefore, the impact on prediction accuracy and generalisa-

tion properties due to additional hidden layers and neurons

was also investigated.

Our main contributions are summarised as follows:

Different sized feed-forward networks and training algorithms

were evaluated regarding prediction accuracy, generalisation

properties, and training time. The aim was to investigate the

need for multi-layered feed-forward networks and if more

efficient training methods, such as the Levenberg–Marquardt

algorithm, can be utilised to reduce the training time without

introducing any negative effects on the path loss prediction

results. Compared to [14], this paper presents prediction

results for an extended number of measurement routes, which

greatly aided the evaluation of different ANN’s generalisation

properties. Further, both early stopping (ES) and Bayesian

regularisation (BR) were incorporated and compared with

regards to training time, prediction accuracy and generalisation

properties. In addition to our previous work, the created

ANN models also include land usage and vegetation input

parameters that enable a fairer comparison with Model A [13],

which includes some proposed modifications to the Recom-

mendation ITU-R P.1546. Finally, all prediction results in this

paper can be directly compared to our previous published

Recommendation ITU-R P.1546, Model A, and Okumura–

Hata prediction results [13].

The paper is organised as follows: Section II contains

relevant ANN background information, such as the neuron

model, feed-forward network, backpropagation, Levenberg–

Marquardt algorithm, and methods to improve the ANN gener-

alisation properties. In Section III, the measurement procedure

and equipment are introduced. In Section IV, the ANN’s input

parameters in relation to the problem setting of path loss

prediction for macrocell scenarios are provided. Sections V

and VI contain the statistical analysis metric definitions and the

ANN training and evaluation, respectively. Finally, conclusions

and future work are presented in Section VII.

II. ARTIFICIAL NEURAL NETWORK

The ANN task is to find the best functional fit for a specified

set of input-output pairs and also interpolate and extrapolate

for unknown data sets. In this work, the application of ANNs

for radio wave path loss predictions can be compared to

an approximation of a mathematical mildly non-linear noisy

function (measurement data) given at a number of points

(training set). To satisfactorily be able to predict the path loss

for different propagation scenarios, some type of regression

that minimises both the training error and the error of unknown

inputs has to be performed. The motivation for this work

was to find the most suitable feed-forward structure for the

application of path loss prediction utilising the measurement

data collected in rural Australia and the chosen input param-

eters. First, the importance of the feed-forward network size

was investigated regarding prediction accuracy and generali-

sation properties. Second, the training algorithm selection was

investigated with regards to training time; i.e., maintaining

the prediction accuracy and generalisation properties whilst

minimising the training time. In the sequel, the neuron model,

feed-forward network, training, and generalisation methods are

introduced and described.

A. Neuron Model

Fig. 1 shows a simple neuron model. The neuron is pre-

sented with an input signal

x =
[

x1 x2 . . . xn 1
]T

(1)

and accordingly produces an output value

u = w
T

x (2)

where (·)T denotes the transpose and the neuron weights, w,

are defined as

w =
[

w1 w2 . . . wn θ
]T

. (3)

Also, to provide the possibility to shift the activation function,

f(·), to the left or right, an additional scalar bias parameter, θ,

is added to the weights. The activation function is called the

non-linearity of the neuron model and can be any differentiable

function. For this work, the activation function has been

�
f(u)

w1

u y

x1

x2

xn

.

.

.

+

e

t

–

1

w2

wn✁
Fig. 1. The neuron model.
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chosen to be the commonly used hyperbolic tangent sigmoid

transfer function [15], which is defined as

f(u) =
1 − expu

1 + expu
(4)

and compresses the output into the range −1 to 1. As can

be seen in Fig. 1, the neuron output error, e, is calculated by

subtracting the sigmoid output, f(u), from the target value, t,

as

e = t − y. (5)

The neuron model’s objective is to minimise the output error,

e, according to some optimisation criteria; for example min-

imising the sum of the squared errors. In this paper, t and

y represent the target path loss value and the corresponding

output path loss value obtained in the training process, respec-

tively.

B. Feed-Forward Network

The neuron model can be extended to a feed-forward

network that incorporates several hidden layers, where each

layer has a different number of neurons and weights [15].

Fig. 2 illustrates the network architecture for a three-layer

feed-forward ANN. The multi-layered feed-forward vectors

and weights are defined in the same manner as for the neuron

model. The first hidden layer, second hidden layer, and the

output layer have n1, n2 and n3 neurons, respectively, and the

weight vectors, w
[1], w

[2] and w
[3] all include a bias term,

θ. The feed-forward network notation is ANNn0−n1−...−nk
,

where n0, n1 and nk represent the number of inputs, number

of neurons in the first hidden layer and the number of neurons

in the output layer, respectively. As can be seen in Fig. 2, the

ith activation function in the jth hidden layer is shown as f
[j]
i

and o
[j]
i denotes the output from the ith neuron in the jth layer.

The number of inputs, hidden layers and neurons is chosen

so that the model can provide an accurate approximation

of the given problem. Usually, there is a trade-off between

capturing the complexity of the underlying function given by

the training data and the model’s ability to generalise to new

inputs [16]. This behaviour was sometimes observed in the

training process and requires careful training data selection

when the use of feed-forward networks with several layers

and neurons is considered.

C. ANN Training

The training set should be representative of the problem the

ANN is designed to solve. A properly trained ANN should

be able to recognise whether a new input vector is similar

to learned patterns and produce a similar result. Also, when

new unknown input parameters are presented to the ANN, it

is expected to give an output using interpolation; and also

extrapolation if the input vectors exceed the parameter space

used in the training process. For the multiple-input single-

output (MISO) path loss prediction ANN model, a supervised

training process is incorporated [15]. The Q input-output

training pairs are chosen randomly from the measurement data

and are defined as

{p1, t1}, {p2, t2}, . . . , {pQ, tQ} (6)

where pq is an input vector and tq is the corresponding

output. In the work reported here, we consider three different

training approaches, which reveal prediction accuracy and

generalisation properties of the ANNs (see Section IV). The

ANN weights, w, are found by minimising the mean squared

errors

MSE =
1

Q

Q
∑

q=1

e(q)2. (7)

In this paper, the well-known backpropagation (gradient

descent) algorithm has been used as a benchmark to train the

ANNs [17]. To give a considerable reduction in training time,

other much faster training methods, such as the Levenberg–

Marquardt algorithm [18], have also been utilised. In the su-

pervised training process, the training algorithms were updated

in batch mode, i.e., the ANN weights are renewed after a

complete training set has been presented to the ANN [15].

Note that all input-output data pairs used in the training

process are removed in the model evaluation.

The two following paragraphs introduce the gradient descent

and Levenberg–Marquardt backpropagation algorithms.

Backpropagation and Gradient Descent: The standard im-

plementation of backpropagation learning updates (i.e., ANN

weights and biases) is to base the updates on the direction of

the steepest negative gradient descent. This is written in the

form

wk+1 = wk − αk gk (8)

where wk contains the current weights and biases at the kth

iteration. The parameter αk denotes the learning rate (constant)

and gk represents the current gradient vector. Some other

common algorithms that incorporate additional methods to

enable for faster convergence can be found in e.g., [19].

Levenberg–Marquardt Algorithm: The Newton algorithm

is often used to obtain fast optimisation characteristics. The

weight update can be expressed as

wk+1 = wk − A−1
k gk (9)

where Ak is the Hessian matrix [20] (second-order derivatives)

of the performance index consisting of current weights and

biases. Unfortunately, it is very complex and computationally

expensive to calculate the Hessian matrix for a feed-forward

network. An approach based on the quasi-Newton method is

to compute, based on the local gradient, an approximative

Hessian matrix at each algorithm iteration. The Levenberg–

Marquardt method approaches second-order behaviour without

the need to calculate or approximate the Hessian matrix as in

Newton and quasi-Newton algorithms, respectively [20]. For

example, when training a feed-forward network, the Hessian

matrix can be approximated using the Jacobian matrix, J,

as [20]

H = JT J. (10)
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Fig. 2. Three-layer feed-forward artificial neural network.

The gradient, g, is then expressed as

g = JT e (11)

where e is a vector that contains the network errors. The Jaco-

bian matrix contains only first order derivatives, with respect

to weights and biases, and can hence be calculated using the

standard backpropagation technique [18]. This approach is less

complex and more computationally efficient than computing

or approximating the Hessian matrix. The Newton-like weight

update can now be expressed as

wk+1 = wk − [JT J + µI]−1 JT e (12)

where µ is an adaptive parameter that is decreased if the

performance function is decreasing and increased if the per-

formance function is increasing. The parameter I denotes the

identity matrix. For large µ-values, the Levenberg–Marquardt

algorithm becomes the gradient descent algorithm (small

step size). When µ is 0, the weight update method ap-

proximates the Newton method, which is faster and more

accurate near an error minima [11]. The aim is therefore to

shift towards the approximate Newton algorithm as soon as

possible. The Levenberg–Marquardt algorithm is designed for

training moderate-sized feed-forward neural networks, with

less than a hundred weights, and least squares problems that

are approximately linear [11]. Hence, the algorithm is well

suited for the task of training an ANN path loss model. The

Levenberg–Marquardt algorithm has been reported to train

ANNs at a rate of 10 to 100 times faster (depending on the

problem) than the standard gradient descent backpropagation

algorithm [11], [18]. In Section VI, it is observed that the

Levenberg-Marquardt algorithm is about 1, 000 times faster

than the standard backpropagation algorithm, which poten-

tially enables for a substantionally larger amount of training

data to be incorporated in the training process.

D. Generalisation

For the purpose of achieving improved generalisation prop-

erties, both ES [15] and BR [21], [22] have been evaluated

utilising the available measurement data. In this work, ES

was incorporated with the gradient descent algorithm to serve

as the benchmark method. When trying to minimise the

required training time whilst maintaining the ANN’s gen-

eralisation characteristics, both ES and BR were used with

the Levenberg–Marquardt algorithm [11], [23]. In order to

support the understanding of how to improve the generalisation

properties of ANN-based path loss prediction models, the

next two paragraphs explain the ES and BR methodologies,

respectively.

Early Stopping: To utilise ES, the measurement data [13],

[14], [24] is divided into three subsets (training, validation,

and evaluation) where the training set is used for computing

the gradient and the ANN weights. The errors obtained from

the validation set are monitored during the training. In this

work, the number of input-output data pairs in the validation

set is chosen to be 20% of the full training set [25]. When the

network is starting to overfit the data from the training set, the

errors obtained from the validation set usually start to increase.

When the validation error has increased for a specified number

of iterations the training stops and the weights and biases at

the minimum of the validation error is returned.

Bayesian Regularisation: In BR, a modified linear com-

bination of squared errors and weights are minimised, so

that at the end of training the resulting ANN provides good

generalisation properties [21]–[23]. The method of BR does

not require a validation data set and therefore only requires

two data sets (training and evaluation). Hence, all training

data can be directly used in the training process, which is

preferable if only small amounts of training data is available.

One drawback is that BR in general requires more iterations

than ES to converge [11].

III. MEASUREMENT PROCEDURE

The work presented in this paper utilises mobile radio

wave propagation measurements at a carrier frequency of

881.52MHz that originate from two measurement campaigns
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Fig. 3. Digital elevation map, 9 second resolution, used for the ANN path loss models. The measurement data originates from 19 routes and three BSs with
omni-directional antenna characteristics in rural Western Australia [13]. From left to right the BSs Beverley, Quairading, and Corrigin are marked with a dot
and A, B, and C, respectively.

performed in rural Western Australia in June 2003 [24] and

May 2004 [14] for the training and evaluation of different

ANN models. The measurements were conducted using a

CDMA pilot scanner, which was developed and built col-

laboratively by the Commonwealth Scientific and Industrial

Research Organisation (CSIRO) and the Australian Telecom-

munications Cooperative Research Centre (ATcrc). For the

purpose of mobile measurements, the measurement system

also includes a global positioning system (GPS) receiver

and an omni-directional receiving antenna, which during the

measurements were placed on the roof of a car at a height

of approximately 1.7 m above ground. Without considering

the influence of the roof of the car, the antenna’s half

power beamwidth was measured to be close to 80 degrees.

The measurement system was controlled by custom software

running on a laptop, which also logged all measurement

data. The collected drive test data (nineteen routes) originates

from three omni-directional BSs with macrocell characteristics

[Beverley (A), Quairading (B) and Corrigin (C)] and covers

more than 400 km of different rural terrain with different signal

distribution. The measurement tracks from the area of interest

plotted on a digital elevation map (DEM) together with BS

positions and altitude shown in metres, can be seen in Fig. 3.

At the time of the measurements, the heights for the three BSs

(A, B and C) were 30.5, 45, and 35 m, respectively. Note also

that the maximum antenna separation distance was 24 km and

data originating from antenna separation distances less than

1 km was not analysed. Hence, all measurements presented in

this paper are considered to be performed in the far-field. The

correlation peak of the received pilot signal was sampled at

600 Hz. Typically, in these rural areas mostly only one pilot

signal was received at the same time, hence limiting the effect

of inter-cell interference. The BS positions were given by the

register of radiocommunications licences held at the Australian

Communications and Media Authority (ACMA). The BSs’

transmitted pilot power, antenna height, and antenna pattern

(omni-directional) were provided by Telstra Wireless Access

Services in Perth. Where possible, the BS transmitted power

was verified by line-of-sight (LOS) measurements near the BS.

The region from where the presented measurement re-

sults were obtained can be classified as open farmland with

occasional large tree branches overhead (B and C). The

measurement data originating from BS A is from a region

with more vegetation and trees surrounding the receiving

antenna. The roughness of the terrain in the three regions

was estimated by the standard deviation of the terrain heights

along the terrain path profile for every measurement position.

The averaged value for each BS is as follows: Beverley (A):

10.9 m, Quairading (B): 14.1 m, and Corrigin (C): 16.5 m. It

should be noted that in the measurements originating from BS

B, the presence of a large built-up area including a huge grain-

storage facility (> 15 m height) has a noticable impact on the

measurements.

To be directly comparable to our previous journal paper [13]

that compares different versions of the Recommendation ITU-

R P.1546 model [26]–[28], the local average received powers

used to train and evaluate the ANN models are computed by

averaging signal measurements over a measurement track of

300 wavelengths, which corresponds to approximately 100 m.

Note that all measurement path loss results shown in Figs. 4–8

are averaged results.

IV. TRAINING AND PREDICTION PARAMETERS

In rural macrocell environments, path loss depends strongly

on transmitting and receiving antenna separation distance,

antenna heights, the terrain between the antennas, and the

clutter surrounding the receiving antenna. In this work, the

ANN inputs are chosen to be antenna separation distance,

transmitting/base antenna height [26], terrain clearance an-
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gle [26], terrain usage, vegetation type, and vegetation density

near the receiving antenna [13].

The terrain parameters are derived using a DEM with

a 9 second resolution grid (approximately 250 m) supplied

by Geoscience Australia (see Fig. 3). For an efficient ANN

implementation, all input parameters are normalised to fall in

the range between −1 and 1.

The following paragraphs, provide the ANN input parameter

definitions in order of importance for the path loss prediction

accuracy. More detailed descriptions of the input parameters

can be found in [13].

Transmitting/Base Antenna Height, h1: The h1 definition

used in the ANN models is based on the definition of effective

antenna height as in the Okumura model [29] and calculated

as in the Recommendation ITU-R P.1546 [26]. Additional dis-

cussions regarding different transmitting/base antenna height

definitions can be found in [13].

Terrain Clearance Angle: For land paths, a terrain clearance

angle (TCA) correction may be added to increase the predic-

tion accuracy enabling obstacles close to the receiver site to be

taken into account. The TCA is based on the angles relative

to the horizontal between a line connecting the transmitting

and receiving antennas and a line at the receiving antenna

which clears all the terrain obstructions over a distance of up

to 16 km, but not going beyond the base antenna [26].

Land Usage and Vegetation Information: To further enhance

the ANN prediction accuracy, land usage, and vegetation

information may be incorporated in the ANN models. In [13],

it was noted that the measured field strength is typically

attenuated due to buildings near the BS (i.e., the receiving an-

tenna is located below surrounding clutter height). Information

regarding land usage (rural and built-up areas) was obtained

from inspecting satellite photos and notes made during the

measurement campaigns.

1) Vegetation Type: The vegetation type (VT) data used in

the ANN analysis was provided by the Department of Agri-

culture, Western Australia. The data-set contains information

on two levels, namely land-use data and vegetation type (e.g.,

medium woodland, York gum). In the rural area where the

measurements were performed, 10 different vegetation types

were identified [13]. For simplicity, these vegetation types

were divided into three groups corresponding to woodland,

shrublands and no vegetation. The data extracted from the

vegetation type database corresponds to the most occurring

vegetation type within a 100 m by 100 m area, which is

typically only one type.

2) Vegetation Density: The vegetation density data used

in the analysis was provided by the CSIRO Mathematical

and Information Sciences, and Land Monitor Western Aus-

tralia. The perennial crown density information is given on

an accurate 25 m grid and is represented by a scalar value

ranging from 0% to 100% corresponding to no vegetation

and dense vegetation, respectively. The crown density metric

corresponds to the estimated percentage of land covered by

the tree crown [30]. The vegetation density near the receiver

(VDN) corresponds to the average vegetation density within a

100 m by 100 m area surrounding the receiver.

V. STATISTICAL ANALYSIS METRICS

First order statistics, correlation factor, and average total hit

rate error have been used to evaluate the results. Predicted and

measured values are denoted pi and mi, respectively, and are

given on a logarithmic [dB] scale. The prediction error, ǫi, is

expressed as

ǫi = pi − mi, i = 1, 2, . . . , N (13)

where N is the number of samples corresponding to

300 wavelengths as described in Section III. The maximum

prediction error, the mean prediction error, and the error

standard deviation are denoted ǫmax [dB], ǭ [dB] and σǫ [dB],
respectively.

The correlation coefficient is denoted rǫ and provides a

measure of the degree of linear relationship between measured,

mi, and predicted, pi, values.

As a complement to the first order statistics and the correla-

tion factor, the prediction accuracy is also quantified using the

average total hit rate error (AHRE [%]) as introduced in [24].

This single value metric is derived from the total hit rate (THR)

curve described in [31]. The location specific THR curve is

used as a direct indication of the quality of the prediction

model. Given a path loss threshold, LT , if both predicted and

measured path loss values are greater, less, or equal to LT , the

prediction is regarded as correct irrespective to the deviation

of the predicted from the measured value. The AHRE is the

mean deviation from 100% THR and is expressed as

AHRE =
1

NLT

LT,max
∑

LT =LT,min

100%− THR(LT ) (14)

where LT is the path loss threshold and NLT
is the number of

THR points. The thresholds, LT,min and LT,max, are chosen

so that AHRE may be interpreted as the area between the

THR curve and 100%. The method is useful in assessing the

validity of a model where coverage is determined simply by

a threshold value. A small AHRE value indicates a good fit

between predicted and estimated value.

VI. TRAINING AND EVALUATION

In this section, different ANNs are evaluated using the

measurement data introduced in Section III. Conveniently, the

prediction evaluations in this paper can be directly compared

with previously published results [13]. For easy compari-

son, Table I presents the results overview for the proposed

Model A, which among other things addressed a shortcoming

of the effective antenna height definition in the Recommen-

dation ITU-R P.1546, and the well-known Okumura–Hata

rural model. The statistical analysis average results show that

Model A’s predictions are more accurate compared to the

predictions provided by the OH rural model for all statistical

analysis metrics (ǫmax, ǭ, σǫ, rǫ, and AHRE). In particular, the

maximum prediction error, ǫmax, is lower for all measurement

routes except for measurement 2004 B6 where Model A and

the OH rural model provide 19.0 dB and 18.4 dB, respec-

tively. Also, Fig. 4 shows a path loss prediction example

for the different Recommendation ITU-R P.1546 versions and
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TABLE I

STATISTICS FOR MODEL A AND OKUMURA–HATA (OH) RURAL MODEL [13]

ǫmax [dB] ǭ [dB] σǫ [dB] rǫ AHRE [%]

Meas. Model A OH Model A OH Model A OH Model A OH Model A OH

2003 A1 17.9 45.5 1.7 -12.4 7.7 11.4 0.89 0.75 9.5 18.4
2003 A2 18.2 34.2 -0.7 -8.5 8.5 9.5 0.67 0.49 13.8 16.5
2004 A3 17.4 24.0 3.4 -5.4 7.7 8.4 0.47 0.26 22.8 21.9
2004 A4 19.7 22.3 3.6 -5.1 8.1 9.2 0.39 0.13 23.8 23.0
2004 A5 27.3 31.6 4.7 -8.3 11.5 8.8 0.61 0.45 19.4 20.1

2003 B1 15.3 22.9 -2.2 -7.9 5.8 7.3 0.77 0.59 13.9 24.0
2003 B2 23.5 42.7 6.8 -4.1 9.3 10.3 0.82 0.78 12.1 9.6
2003 B3 31.2 49.2 -0.5 -10.1 10.2 12.0 0.75 0.62 10.7 14.4
2004 B4 29.2 37.0 -4.7 -13.6 6.8 9.2 0.80 0.59 12.0 24.5
2004 B5 25.3 33.3 1.9 -10.2 6.8 6.4 0.74 0.71 13.2 24.2
2004 B6 19.0 18.4 8.4 -5.5 5.8 5.9 0.59 0.58 26.9 22.4
2004 B7 18.7 26.4 -4.6 -13.6 6.9 6.7 0.58 0.59 19.6 30.2
2004 B8 22.0 41.4 2.8 -8.2 8.4 9.0 0.82 0.77 10.6 12.2
2004 B9 22.1 33.0 1.3 -8.1 9.5 9.7 0.71 0.58 14.1 16.5

2003 C1 31.1 45.4 -0.3 -15.8 8.3 9.8 0.87 0.84 8.2 17.4
2004 C2 24.5 30.4 4.9 -7.2 8.4 8.5 0.81 0.75 13.6 13.5
2004 C3 21.1 32.0 4.4 -4.9 8.0 8.6 0.76 0.68 12.4 11.2
2004 C4 27.6 32.7 4.7 -2.6 9.4 8.2 0.67 0.65 14.6 13.5
2004 C5 22.0 40.6 1.5 -12.8 8.2 8.7 0.86 0.80 9.2 15.9

Average 22.8 33.8 2.0 -8.7 8.2 8.8 0.71 0.61 14.8 18.4

Model A. It was previously concluded that the P.1546 models,

for certain scenarios, provide abnormal path loss predictions

due to negative transmitting/base antenna height definition, h1,

values being produced. Model A therefore proposed a new h1

definition that efficiently mitigates this problem. This P.1546

shortcoming and Model A’s prediction accuracy improvement

can clearly be seen in Fig. 4 after 13 km travelled distance.
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Fig. 4. P.1546 and Model A path loss predictions for measurement 2003
A1 around Beverley BS [13] where the transmitting/base antenna height is
negative for some parts of the route (after 13 km travelled distance).

From our previous publication [13], it is known that the

obtained maximum errors produced by the different versions

of the Recommendation ITU-R P.1546 (−0, −1, and −2) and

the proposed Model A are 24.1 dB, 53.2 dB, 44.5 dB, and

17.9 dB, respectively. In Section VI-C, Model A’s prediction

results are compared with the prediction results produced by

different ANN models. Note that, in this paper, the original

Recommendation ITU-R P.1546 definition of h1 has been used

as a training and prediction parameter for the ANNs.

This section is organised as follows: In Section VI-A,

the ANNs are trained and evaluated using measurement data

originating from the same BS (C). The training data is

obtained from four routes and the evaluation data from a

different fifth route. In Section VI-B, the ANNs are trained

with data from BS C (see Section VI-A) and are evaluated

using measurement data originating from BS A. This training

approach was performed to show that the ANNs can perform

well in a different environment compared to where from the

training data was gathered. Finally, Section VI-C presents a

training and evaluation approach where the training data is

obtained from one measurement route around each BS (A,

B and C) is presented. The training data is chosen, so that

the range covers most of the data used in the evaluation.

Also, the impact on training time, prediction accuracy and

generalisation characteristics when performing the training

using the Levenberg–Marquardt algorithm is presented.

A. Same Cell - Different Route

Here, the first ANN training/evaluation approach utilises

measurement data originating from the same omni-directional

BS (C). Five measurements (different routes) have been ob-

tained from this Corrigin BS. The measurement data cov-

ers a travelled distance of 129 km and consists of 1, 238
averaged pilot power samples where each average power

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on May 25,2010 at 12:09:51 UTC from IEEE Xplore.  Restrictions apply. 



8

value has been estimated from measurement data spanning

over 300 wavelengths. The ANN models are trained utilising

500 randomly chosen input-output data pairs [see (6)] from

four of the measurements (2003 C1, 2004 C2, 2004 C3 and

2004 C4) and evaluated using measurement data from the fifth

measurement track (2004 C5).

Table II presents the numerical results for different sized

ANNs (ANN6−1, ANN6−3−1 and ANN6−7−3−1). The nu-

TABLE II

STATISTICAL ANALYSIS SUMMARY: SAME CELL - DIFFERENT ROUTE

Data Metric ANN6−1 ANN6−3−1 ANN6−7−3−1

ǫmax [dB] 27.0 31.9 32.5
ǭ [dB] 0.4 0.3 -0.1

TR σǫ [dB] 7.0 7.0 6.7
rǫ 0.81 0.84 0.82
AHRE [%] 10.2 9.2 10.3

ǫmax [dB] 25.6 23.1 22.2
ǭ [dB] -4.2 -3.5 -2.8

EV σǫ [dB] 7.7 7.4 7.3
rǫ 0.85 0.86 0.87
AHRE [%] 9.5 8.8 8.5

merical results for the training (TR) data correspond to the

500 data pairs taken from measurements 2003 C1, 2004 C2,

2004 C3 and 2004 C4. The numerical results for the evalu-

ation (EV) data correspond to measurement 2004 C5 (201
samples). The results show that, for this scenario and for

the TR data, increasing the number of hidden layers and

neurons slightly decreases the prediction accuracy for some

of the statistical analysis metrics (ǫmax, σǫ, and AHRE).

In particular, it can be seen that the maximum error, ǫmax,

increases from 27.0 dB to 32.5 dB, respectively, when the

ANN is extended from ANN6−1 to ANN6−7−3−1. For the EV

data, it can be seen that extending the neuron model ANN6−1

to ANN6−3−1 and ANN6−3−1 slightly increases the prediction

accuracy for all statistical analysis metrics. As an example,

the standard deviation, σǫ, decreases from 7.7 dB to 7.3 dB,

respectively, when the ANN is extended from ANN6−1 to

ANN6−7−3−1. Note that the TR and EV data are taken from

different measurement routes and hence some deviations due

to specific topographical features shown in the analysis of the

TR data is not present in the analysis of the EV data.

B. Different Cell

The different cell approach evaluates the ANNs, trained

as described in the previous Section VI-A, using 188 input-

output data pairs obtained from a different BS (2003 A1).

The purpose of this training/evaluation approach is to see how

well the different ANNs generalise. From previous investi-

gations [13], [32]–[34], it was known that the propagation

scenario that occurs after 13 km travelled distance, where the

receiving antenna is on a slope above the BS, may be hard to

predict depending on how the transmitting/base antenna height

is calculated and incorporated in the path loss model.

Table III shows the prediction results for the different

sized ANNs using EV data from measurement 2003 A1. It

can be seen that all statistical analysis metrics except from

TABLE III

STATISTICAL ANALYSIS SUMMARY: DIFFERENT CELL

Data Metric ANN6−1 ANN6−3−1 ANN6−7−3−1

ǫmax [dB] 35.8 32.2 29.4
ǭ [dB] -5.1 -4.9 -3.3

EV σǫ [dB] 9.3 8.3 8.1
rǫ 0.87 0.87 0.86
AHRE [%] 11.3 10.4 9.5

the correlation factor, rǫ, slightly improve when extending

the ANN6−1 to ANN6−7−3−1. Also for this scenario, the

prediction accuracy increases somewhat with additional num-

ber of hidden layers and neurons. It can be seen that the

average error, ǭ, decreases from −5.1 dB to −3.3 dB and the

standard deviation, σǫ, decreases from 9.3 dB to 8.1 dB when

extending the ANN6−1 to ANN6−7−3−1, respectively. It can

be concluded that the ANN models generalise quite well when

being evaluated using measurement data that originates from

another BS and a different region. During the training, it was

noted that the ANN6−7−3−1 is much more sensitive to the

training data compared to the ANN6−1 and ANN6−3−1.

C. All Cells

In this approach, 700 randomly chosen input-output pairs

originating from three BSs (2003 A1, 2003 B2 and 2003 C1)

are used to train the ANNs. Together, these three measure-

ments cover most of the input and output parameter range

to be expected in the evaluation. Hence, the ANN’s task

is to interpolate and to some degree also extrapolate from

the given input data. The nineteen measurement routes cover

a travelled distance of approximately 400 km and consist

of 3, 823 averaged pilot power samples averaged over 300
wavelengths. Utilising the backpropagation gradient descent

algorithm with ES, the training process requires approximately

10, 000, 100, 000 and 150, 000 iterations in batch mode for the

ANN6−1, ANN6−3−1 and ANN6−7−3−1 models, respectively.

Figs. 5–8 show the measured and predicted path loss for

four measurement routes (2003 A1, 2004 A5, 2004 B8 and

2003 C1). For clarity, only the prediction curves provided

by the ANN6−3−1 model and the EV data are shown in the

figures.

Fig. 5 shows the ANN path loss prediction for measurement

2003 A1 (Beverley BS) where for parts of the route, after

approximately 13 km travelled distance, the mobile receiving

antenna is on a slope above the BS. This particular scenario

causes some severe overestimation (+40 dB, see Fig. 4 after

13 km travelled distance) of the path loss when using the

Recommendation ITU-R P.1546 model due to how the trans-

mitting/base antenna height is defined and incorporated in the

model [13]. Using an ANN model that has been trained with

measurement data obtained from this specific scenario, it can

be seen that the predicted path loss accuracy is very good even

for the region after 13 km travelled distance.

Fig. 6 depicts the ANN path loss prediction for another

measurement route around Beverley BS (2004 A5). At ap-

proximately 13 km travelled distance, a sharp peak in the

TCA can be seen. For this specific scenario, the P.1546 model
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Fig. 5. Measurement 2003 A1 around Beverley BS, where the mobile
receiving antenna is on a slope positioned above the transmitting antenna.
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Fig. 6. Measurement 2004 A5 around Beverley BS, where the transmit-
ting/base antenna height is close to zero for parts of the route and a distinct
peak in the TCA at 13 km travelled distance.

produces a correction overshoot (20 – 40 dB), which can result

in unrealistic path loss predictions [13]. Now, when using the

ANN prediction model, the path loss correction due to TCA

is smoother and does not significantly overshoot.

Fig. 7 illustrates the ANN path loss prediction for mea-

surement route 2004 B8 (Quairading BS). At around 4.5 km

travelled distance there is a huge grain-storage facility (> 15 m

height) that affects the measurements. Also, at a travelled
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Fig. 7. Measurement 2004 B8 around Quairading BS with a distinct peak
in the TCA at 13 km travelled distance.
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Fig. 8. Measurement 2003 C1 around Corrigin BS spanning over 1 – 24 km
to the BS.

distance of approximately 13 km, a distinct TCA peak is

present. In the path loss prediction, it can be seen that the

ANN does not create an overshoot due to this peak; i.e., the

response is relatively smooth.

Fig. 8 presents the ANN path loss prediction for a measure-

ment route around Corrigin BS (2003 C1). It can be seen that

the overall predictions provide good agreement with the mea-

surements without introducing any major abnormalities. Note

that, at approximately 5 and 22 km travelled distance there are
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distinct increases in the measured path loss. These peaks are

due to features that are not described by the topographical data

and hence not reflected by the input parameters.

Tables IV–VI show the statistical analysis results for the

evaluated ANN models and the nineteen measurement routes.

The numerical values given in Tables IV–V correspond to EV

data. For comparison, the two bottom rows in all tables provide

the average prediction results for TR and EV data (AverageTR

and AverageEV).

As a direct comparison with our previously published jour-

nal paper [13], Table I shows the obtained path loss predictions

using Model A (our proposed modifications to Recommen-

dation ITU-R P.1546) and the Okumura–Hata model. For

Model A, the average maximum error, ǫmax, is approximately

23 dB, the mean error, ǭ, is 2 dB, and the error standard

deviation, σǫ, is near 8 dB. For the same data, the Okumura–

Hata model provides an average maximum error, ǫmax, of near

34 dB, the mean error, ǭ, is approximately −9 dB, and the error

standard deviation, σǫ, is close to 9 dB.

Table IV presents the first order statistical analysis results

for the three different sized ANN models. It can be seen that

the average prediction results provided by the ANN models

do not differ significantly. For the EV data (AverageEV), the

average maximum error, ǫmax, is approximately 21 – 22 dB,

the mean error, ǭ, is close to zero and the error standard

deviation, σǫ, is near 7 dB. By inspecting the AverageTR and

the AverageEV results in Table IV, it can be seen that extending

the ANN structures results in greater prediction accuracy

improvements for the TR data compared to the EV data.

Table V shows the correlation coefficient and AHRE cor-

responding to the same ANNs as in Table IV. Here as

well, the prediction results are quite similar for the different

ANN models. For the EV data (AverageEV), the correlation

coefficient, rǫ, is greater than 0.7 and the average total hit rate

error, AHRE, is on average about 12% for all predictions. The

AverageTR and the AverageEV results presented in Table V also

show the correlation coefficient, rǫ, and the average total hit

rate error, AHRE, to be significantly better for the TR data

compared to the EV data. Hence, the differences between the

ANNs for some of the predictions originates from how well

the ANN is able to adapt to different scenarios.

The overall conclusion that can be drawn from Tables IV

and V is that an ANN6−1 model (neuron model), for the

given training approach and available measurement data, is

sufficient to obtain an accurate path loss prediction model that

generalises well.

Further, the numerical values may be directly compared to

the prediction results achieved for Recommendation ITU-R

P.1546 versions (P.1546-0, P.1546-1 and P.1546-2), Okumura–

Hata and Model A evaluated in [13]. Model A is a modi-

fied/improved version of the Recommendation ITU-R P.1546

in which a modified definition of transmitting/base antenna

height and field-strength attenuation due to different land

usage and vegetation are included. It is noted that the average

prediction results obtained with the ANN6−1 model, for the

available measurement data, are more accurate than the results

achieved with Model A [13].

It should be noted that an ANN6−7−3−1 model requires

150, 000 iterations (gradient descent and ES) in the backprop-

agation training process to converge to its optimum. Therefore,

as a comparison, the Levenberg–Marquardt training algorithm

was used to train the neuron model incorporating both ES and

BR (ANNES
6−1 and ANNBR

6−1). For ES and BR stopping criteria,

only approximately 10 and 20 iterations in batch mode are

required, respectively, to train the ANN.

Table VI shows the average prediction results for the

ANNES
6−1 and ANNBR

6−1 models corresponding to both TR and

EV data. It can be seen that the overall average path loss

prediction results are on par with the previous evaluation

results shown in Tables IV and V. In summary, these sim-

ple path loss models provide accurate prediction results and

generalise well. Note that, when evaluating the Levenberg–

Marquardt ANNs using the TR data (700 input-output pairs

from 2003 A1, 2003 B2 and 2003 C1), ANNBR
6−1 seem to be

more accurate compared to ANNES
6−1 (see Table VI). Finally,

the average ANNES
6−1 and ANNBR

6−1 prediction results for the

EV data (AverageEV) are very much the same for all statistical

analysis metrics. For this application, the differences would

more likely originate from the used training data rather than

the algorithm performance.

VII. CONCLUSIONS AND FUTURE WORK

The work in this paper investigates ANN path loss predic-

tion models for rural macrocell environments. A CDMA pilot

scanner was used to obtain measurement data in a commercial

IS-95 mobile telephone network in rural Western Australia.

The collected data and extracted terrain and topographical

parameters were then used to train and evaluate the different

ANNs.

Different sized ANNs, ranging from the neuron model to

multi-layered feed-forward networks, were analysed in order

to determine the network complexity required to obtain accu-

rate path loss predictions. Also, to reduce training time whilst

maintaining prediction accuracy and generalisation properties,

faster training algorithms, such as Levenberg–Marquardt, and

ES and BR were incorporated in the training process.

The ANN model evaluation using first order statistics,

correlation factor and the average total hit rate error metric

shows that for the given drive test data collected in rural

Western Australia, using the given input parameters, the ANN

models perform very well in comparison with other common

path loss models, such as the Recommendation ITU-R P.1546

and Okumura–Hata models, of similar complexity.

It was found that more complex ANNs (several hidden

layers and neurons) do not increase prediction accuracy con-

siderably. It was also found during the training process that

more complex ANNs may result in decreasing generalisation

properties.

Another important result was that larger feed-forward net-

works, due to overtraining, are more sensitive to the training

data and may give less accurate predictions when presented

with inputs outside the training parameter space. On the other

hand, when these more complex ANNs are presented with

data similar to the training set the predictions can be very

accurate. However, the focus in this paper has been on model
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TABLE IV

FIRST ORDER STATISTICS FOR ANN6−1, ANN6−3−1 , AND ANN6−7−3−1 MODELS

ǫmax [dB] ǭ [dB] σǫ [dB]

Meas. ANN6−1 ANN6−3−1 ANN6−7−3−1 ANN6−1 ANN6−3−1 ANN6−7−3−1 ANN6−1 ANN6−3−1 ANN6−7−3−1

2003 A1 20.8 19.9 17.1 0.6 0.7 -0.8 7.2 7.7 6.2
2003 A2 19.4 16.7 18.1 -0.7 -1.1 -2.2 7.3 7.0 6.7
2004 A3 14.3 14.6 13.1 3.0 3.0 1.6 5.4 5.5 5.6
2004 A4 14.3 14.7 12.9 3.5 3.3 1.9 5.9 5.9 6.0
2004 A5 27.8 22.7 21.8 0.9 1.3 -0.8 9.7 9.8 8.7

2003 B1 16.3 12.1 16.0 2.1 0.6 1.1 7.2 6.4 6.6
2003 B2 19.6 19.7 20.4 4.5 2.5 2.4 7.9 7.5 8.0
2003 B3 34.9 27.2 33.5 -1.6 -1.0 -3.4 8.9 7.3 10.5
2004 B4 32.3 32.0 32.5 -3.7 -3.6 -3.8 8.5 7.3 7.5
2004 B5 28.6 28.2 28.8 -3.1 -3.8 -4.5 7.5 6.0 5.8
2004 B6 13.8 14.2 16.0 0.7 -0.6 -1.4 5.5 4.8 4.9
2004 B7 17.3 17.0 16.6 -2.7 -2.7 -2.0 5.6 5.8 5.6
2004 B8 21.5 22.3 21.8 -0.5 -2.1 -2.6 7.8 7.3 7.2
2004 B9 24.9 21.6 22.4 -1.3 -1.7 -2.0 7.5 6.9 6.9

2003 C1 24.9 33.6 30.9 -3.0 -0.4 1.2 8.0 9.1 8.8
2004 C2 24.5 24.1 22.5 0.6 2.6 3.3 8.7 8.1 7.1
2004 C3 25.0 16.6 15.1 1.4 2.8 2.3 7.3 6.5 6.4
2004 C4 19.2 21.5 20.3 5.6 5.3 5.2 6.2 6.2 6.2
2004 C5 24.0 22.9 19.8 -2.7 -0.3 0.3 7.9 8.0 7.6

AverageTR 26.0 25.7 22.8 0.4 0.3 -0.2 8.3 8.2 7.7

AverageEV 22.3 21.1 21.0 0.2 0.3 -0.2 7.4 7.0 7.0

TABLE V

CORRELATION COEFFICIENT AND AHRE FOR ANN6−1, ANN6−3−1, AND ANN6−7−3−1 MODELS

rǫ AHRE [%]

Meas. ANN6−1 ANN6−3−1 ANN6−7−3−1 ANN6−1 ANN6−3−1 ANN6−7−3−1

2003 A1 0.93 0.81 0.84 11.1 10.7 9.2
2003 A2 0.76 0.74 0.76 10.4 10.8 10.6
2004 A3 0.41 0.45 0.44 15.9 17.9 16.7
2004 A4 0.36 0.40 0.39 17.1 18.6 17.7
2004 A5 0.52 0.45 0.58 15.5 16.6 13.9

2003 B1 0.78 0.80 0.77 16.9 14.6 15.3
2003 B2 0.88 0.85 0.86 8.2 7.9 8.6
2003 B3 0.84 0.78 0.80 12.7 9.2 10.6
2004 B4 0.79 0.82 0.81 14.6 11.4 12.1
2004 B5 0.73 0.76 0.77 16.2 13.1 13.3
2004 B6 0.71 0.73 0.74 14.1 12.4 12.1
2004 B7 0.51 0.50 0.54 16.7 16.6 15.6
2004 B8 0.85 0.85 0.86 8.4 7.9 7.9
2004 B9 0.74 0.78 0.78 11.1 10.2 10.3

2003 C1 0.86 0.87 0.85 10.1 9.4 9.4
2004 C2 0.76 0.80 0.84 11.3 11.5 10.9
2004 C3 0.81 0.82 0.83 10.0 9.6 9.2
2004 C4 0.75 0.75 0.74 14.6 13.0 13.1
2004 C5 0.86 0.85 0.87 9.3 9.2 8.8

AverageTR 0.87 0.87 0.89 9.2 8.6 8.1

AverageEV 0.73 0.73 0.74 12.8 12.1 11.9

TABLE VI

NEURON MODEL STATISTICAL ANALYSIS - LEVENBERG-MARQUARDT TRAINING ALGORITHM INCORPORATING ES AND BR

ǫmax [dB] ǭ [dB] σǫ [dB] rǫ AHRE [%]

ANNES
6−1

ANNBR
6−1

ANNES
6−1

ANNBR
6−1

ANNES
6−1

ANNBR
6−1

ANNES
6−1

ANNBR
6−1

ANNES
6−1

ANNBR
6−1

AverageTR 26.6 16.7 0.1 0.5 8.4 6.3 0.87 0.92 8.7 6.6

AverageEV 21.8 21.6 0.0 0.5 6.9 6.9 0.74 0.75 11.8 12.2
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robustness and simplicity. When training an ANN6−1 using the

Levenberg–Marquardt algorithm instead of an ANN6−7−3−1

using the standard backpropagation algorithm, the training

time may be decreased from approximately 150, 000 to 10
iterations. Hence, there is more available time to incorporate

more training data. The most important aspect in creating an

accurate and robust ANN path loss model seems to be the

training data selection. The input-output training data pairs

should therefore describe as large portion of the propagation

problem the model is expected to be exposed to.

In summary, it can be said that the trained neuron model

provides more accurate prediction results than the Recommen-

dation ITU-R P.1546, Model A, and Okumura–Hata model.

For the available measurement data, the average ANN predic-

tion results were: 1) maximum error: 22 dB, 2) mean error:

0 dB, 3) standard deviation: 7 dB, correlation coefficient: 0.75
and AHRE: 12%. It should be noted that some of the large path

loss variations, such as those due to blockage from large man-

made objects, cannot be predicted due to lack of topographic

databases.

Future work should incorporate careful selection of the

training data given that the training set describes a wider range

of the propagation problem. This will increase the prediction

accuracy and generalisation characteristics of the ANN. It

would also be very interesting to train an ANN using a very

large set of measurement data, such as the data sets available

to the ITU organisation. A more diverse training data set

would in particular be of benefit for the application of TCA

correction, which in the Recommendation ITU-R P.1546 for

certain scenarios seems to overcorrect the predictions [13]. It

would also be of interest to compare the ANN predictions in

this paper to a calibrated Okumura–Hata model as described

in [35].

Note that, since the publication of [13], a new version

of the Recommendation ITU-R P.1546 has been released

(P.1546-3 [36]). After evaluating the new P.1546-3 model, it

was concluded that the overall prediction accuracy for these

rural areas is slightly worse compared to the previous version

P.1546-2. In particular, this is due to the simplified definition

of TCA and how the corresponding correction is applied.
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Mr. André Pollok for their assistance with the measurement

campaigns and Telstra Wireless Access Services for providing

the BS characteristics. Thanks to Mr. Jeremy Wallace and

Dr. Joanne Chia at CSIRO Mathematical and Information

Sciences and Land Monitor Western Australia, respectively,

for providing the digital vegetation density data. Also, thanks

to Mr. Damian Shepherd at Department of Agriculture Western

Australia for making the vegetation type database available.

Many thanks to Dr. Andrew Weily for proof-reading and

providing constructive comments, which greatly improved the

quality of the manuscript. The authors would finally like to

thank the anonymous reviewers for their valuable comments.

REFERENCES

[1] T. S. Rappaport, Wireless Communications: Principles and Practice (2nd

Edition). New York, USA: Prentice Hall, December 2001.

[2] H. Bertoni, Ed., “Coverage prediction for mobile radio systems operating
in the 800/900 MHz frequency range,” IEEE Transactions on Vehicular

Technology, vol. 37, no. 1, pp. 3–72, February 1988.

[3] R. J. Luebbers, “Propagation prediction for hilly terrain using GTD
wedge diffraction,” IEEE Transactions on Antennas and Propagation,
vol. 32, no. 9, pp. 951–955, September 1984.

[4] G. A. Hufford, “An integral equation approach to the problem of
wave propagation over an irregular surface,” The Quarterly Journal of

Mechanics and Applied Mathematics, vol. 9, no. 4, pp. 391–404, January
1952.

[5] C. A. Zelley and C. C. Constantinou, “A three-dimensional parabolic
equation applied to VHF/UHF propagation over irregular terrain,” IEEE

Transactions on Antennas and Propagation, vol. 47, no. 10, pp. 1586–
1596, October 1999.

[6] K. E. Stocker and F. M. Landstorfer, “Empirical prediction of radiowave
propagation by neural network simulator,” Electronics Letters, vol. 28,
no. 12, pp. 1177–1178, June 1992.

[7] I. Popescu, D. Nikitopoulos, P. Constantinou, and I. Nafornita, “ANN
prediction models for outdoor environment,” in 17th IEEE International

Symposium on Personal, Indoor and Mobile Radio Communications,
Helsinki, Finland, September 2006, pp. 1–5.
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