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Abstract. Although groundwater velocities vary over a wide range of spatial scales it is gener-
ally only feasible to model the largest variations explicitly. Smaller-scale velocity variability must
be accounted for indirectly, usually by increasing the magnitude of the dispersivity tensor (i.e.
by introducing a so-called macrodispersivity). Most macrodispersion theories tacitly assume that
a macrodispersivity tensor which works well when there is only small-scale velocity variability will
also work well when there is larger-scale variability. We analyze this assumption in a high resolution
numerical experiment which simulates solute transport through a two-scale velocity field. Our results
confirm that a transport model which uses an appropriately adjusted macrodispersivity can reproduce
the large-scale features of a solute plume when the velocity varies only over small scales. However,
if the velocity field includes both small and large-scale components, the macrodispersivity term does
not appear to be able to capture all of the effects of small-scale variability. In this case the predicted
plume is more well mixed and consistently underestimates peak solute concentrations at all times.
We believe that this result can be best explained by scale interactions resulting from the nonlinear
transformation from velocity to concentration. However, additional analysis will be required to test
this hypothesis.
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1. Introduction

It is now widely acknowledged that the hydrogeological properties which con-
trol solute transport in the subsurface vary over a wide range of space and/or
time scales. In practical modeling studies it is convenient to make a fundamental
distinction between large-scale variability that can be measured or inferred from
site-specific information and smaller-scale variability that cannot be resolved. Un-
resolved fluctuations in hydraulic conductivity, recharge, and other quantities may
have significant, but difficult to predict, effects on larger-scale solute transport.
The resulting uncertainty can be accounted for explicitly with a stochastic descrip-
tion of solute transport which seeks to predict probability distributions, or at least
ensemble moments, of the solute concentration.

Much attention has been devoted in recent years to the development of theories
that predict the statistical properties of solute plumes transported through velocity
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fields characterized by small-scale variations about a known constant mean (Gelhar
and Axness, 1983; Gelhar, 1986; Dagan, 1984, 1986, 1989, 1990; Neumanet al.,
1987). Many of these studies have focused on derivations of the ensemble mean of
the solute concentration. The hope is that this mean will provide useful information
about the behavior, not only of a hypothetical ensemble, but also of particular real-
world plumes. Of course, we don’t expect any specific plume to look exactly like
the ensemble mean. But it would be useful if the ensemble mean correctly predicted
important large-scale features of the plume, such as its spatial moments or the
percentage of plume area with concentrations exceeding a given threshold.

Efforts to investigate connections between the ensemble mean concentration
and the properties of particular plumes have tended to focus on the first two spa-
tial moments of concentration. These moments provide convenient quantitative
measures of the translation and spreading of particular plumes. The basis for a
probabilistic description of solute variability is a hypothetical ensemble (or pop-
ulation) of solute plumes. This ensemble is characterized by a set of probability
densities which define the first, second,. . . nth-order statistics of the solute con-
centration at particular times and locations. The spatial moments of these plumes
are random time series which have their own ensemble properties (Dagan, 1990).
We can say that the plume ensemble is ‘weakly ergodic’ if the time-averaged
derivatives of the first and second spatial moments of any replicate approach the
corresponding ensemble mean quantities at large times (Papoulis, 1984). When this
form of ergodicity applies the asymptotic (large time) ensemble mean plume will
have the same overall size and shape as each replicate, although the smaller-scale
details will generally differ. In practice it is important to know just how long it will
take for a real plume to reach this asymptotic state.

Under certain special conditions, the ensemble mean concentration of a non-
reactive solute satisfies a classical advection–dispersion transport equation with a
constant (effective) velocity and macrodispersivity tensor. These effective proper-
ties may be derived from the velocity statistics which define the plume ensemble.
If the ensemble is weakly ergodic the mean concentration obtained from the trans-
port equation should have the same asymptotic first and second spatial moments
as individual plumes. It is in this sense that we can say that macrodispersivities
account for the large-scale effects of unresolved small-scale variability.

Generally speaking, the ensemble-based mean concentrations derived in
stochastic transport theories provide good asymptotic approximations to individual
plumes when the mean velocity is constant and the length scales of velocity fluc-
tuations are small compared to the displacement and lateral dimensions of the
plume. In such cases the plume has an opportunity to ‘sample’ a large range of ve-
locity variations and is not unduly influenced by any particular anomaly. These are
the somewhat idealized conditions that have applied in the field tests where macro-
dispersivities derived from stochastic theories have been most successful (McKay
et al., 1986; Freyberget al., 1986; Sudicky, 1986; Rajaram and Gelhar, 1991; Hess
et al., 1992). Ergodicity in field settings is usually checked by noting that the time
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derivatives of the spatial moments of the field plume approach constant asymptotic
values which are close to the corresponding moments of the derived ensemble
mean. These requirements are generally satisfied in the experiments cited above,
over times ranging from a few months to a few years.

Relatively few investigators have considered how macrodispersivity concepts
focused on the effects of small-scale variability might be applied in more com-
plicated field situations where large-scale variability is also important. Large-scale
velocity variations reflect the effects of hydrogeologic features such as aquifer
boundaries, stratigraphic sequences, depositional gradients, faults, surface water
bodies, and regional or seasonal variations in recharge. Such features are typically
represented deterministically in large-scale flow models. Most stochastic theories
implicitly assume that a macrodispersivity tensor that works well when there is
only small-scale velocity variability will also work well when there is larger-scale
variability. This hypothesis has not been adequately verified in field settings. If the
transformation from velocity to concentration were linear the effects of small and
large-scale variability could be superimposed. But this transformation is nonlin-
ear and velocity fluctuations at different scales may interact, in a process similar
to modulation. It is difficult to say how important this effect might be without
investigating particular cases.

In this paper we examine the applicability of classical macrodispersion concepts
to situations where small and large-scale velocity variations are both present. It
is important to emphasize that the two scales considered here do not represent
the scales of actual geological features. Rather, the large scale represents resolved
velocity variations (advective velocities specified explicitly in a numerical model)
and the small scale represents unresolved velocity variations (velocities accoun-
ted for with a Fickian macrodispersivity coefficient). This approach enables us
to conveniently partition the effects of multi-scale geological variability into two
categories. The dividing line between large and small-scale variability depends on
the data available for defining the advective velocity field and on the size of the
grid cells used to model solute transport.

Our analysis relies on individual velocity and concentration realizations, as
would occur in a field experiment. However these replicates are generated numer-
ically, so they can be readily manipulated. In particular, we are able to simulate
transport through velocity fields with only small-scale variability, only large-scale
variability, or two-scales of variability (one small and one large). Although our ana-
lysis is performed without reference to particular stochastic theories, we recognize
that our results have implications for the practical application of such theories. We
comment on this in the final section of the paper.

There is a growing literature on alternative methods for characterizing multi-
scale hydrogeologic variability and its effects on solute transport. In stochastic
studies small-scale Eulerian velocity variations are most often modeled as time-
invariant spatially-correlated random deviations from a constant mean. These ve-
locity variations are generally assumed to be caused by small-scale hydraulic con-
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ductivity fluctuations. Characteristic correlation lengths for small-scale hydraulic
conductivity and velocity fluctuations are on the order of a few meters in the hori-
zontal and a few centimeters in the vertical. In this paper we also treat small-scale
velocity fluctuations as time-invariant correlated homogeneous random fields.

Most theoretical analyses of solute macrodispersion do not explicitly distin-
guish large-scale advective velocity fluctuations from smaller-scale dispersive fluc-
tuations. The primary exceptions are a few studies which account for systematic
(e.g. linear) log conductivity trends (Rubin and Seong, 1994; Indelman and Rubin,
1996). The large-scale effects of interest in our study are more complex and less
systematic than such trends. This complexity could be captured if we obtained
the large-scale velocity field from a typical deterministic regional flow simulation
which includes irregular boundaries, variable soil properties and recharge rates,
etc. Although such an approach has merit, it produces non-stationary fields which
do not have well-defined velocity length scales or correlation structures. Here we
adopt a different approach which is more compatible with the general philosophy
of stochastic transport theory. Our large-scale velocity variations are also modeled
as random time-invariant fluctuations about a constant mean but with much larger
correlation lengths than the small-scale fields (Rajaram and McLaughlin, 1990).
Typical correlation lengths for the large-scale features of interest here are on the
order of tens of meters or more in the horizontal and meters in the vertical. Al-
though the large-scale velocity fluctuations used in our experiment are generated
randomly, they are assumed to be known perfectly. In this sense they represent the
spatially variable but resolved portion of the velocity field that is included in the
advective term of a traditional transport model.

Our numerical approach allows us not only to isolate different components of
the velocity field but also to simulate transport with only local dispersion or with
both local and macroscopic dispersion. These various options can be examined at
much higher resolution and for much longer times and travel distances than is pos-
sible in a field experiment. Aggregate transport measures such as spatial moments
or the peak concentration can be computed accurately and sensitivity analyses can
be performed. Finally, extraneous factors such as temporal variations in the mean
velocity can be avoided.

Of course, the results of our experiment are dependent on the assumptions
and approximations we make. Since it is limited in fundamental ways this experi-
ment does not provide a definitive assessment of the applicability of macrodisper-
sion theory. However, the experimental results raise a number of questions which
deserve further investigation. These are examined at the end of the paper.
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2. The Computational Experiment

2.1. EXPERIMENTAL SETUP

Our computational experiment is intended to simulate a typical field tracer test,
with solute released from an instantaneous point source into a steady flow field. We
intentionally consider a single realization, rather than an ensemble, since our goal is
to examine the applicability of macrodispersion concepts to field situations, rather
than to confirm the ability of any particular theory to predict ensemble properties.

In order to be credible our experiment must be able to properly simulate small-
scale velocity and concentration variability without introducing spurious oscilla-
tions or numerical dispersion. These are challenging requirements which can only
be met with an accurate transport solver discretized on a high resolution spatial
grid. Numerical accuracy comes at the cost of increased computational effort,
leading to some difficult tradeoffs. For a given effort, we can choose between simu-
lating three-dimensional transport in a relatively small spatial domain or simulating
two-dimensional transport in a much larger domain. In this context, computational
effort is related primarily to the number of spatial grid nodes and domain size
is measured by the number of large correlation distances traveled. Also, we can
choose between generating exact velocity fields from a computationally demanding
flow simulator run over a small domain versus generating approximate velocity
fields from a much more efficient random field generator run over a larger domain.
These choices affect the types of questions we can examine as well as the generality
of the results we can produce.

In this study we have given first priority to simulating transport over a large
enough distance to allow the solute plume to adequately sample both the smal-
lest and largest scales of velocity variability. As a result, we use a large two-
dimensional (horizontal plane or plan view) domain with velocities obtained from
a random field generator. The hydraulic conductivity in this domain is assumed to
be isotropic and spatially variable. The domain extends over 200 large correlation
lengths (λl) in the longitudinal (mean flow) direction and 12.5 large correlation
lengths in the transverse direction. The left and right halves of the domain are il-
lustrated in the upper and lower sections of Figure 1, respectively. We will examine
detailed ‘snapshots’ of solute plumes located in the four windows indicated at time
steps 10, 60, 100, and 300 (200, 1200, 2000, and 6000 days, respectively) after the
instantaneous source release. These windows are defined for display purposes only
– the domain used to solve the transport equation at all times is the 200λl by 12.5λl
outer region shown in the figure. The release is distributed over the 20 m by 20 m
square source area indicated in the figure and the mean flow is from left to right
along the longitudinal (x1) axis.

The random velocity generator used in our experiment relies on approximate ve-
locity spectra derived from a specified log hydraulic conductivity spectrum and lin-
earizations of Darcy’s law and the groundwater flow equation (Ruan and McLaugh-
lin, 1998). This approach is much less computationally demanding than currently
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Figure 1. Left and right halves of experimental domain. Axes units in number of large log
hydraulic conductivity correlation scales (λl = 20 m). Shaded areas indicate windows used
to display results at time steps 10, 60, 100, and 300 (200, 1200, 2000, and 6000 days,
respectively).

available methods for solving the groundwater flow equation with random coeffi-
cients on grids of order 106. Both theoretical and numerical analyses show that our
linearized spectral approach provides physically reasonable divergence-free lon-
gitudinal and transverse velocities at each grid location (Graham and McLaughlin,
1988; Ruan and McLaughlin, 1998). In the simulations considered here we assume
that the small and large-scale log conductivities are independent random fields,
with Gaussian spectra characterized by correlation lengthsλs andλl, respectively.
We chose Gaussian spectra because they produce replicates with reasonably well-
defined features that have length scales similar to the specified values ofλs and
λl.

The small and large-scale log conductivity spectra are used to derive the spectra
of the corresponding linearized small and large-scale velocity fields. There is no
need to actually generate random log conductivity replicates since the transport
model only depends on velocity. We obtain a two-scale velocity field by summing
the deviations of the small and large-scale velocity fields from their means

vit (x) = vi + v′is (x)+ v′il(x), (1)

wherevit is the two-scale velocity in directioni, v′is , andv′il are zero-mean small
and large-scale velocity fluctuations in directioni, andvi is the constant mean ve-
locity in directioni. Figure 2 shows some typical longitudinal velocity realizations
produced by our random field generator. The upper, middle, and lower plots are
small-scale only, large-scale only, and two-scale realizations, respectively. These
plots cover a small portion of our experimental domain extending over about 25 by
12.5 large correlation scales. The small-scale log conductivity correlation length is
2 m and the large-scale correlation length is 20 m, giving a scale disparity ratio of
1:10. Other inputs are summarized in Table I. Note that the longitudinal velocities
are anisotropic, with longer correlation scales in the longitudinal (mean flow) dir-
ection. Also, note how the major features in the large-scale velocity field influence
the two-scale field.
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Figure 2. Synthetic realizations of longitudinal velocity for small (λs = 2 m), large
(λl = 20 m) and two-scale log hydraulic conductivity spectra. Axis units in numbers of large
correlation scales. Velocities are in m/day.
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Table I. Input parameters for computational experiment

Domain sizeL1× L2 4080 m× 250 m

Grid size1x = 1x1 = 1x2 1.0 m

Number of computational nodesN 1,024,331

Time step1t 20 days

Total simulation time 8000 days (400 time steps)

Small-scale log hydraulic conductivity correlation lengthλs 2.0 m

Large-scale log hydraulic conductivity correlation lengthλl 20.0 m

Hydraulic conductivity geometric meanKg 6.25 m/day

Log k varianceσ2
f

1.0

Porosityρ 0.3

Mean hydraulic gradient|J | 0.02

Mean velocityv 0.42 m/day

Local longitudinal dispersivityαl 0.15 m

Local transverse dispersivityαt 0.015 m

Longitudinal grid Peclet number 6.7

Transverse grid Peclet number 67.0

Courant number 8.2

Rectangular source size 20 m× 20 m

Source location(x0, y0) (102 m, 125 m)

The solute transport equation which forms the basis for our numerical experi-
ment can be written in generic form as

∂c

∂t
+ v1

∂c

∂x1
+ v2

∂c

∂x2
= ∂

∂x1

[
D11

∂c

∂x1

]
+ ∂

∂x2

[
D22

∂c

∂x2

]
, (2)

wheret is time, c(x, t) is solute concentration,v1(x) andv2(x) are the spatially
variable steady-state velocity components (small, large, or two-scale) in the lon-
gitudinal (x1) and transverse (x2) directions, andD11 andD22 are the longitud-
inal and transverse dispersion coefficients, aligned along thex1 andx2 directions,
respectively. The dispersion coefficients are related to the dispersivities by

D11 = vAL, D22 = vAT , D12 = D21 = 0, (3)

whereAL andAT are, respectively, the longitudinal and transverse dispersivities.
We solve (2) with the cubic spline Eulerian–Lagrangian algorithm described

in Ruan and McLaughlin (1999). This solver is computationally efficient and in-
troduces little or no numerical dispersion at the grid resolutions we have used.
Ruan and McLaughlin (1999), present a set of detailed quantitative tests of the
cubic spline algorithm which demonstrate that it performs well in heterogeneous
advection-dominated transport problems similar to the one considered here. When
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Figure 3. Solute log concentration contours at time steps 10 (left column), 60 (center column),
and 100 (right column), corresponding to days 200, 1200, and 2000, respectively. First row (a)
shows small-scale experimental plume (small-scale velocity with local dispersivity), second
row (b) shows predicted (ensemble mean) small-scale plume (constant velocity with estimated
macrodispersivity), third row (c) shows two-scale experimental plume (two-scale velocity with
local dispersivity) and fourth row (d) shows predicted two-scale plume (large-scale velocity
with estimated macrodispersivity). Compare (b) to (a) and (d) to (c).

compared to traditional Eulerian or Eulerian–Lagrangian methods, the cubic spline
interpolator yields smaller computational errors for a given level of computational
effort while allowing the use of larger Courant and Peclet numbers. The accuracy
of the cubic spline transport solver is also demonstrated by its ability to resolve
small-scale highly variable plume features without adding spurious oscillations
(see Figures 3c and 4c).

In our experiment the concentration is specified to be zero on the left boundary
of the computational domain. Outflow conditions are specified on the remaining
boundaries. The outflow conditions allow streamlines to cross boundaries. They
are implemented in the dispersive step of our Eulerian–Lagrangian solution al-
gorithm by fixing the outflow boundary concentration at the value obtained from
the preceding advective step (see Ruan and McLaughlin (1999) for details). The
initial concentration is zero everywhere in the computational domain, except over
the source region, where it is equal to the specified source concentrationcs.

2.2. INVESTIGATION OF MACRODISPERSIVE TRANSPORT

We now wish to use our experimental setup to examine the performance of a
transport model which uses macrodispersivities to account for the effects of small-
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Figure 4. Solute log concentration contours at time steps 300, corresponding to day 6000.
Rows are defined as in Figure 3.

scale variability. This raises the question of how we should compute the macro-
dispersivity tensor. If we use theoretically derived macrodispersivity values we
introduce the possibility of inconsistencies between approximations made in the
numerical experiment and approximations made in the theory. For example, the
two-dimensional asymptotic macrodispersivities of Gelhar and Axness (1983) are
based on linearizations of both the flow and transport equations while our experi-
ment relies on a linearization of the flow equation (since the velocity random field
generator is based on a linearization) but retains all the nonlinearities introduced
by the transport process.

In order to avoid such inconsistencies, we adopt a different approach. The con-
stant velocity and macrodispersivity used in the ensemble mean transport equation
are related to the asymptotic spatial moments of the mean concentration (the ve-
locity is the time derivative of the first moment while the macrodispersivity is
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proportional to the time derivative of the second moment). If the assumptions of
the stochastic theories are correct, the weak ergodicity assumption should hold and
the asymptotic spatial moments of the smooth ensemble mean plume should be es-
sentially the same as the asymptotic moments of the irregular experimental plume.
Consequently, we can estimate the desired constant velocity and macrodispersivity
from the spatial moments of the experimental plume. The latter alternative is ana-
logous to estimating effective transport properties from a tracer test in a domain
where there is only small-scale variability. It has the advantage of focusing on
the common objective of most of the stochastic theories without depending on the
assumptions of any particular theory.

We begin by generating an experimental plume that emanates from an instant-
aneous point source and moves through a velocity field with only small-scale
variability about a constant mean. These are the conditions considered in classical
macrodispersion theory. The first rows (Case a) of Figures 3 and 4 show log con-
centration contour plots obtained at four different times for such a plume. Table II
summarizes the velocity and dispersivity assumptions made for this and all of the
other cases simulated in our experiment.

Note that only local dispersivity is used in the (Case a) simulation since small-
scale velocity fluctuations are explicitly included in the advective term of the trans-
port equation. The resulting tracer plume has a roughly Gaussian shape, with quite
a bit of fine structure contributed by small-scale velocity variations. The very pres-
ence of this fine structure is a qualitative indication of the cubic spline algorithm’s
ability to solve difficult advection-dominated transport problems. Even a small
amount of numerical dispersion tends to suppress such features.

The first and second moments of an ensemble mean plume are related to the
constant effective velocity and macrodispersivity in the solute transport equations

Table II. Summary of experimental cases

Case v1 v2 A Comments

(a) v + vs1 vs2 Local only Small-scale experimental plume,

no large-scale variability

(b) v 0 Local+ Predicted (ensemble mean) small-scale plume,

macrodispersivity small-scale variability not resolved but

accounted for with macrodispersivity,

no large-scale variability

(c) v + vt1 vt2 Local only Two-scale experimental plume,

both small and large-scale variability

(d) v + vl1 vl2 Local+ Predicted two-scale plume,

macrodispersivity small-scale variability not resolved but

accounted for with macrodispersivity,

large-scale variability resolved
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Figure 5. Normalized time derivative of longitudinal second spatial moment(2̂vM00)
1/2d ·

(M20−M2
10M

−1
00 )/dt versus normalized travel distance (M10/λl) for each of the cases shown

in Figures 3 and 4.

as follows (Dagan, 1989; Gelhar; 1993):

v̂ = 1

M00

dM10

dt
, (4)

ÂL = 1

(2v̂M00)

d(M20−M2
10M

−1
00 )

dt
, (5)

ÂT = 1

(2v̂M00)

d(M02−M2
01M

−1
00 )

dt
, (6)

whereMij is the(i, j)th spatial moment, defined in discrete form as

Mij (t) =
N∑
k=1

xik1x
j

k2 c(xk1, xk2, t) 1x1x (7)

andM00(t) is the solute mass (practically a constant for our simulations). If we
substitute the nodal concentrations from the small-scale experimental plume into
(7) we find that the time derivatives on the right-hand sides of (4) through (6) vary
over time. The first moment time derivative fluctuates slightly about the ensemble
mean velocity of 0.42 m/day used in the random field generator. Figures 5 and 6
reveal that the longitudinal and transverse central second moment time derivatives
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Figure 6. Normalized time derivative of transverse second spatial moment(2̂vM00)
1/2d ·

(M02−M2
01M

−1
00 )/dt versus normalized travel distance (M10/λl) for each of the cases shown

in Figures 3 and 4.

for Case a (small circles) fluctuate initially but soon approach constant asymptotic
values, a prerequisite for ergodicity. We substitute these asymptotic values into (4)
through (6) to obtain the effective velocity and macrodispersivity for our ensemble
mean model. Note that this forces the ergodicity condition to apply.

If we insert the asymptotic effective velocity and macrodispersivities derived
from Case a into the solute transport Equation (2) the result is the predicted (en-
semble mean) small-scale plume shown in the second rows of Figures 3 and 4 (Case
b). As expected, the Case b plume has a Gaussian shape with the same asymptotic
first and second spatial moments as the Case a plume in Figures 3(a) and 4(a). This
is confirmed by the Case b second moment time derivatives plotted in Figures 5
and 6 (small filled squares).

Although the predicted plume of Figures 3(b) and 4(b) has the same first two
spatial moments as the more irregular plume in Figures 3(a) and 4(a), the smaller-
scale differences between these two cases are apparent. Most striking is the moder-
ate longitudinal asymmetry (non-zero third moment) of the irregular plume. Des-
pite minor differences between Cases a and b, it might be argued that the predicted
plume provides a reasonable aggregate approximation to the irregular plume. This
prediction does not resolve small-scale variations in velocity but, instead, uses a
macrodispersivity coefficient to account for their aggregate effect.

Other quantitative measures of plume structure provide additional insight which
can help us compare our experimental cases. One of these is a dilution (or entropy)
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Figure 7. Relative dilution index(I (t)) versus normalized travel distance (M10/λl) for each
of the cases shown in Figures 3 and 4.

index based on concepts proposed by Kitanidis (1994). This index is defined as

I (t) = E(t)/Emax(t), (8)

where

E(t) = exp

{
−

N∑
k=1

pk logpk1x1x

}
(9)

andEmax(t) is the maximum value ofE(t). The ratiopk(t) = ck(t)/M00(t) is the
normalized solute concentration at timet and nodek. Figure 7 plots the dilution
index versus normalized travel distance for each of our experimental cases.

It can be shown that the valueEmax(t) is attained whenck(t) corresponds to
a Gaussian plume with the same second spatial moments as the plume of interest
(Kitanidis, 1994). That is, the Gaussian condition is the one that provides the most
dilution or mixing. The dilution indexI (t) measures the ratio of area (or volume)
occupied by a simulated plume to the area (or volume) occupied by the corres-
ponding Gaussian plume. WhenI (t) approaches 1.0 the plume is as well-mixed
as possible, for a given set of spatial second moment values. This interpretation is
confirmed by noting that the dilution index for Case b approaches the maximum
value of 1.0 as soon as velocity variations overcome the initialization effects im-
posed by the square solute source. Although the dilution index for Case a does not
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Figure 8. Normalized peak solute concentrationcmax(t)/cs versus normalized travel distance
(M10/λl) for each of the cases shown in Figures 3 and 4.

reach 1.0 it approaches an asymptotic value above 0.90, indicating that this case
produces a nearly Gaussian plume.

Another important measure of plume behavior is the maximum (or peak) con-
centration taken over all simulation nodes. Figure 8 plots the normalized peak
concentrationcmax(t)/cs versus normalized travel distance for each of our experi-
mental cases. Herecs is the initial source concentration. Note that the normalized
peak decays quickly from its maximum value of 1.0 for both Cases a and b. How-
ever, the peak for Case a, which retains small-scale variability, is consistently
higher than the peak for Case b, which accounts for small-scale variability only
through the enhanced spreading provided by the macrodispersivity coefficients.
The differences in the two peaks are greatest at intermediate times when the peak
values are moderately large. At these times the peaks for Case a can be twice the
values obtained for Case b.

Figure 9 provides a more global indication of the distribution of simulated
concentration values. The measure plotted here is a cumulative areal distribution
function of the concentration at four times after the initial solute release. At each of
these times concentrations at all computational nodes with values greater than the
threshold 10−6cmax(t) are ranked from smallest to largest (cmax(t) is the maximum
concentration over all nodes at timet). This rank is then divided by the number
of nodesNcmax which have concentrations above the threshold to give a number
between 0.0 and 1.0. The normalized rank and concentration are plotted for each
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Figure 9. Cumulative areal distribution functionsF(c) of solute concentration versus normal-
ized concentration for each of the cases shown in Figures 3 and 4.

of theNcmax nodes, giving the curves shown in Figure 9. Since every node has an
associated area1x2 the ordinate of each curve can be viewed as the fraction of
the plume area with concentrations less than or equal to the value specified on the
abscissa. It is apparent from the plot that the concentrations obtained for Case a are
consistently higher than those obtained for Case b at early times but nearly the same
at later times. This appears to reflect the time needed in Case a for local dispersion
and small-scale velocity fluctuations to dilute the solute originally concentrated at
the source.

The results discussed above for Cases a and b confirm the basic assumptions of
stochastic macrodispersion theory, particularly the rapid convergence of the spatial
moment time derivatives to asymptotic values and the near-Gaussian appearance
of the asymptotic plume. This supports the use of macrodispersivities in situations
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where velocity varies only over small scales. Now we can examine the results
obtained when large-scale velocity variations are also present.

The third rows (Case c) of Figures 3 and 4 show the evolution of an experi-
mental solute plume through a two-scale velocity field with only local dispersion
included. Case c is analogous to Case a except for the addition of a large-scale
velocity component. We can consider this to be a more-or-less realistic case which
we would like to reproduce, at least in an aggregate fashion, with a model based
on effective properties. The Case c plume clearly has a less regular structure than
Cases a and b, reflecting the influence of large-scale flow features. This is most
apparent at time stepNt = 100, when cross-sections through portions of the plume
are multi-modal and the area of highest concentration runs nearly perpendicular to
the mean flow direction.

Some of the quantitative measures used to analyze Cases a and b behave much
differently for Case c. Figure 5 indicates that the time derivative of the longitudinal
spatial second moment (small triangles) does not approach an asymptotic value
even after the plume has traveled 150 large correlation lengths (1500 small correl-
ation lengths). This means that the weak ergodicity condition cannot be satisfied,
at least over the time period considered in this experiment. Although the transverse
component plotted in Figure 6 does vary around a constant value after about 50
large correlation scales this value is significantly larger than the ones obtained for
Cases a and b.

Figure 7 shows that the Case c dilution index is much lower than the indices
obtained for Cases a and b, confirming the visual observation that the two-scale
plume is not Gaussian and not as well mixed as plumes which have a more Gaus-
sian shape. The peak concentration measure of Figure 8 indicates that the Case c
plume has lower peak values than Case a except at very early times. This may
reflect the marked stretching of the two-scale plume that takes place starting after
time stepNt = 60. The cumulative areal distribution functions plotted in Figure
9 confirm that Case c has consistently lower concentrations than Case a with the
difference increasing over time.

Now we can consider what happens when we insert the effective dispersivities
estimated from Case a into a transport equation which resolves the large-scale
features of the Case c flow field. In particular, we are interested in the ability of
these macrodispersivities to account for the effects of small-scale variability. The
resulting plume, which can be viewed as a prediction of Case c, is shown in the
fourth rows of Figures 3 and 4 (Case d)). The Case d plume reproduces the general
location and shape of the Case c plume, although it is much smoother. The most
noticeable qualitative difference is at the higher concentration levels, especially at
later times. AtNt = 100 the Case c peak is higher and in a different location than
the Case d peak and the region of moderately high concentrations is more extensive
in Case c. The contrast is much more pronounced atNt = 300, when the predicted
plume has nearly disappeared and the concentrations levels along its centerline are
greatly underestimated.
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Table III. Summary of mass balance errors (in percent)

Case (a) (b) (c) (d)

Nt = 10 −3.28 −0.18 −0.80 −0.25

Nt = 60 −5.74 0.25 −1.36 −0.02

Nt = 100 −4.03 0.46 0.23 0.89

Nt = 300 −4.85 1.02 3.40 14.66

Additional insight can be obtained by comparing the Case c and d quantitative
measures plotted in Figures 5 through 9. The longitudinal second moment time
derivatives for Cases c and d are quite similar up to about 100 large correlation
distances (time stepNt = 100). After that, the Case d time derivative increases
more slowly, underestimating the longitudinal spreading of the Case c plume. The
transverse second moment time derivative of the predicted plume (open squares) is
significantly larger than the comparable Case c result at large times. This indicates
that the Case d plume is spreading more rapidly in the transverse direction, as is
apparent in Figures 3 and 4. Many of these differences between the Case c and
d second moment plots are probably replicate-specific. The more general phe-
nomenon noted here is the lack of convergence to asymptotic values, especially
in the longitudinal direction, even after 150 large-scale correlation distances. This
indicates that a critical prerequisite for ergodicity (moment derivative convergence)
is not satisfied.

The dilution index plotted in Figure 7 indicates that the predicted Case d plume
is much better mixed and ‘more Gaussian’ than the Case c plume, reflecting the
smoothing effect of the macrodispersivity. Figures 8 and 9 confirm that this effect
lowers the peak concentration and shifts the cumulative areal distribution function
towards lower values at all times. Overall, the effective property approximation
locates the solute reasonably well but consistently underestimates its concentra-
tion. This could have serious implications for applications where concentration
levels are important, either for regulatory reasons or because of possible effects on
chemical and biological transformations not considered here.

Since the plumes in Figures 3 and 4 are plotted with discrete log concentration
intervals (one color for each interval) it is difficult to visually confirm that their
masses are all the same. Table III summarizes computed mass balance errors (initial
mass released at the source minus plume mass at the specified time) for each of the
four cases shown in Figures 3 and 4. All the errors are small (a few percent or less)
except the error for Case d at timeNt = 300. In this case the plume spread so
much that some of it (about 15% of the initial mass) crossed the outflow boundary
and left the computational domain. Some of the other plumes shown in Figures
3 and 4 extended slightly outside the viewing windows defined in Figure 1 and
so appear to be truncated. However, the mass balance results show that only the
Case dNt = 300 plume actually spread outside the computational domain.
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It is interesting to note that Figure 9 indicates that the Case c solute concen-
trations are close to Case a but much higher than Case d at early times. As time
progresses the Case c concentrations become smaller relative to Case a until they
approach the values of Case d. This evolutionary process suggests that the two-
scale plume is first influenced primarily by the smaller-scale velocity variations
which also control the dispersion and dilution of the Case a plume. As larger-scale
features take effect, they appear to contribute additional mixing which lowers con-
centrations well below the levels observed in the small-scale plume. The moments
for Case c suggest that this large-scale mixing effect may have a different form than
classical Fickian macrodispersion but it does, nevertheless, disperse and dilute the
solute. It is possible that the large-scale mixing effect may be described as Fickian
macrodispersion over larger time scales than considered here, but it should be noted
that our two-scale plume has traveled well over 100 large correlation scales without
reaching this state. Even if the plume eventually reaches a asymptotic Fickian
(i.e. Gaussian) state, this will occur after the solute has become very dilute, with
concentrations orders of magnitude below the source value. Asymptotic Fickian
models which apply only at such large times are of limited practical usefulness.

3. Discussion and Conclusions

The numerical experiment described here, like a field tracer experiment, provides
information about solute movement for particular conditions. If these conditions
change we can expect the resulting plumes to change as well. In particular, plumes
obtained from different velocity replicates can be expected to have features which
differ qualitatively from those shown in Figures 3 and 4. Although some care must
be exercised in generalizing from the results reported here, we have repeated our
experiment with different replicates and have observed similar overall behavior.
Furthermore, we believe that the plumes discussed in this paper have traveled
sufficiently far to sample a wide range of velocity fluctuations, both at the small
and large scales. So we feel that it is valid to draw some general conclusions from
our results.

We have observed (for Case a) that the time derivatives of the spatial moments
of an individual solute plume moving through a small-scale constant mean velocity
field tend to asymptotic limits. Furthermore, this plume approaches the well-mixed
Gaussian state associated with a relative dilution index of 1.0. Since Gaussian
plumes are completely characterized by their first two spatial moments we might
expect that a model which reproduces these asymptotic moments will provide good
predictions in other respects, at least for large times.

We have investigated this hypothesis with a transport model which does not
resolve small-scale velocity fluctuations but is able to reproduce the spatial mo-
ments of the small scale plume with an appropriately adjusted macrodispersion
coefficient. Predictions from the model (Case b) match the overall shape of the
small-scale plume and give reasonable approximations to the large-time dilution
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index, peak value, and cumulative areal distribution function. So the first part of our
experiment confirms that the most of the effects of small-scale velocity variability
can be accounted for with a macrodispersion coefficient, at least for large times, if
there is no large-scale variability.

The situation appears to change when small and large-scale velocity fluctuations
are both present (Case c). The resulting plume is qualitatively different from the
classical Gaussian plume since it reflects the cumulative influence of all the large-
scale features it has passed through. The longitudinal second spatial moment time
derivative does not converge to an asymptotic value, even after the plume has
traveled over one hundred large correlation lengths and the peak concentration has
dropped to less than 1–2% of the initial source concentration. The corresponding
transverse derivative appears to approach an asymptotic value, but this value is
significantly larger than the one observed for the small-scale plume of Case a.
The dilution index confirms that the two-scale plume remains far from Gaussian
throughout the simulation period. Although it might be argued that the plume
should eventually become Gaussian it appears that this state could only be obtained
after the concentrations have been diluted far below the small levels observed at the
end of our experiment.

The primary question motivating our investigation is whether the large-scale
features of a two-scale solute plume can be reproduced by a model which perfectly
resolves the large-scale component of the velocity field but uses macrodispers-
ivities to account for small-scale variability (Case d). As might be expected, the
plume predicted by such a model shares some qualitative features with the two-
scale experimental plume, since they both depend on the same large-scale velocity
field. But the predicted plume is more well-mixed and consistently underestim-
ates peak solute concentrations at all times. So it appears that a model which
uses conventional macrodispersivities to account for small-scale variability fails
to reproduce some key features (especially peak concentrations) of the two-scale
plume. It may be argued that since an ensemble mean concentration model based on
effective parameters is intended to produce a smoothed version of the actual plume
the results shown in Figure 4(d) should come as no surprise. The problem with
the prediction of Figure 4(d) is not that it is smooth but that it fails to reproduce
either the first two spatial moments of the two-scale plume (the weak ergodicity
requirement) or its peak values, which may be more important than the moments
in practical applications.

It should be pointed out that the two-scale plume considered in our experiment
may be too narrow (with respect to the length of large-scale velocity variations)
to display ergodic behavior over the time scales we have simulated. This is, in
fact, one of our primary points. If large-scale velocity variations are larger than
source sizes, as they are in many practical modeling applications (where advective
velocities may be defined over grid spacings on the order of hundreds of meters
and sources may be only tens of meters across), we cannot expect ensemble mean
dispersion theories to accurately predict the behavior of individual plumes. The
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source sizes and large-scale velocity correlation lengths we have used are typical
of many field situations. If the requirements needed for stochastic macrodisper-
sion theories to hold are too confining these theories may be of limited practical
use, even if they are correct for a particular set of assumptions. Non-Fickian and
non-local theories of macrodispersion provide alternatives to the simple approach
considered in Figure 4(d) (see, for example, Graham and McLaughlin, 1988). How-
ever, these theories generally replace traditional effective property concepts and
associated transport equations with more complex alternatives. Also, they have not
been extensively tested in field settings where large-scale velocity variations are
important.

In many ways this experiment raises as many questions as it answers. How
valid are conclusions drawn from a two-dimensional experiment which ignores the
effects of mixing in the missing third dimension? How would the results differ if the
velocity field were generated from a nonlinear flow simulator rather than a random
field generator based on a linearizations of Darcy’s law and the flow equation?
Could a different macrodispersivity coefficient (e.g. one which accounts in some
way for the presence of large-scale variability) do a better job in predicting dilution
or concentration peaks? How about a non-local stochastic dispersion theory or one
which treats the large-scale velocity component as a spatially variable ensemble
mean? How would the situation change if the macrodispersivities were derived
from statistics (e.g. velocity covariances) conditioned on the resolved large-scale
velocity field, rather than from unconditional statistics? These are all questions
which go beyond the scope of this paper but which deserve careful attention.

But the critical issue raised here is whether it is valid to assume that small and
large-scale velocity fluctuations can be treated independently. We believe that the
substantial difference in behavior observed for our two-scale case, even after travel
over distances unprecedented in other field or numerical experiments, can best be
explained by scale interactions resulting from the nonlinear transformation from
velocity to concentration (Ruan, 1997). If this transformation were linear, our two-
scale velocity field would be just one more statistically homogeneous (spatially
stationary) input to classical macrodispersion theory. We would expect the spatial
moment derivatives and dilution index to approach classical values, albeit more
slowly than in the small-scale case. Since this does not appear to happen we suspect
that scale interactions are important. This hypothesis is considered further in Ruan
(1997), where a number of numerical sensitivity studies are described. However,
the issue will probably be resolved only through more careful theoretical analysis
of the nonlinear aspects of the transport process.
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