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Macrocycles are an emerging and largely underexploit-

ed part of chemical space where potential drugs for

difficult genomic targets can be discovered. Macro-

cycles can have advantages over their natural twins

such as better control over synthesis, physicochemical

properties and target binding. Fast and convergent

synthesis pathways are underdeveloped. Multicompo-

nent reaction (MCR) chemistry is very well suited for

the synthesis of a diverse range of macrocycles and is

also able to generate great levels of molecular diversity

and complexity at low synthetic costs.
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Introduction

Macrocycles have been defined as ring-systems consisting of

12 or more atoms. In the past decade, interest into macro-

cycles strongly increased in medicinal chemistry. More than

100 macrocyclic drugs and clinical candidates are currently

marketed or in drug discovery programs [1].

In spite of their higher molecular weight, often polar

backbone and increased number of H-bond donors and

acceptors, macrocycles are capable to dynamically change

their conformation and therefore can become more drug-like

than expected based on their physicochemical and pharma-

cokinetic properties [2]. Moreover, macrocycles with their

high and dynamically adaptable surface area are perfect

candidates to mimic some structural features of protein inter-

faces. Protein–protein interactions (PPIs) are critical in many

of physiological and pathological processes including protein

biosynthesis, viral diffusion and virus survival in host cell and

signaling transduction. Thus, there is great interest in devel-

oping approaches for identifying therapeutically useful inhi-

bitors for numerous targets that are not conventionally

‘‘druggable’’, such as protein–protein interfaces [3]. An ex-

ample of an exciting PPI target is IL17 with approved anti-

bodies for use in rheumatoid arthritis. Recently artificial

macrocycles have been described targeting IL17 (Fig. 1A) [4].

As the role of macrocycles in medicinal chemistry

increases, there is an urgent need for new approaches to

synthesize these compounds. Classically, macrocycles are

synthesized similar to small molecules in sequential fashion.

Natural products often can be obtained by fermentation. For

example the artificial macrocycle targeting IL17 has been

synthesized in a sequence of 5 steps (Fig. 1A) [5]. One of

the challenges for exploration of the macrocycles for drug

discovery is the difficulty in synthesizing such compounds,

especially when there is a need for a series of molecules for

structure–activity relationship (SAR) elucidation or to build

screening libraries. A number of synthetic routes toward
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macrocycles have been successfully developed including rap-

id and efficient methodologies. Acceleration of chemistry is

an important aim in contemporary chemistry due to the need

of synthesizing, screening and property optimizing large

compound libraries in a circular repetitive way [6]. A com-

plementary modern approach to access chemical diversity in

a one-pot fashion is by using an MCR. MCRs become increas-

ingly a drug discovery technology for the rapid access of

macrocycles due to its advantages over a sequential multistep

approach [7]. Here we review the recent developments in this

research area, focusing on synthetic strategies to artificial

macrocycles which have been developed in our group [8].

MCR have been defined as reactions of more than 2 differ-

ent starting materials. Typically the reactants are stirred in a

one pot fashion and the majority of atoms of the staring

materials can be found in the product molecule [9]. MCR are

an old class of synthetically useful reactions and often are

name reactions. Examples include the Mannich, Biginelli,

Reppe, Bucherer–Bergs, Gewald, Passerini, Stecker, Asinger or

Hantzsch reactions. Often the MCR are based on simple and

commercially in large numbers available starting materials

such as carboxylic acids, oxo components or b-keto esters.

Therefore large libraries of products can be easily accessed in

great chemical diversity. Notably, MCRs have been described

for the convergent synthesis of multiple drugs on the market

or in clinical trials (Table 1). This nicely underscores the

relevance of MCR chemistry for drug discovery. MCRs should

not be mixed up with domino or tandem reactions, which

comprise a consecutive series of intramolecular reactions.

The fist macrocycles were synthesized in 1979 by Failli and

Immer using MCR technology [18]. Other notable groups work-

ing in the field of macrocyclisation by MCR include Zhu, Yudin,

Wessjohann, and Rivera (Fig. 1B) [19–21]. In our laboratory we

focus mostly on non peptidic artificial macrocycles. Artificial

macrocyclescanprovideattractiveligandsfordisease-significant

targets and at the same time easy tunability of their drug-like
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Fig. 1. (A) An artificial macrocycle binding to IL17. Above: 2D structure of macrocycle and the overall binding mode into the IL17 dimer interface. Below:

close-up view of the macrocycle receptor interaction highlighting hydrophobic and hydrogen bonding interactions; (B) landmarks of macrocycle syntheses

by MCR; (C) three step macrocycle synthesis based on a Passerini-MCR and 3D structure of a representative macrocycle (CCDC 200226).
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Table 1. Small selection of marketed drugs or clinical candidates which can be synthesized advantageously by MCR
technology.

No Generic name Structure Ref.

1 Atorvastatine A. Dömling et al., unpublished.

2 Lidocaine [10]

3 Praziquantel [11]

4 Lacosamide [12]

5 Clopidogrel [13]

6 Epelsiban [14]

7 Ivosidenib [15]

8 Carfentanil [16]

9 Telaprevir [17]

www.drugdiscoverytoday.com 13



properties. We early on recognized the power of MCR for the

synthesis of macrocycles [8,22–24]. One of our first attempts to

use the advantages of MCR chemistry is shown in Fig. 1C [25]. A

general, convergent and fast strategy was devised for the rapid

assembly of structurally diverse artificial macrocycles. The first

step comprised of a nucleophilic ring opening reaction of cyclic

carboxylic acid anhydrides with terminal ene-ols to yield v-ene

carboxylic acids. Next a Passerini-3CR was performed using

isocyano-v-enes and carbonyl building blocks. The final ring

macro closure was accomplished by a metathesis reaction. No-

tably, some products had natural product-like features including

a number of stereocenters, high O content and a non-flat

conformation. For example compound 1 exhibits a atropiso-

meric biphenyl axis, each a secondary and a tertiary amide, two

ester groups, two double bonds and a bifurcated intramolecular

hydrogen bond (Fig. 1C). A similar strategy using the Ugi MCR

was also described. The assembly strategy worked well in the ring

opening and the subsequent MCR step with a broad range of

building blocks. However, during the process of library expan-

sion, we realized that the subsequent metathesis reaction was

generally low yielding and had a very limited substrate scope in

terms of ring size, side-chain diversity, and positioning of the

orthogonal functional groups. For a useful reaction to be taken

up byindustry, however, the substrate scope needs to be broad in

terms of shape, size and functional group content [26]. Thus, we

switched our attention to MCR based macrocyclisations. We

devised a powerful synthetic strategy were we assembled a

a,v-difunctionalized linear precursor which was then macror-

ing-closed by a MCR (Fig. 2A and B). In our laboratory focus on

short reaction sequences while not jeopardizing functional
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Fig. 2. (A) Left: synthetic strategy toward artificial macrocycles. Right: manifolds of topologically possible macroring closures with the Ugi-4-CR; (B)

topologically possible macrorinclosures by using the U-4CR; (C) shortest artificial macrocycle synthesis ever; (D) part of the macrocycle synthesis toolbox

designed, published and used in the Dömling laboratory.

14 www.drugdiscoverytoday.com



group compatibility and scaffold diversity is key. Thus we de-

visedthe shortesteverartificialmacrocycle synthesisknown,a 2-

step sequence from generally available starting materials

(Fig. 2C) [27].

The 2-step sequence involves a nucleophilic ring opening

of cyclic carboxylic acid anhydrides with unprotected prima-

ry diamines yielding a-amino-v-carboxylic acids of varying

length followed by a Ugi ring closure upon addition of an

isocyanide and a oxo component (Fig. 2C). The procedure can

also be performed in one pot without the isolation of the

intermediate amino acid. The building blocks used here are

generally commercially available in high diversity or easy to

access synthetically. Thousands of interesting highly

functionalized building blocks are available. For example,

due to the combinatorial nature of the Ugi reaction for

100 each of the four building blocks, cyclic anhydride, di-

amine, oxo component and isocyanide a chemical space not

including stereoisomers of 1004 = 100 million macrocycles is

ready to be investigated. Other macrocyclisation protocols

have been developed in our laboratory (Fig. 2D). Key features

of the scaffolds include the use of convergent MCR chemis-

tries, commercially available building blocks, broad function-

al group compatibility, scalability, inclusion of heterocyclic

amide bioisosteres and short economical synthesis routes.

Examples of bioactive macrocycles from our group

The Dömling laboratory has a longstanding tradition in the

discovery of p53-MDM2 anatgonists [28–32]. Blocking the

protein–protein interaction between the murine double minute

(MDM) homologues MDM2/X and the tumor-suppressor pro-

tein p53 is a promising strategy in oncology. Inhibiting the

binding between wild-type (WT) p53 and its negative regulators

MDM2 and/or MDMX has become an important target in

oncology to restore the antitumor activity of p53. Recently,

the p53-MDM2 complex is the best studied and most targeted

protein–protein interaction. Thus, the discovery of new p53–

MDM2 inhibitors with diverse structures to improve their

properties is of importance [33,34]. Several macrocyclic stapled

peptides have been described with great affinity toward MDM2

and MDMX [35]. We designed a series of nonpeptidic artificial

macrocyclic compounds that inhibit the p53–MDM2 interac-

tion [27,28] These macrocycles target for the first time the large

hydrophobic surface area formed by Tyr67, Gln72, His73, Val93,

and Lys94 as shown by 2D NMR thus potentially increasing the

affinityto the receptor (Fig. 3A). Moreover, we recentlydescribed

several peptidic macrocycles which form potent complexes with

the immune oncology target PD-L1 (Fig. 3B). Intriguingly, these

macrocycles show comparable cell-based activities to the mar-

keted monoclonal antibodies [36].

Future prospects

Macrocycles are magic and their use will likely expand and

take a prominent place in the drug discovery space [8].

However, synthetic accessibility and tunability of proper-

ties in a timely and economical fashion is an issue with

currently available macrocycles syntheses. MCR can be a

Vol. 29, 2018 Drug Discovery Today: Technologies | Multicomponent Reactions in Drug Discovery and Medicinal Chemistry
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Fig. 3. (A) A docking model of an artificial macrocycle which binds to MDM2; (B) the crystal structure of a macrocyclic peptide binding to PD-L1 (PDB ID

504Y); (C) the union and inclusion of several MCRs into the backbone of macrocycles as a synthetic strategy to increase the chemical space and diversity of

macrocycles.
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solution! Maximal diversity can be reached by the concept

of unions of MCR which was recently introduced (Fig. 3C)

[9,37]. The convergent, economical and fast nature of MCR

chemistry allows to access interesting artificial or peptidic

macrocycles with a broad functional group compatibility.

Introduction of drug like properties into artificial macro-

cycles is key for a successful use of this compound class in

pharmaceutical industry. Ideas how to tune drug-like prop-

erties, first of all passive membrane permeation, have been

recently published [8]. First reports on their biological

activities are promising and the future will provide more

examples.
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