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Abstract

Recent	years	have	seen	an	exponential	increase	in	the	amount	of	data	available	in	all	
sciences	and	application	domains.	Macroecology	is	part	of	this	“Big	Data”	trend,	with	
a	strong	rise	in	the	volume	of	data	that	we	are	using	for	our	research.	Here,	we	sum‐
marize	the	most	recent	developments	in	macroecology	in	the	age	of	Big	Data	that	
were	presented	at	the	2018	annual	meeting	of	the	Specialist	Group	Macroecology	
of	the	Ecological	Society	of	Germany,	Austria	and	Switzerland	(GfÖ).	Supported	by	
computational	advances,	macroecology	has	been	a	rapidly	developing	field	over	re‐
cent	years.	Our	meeting	highlighted	important	avenues	for	further	progress	in	terms	
of	standardized	data	collection,	data	integration,	method	development	and	process	
integration.	 In	 particular,	we	 focus	 on	 (a)	 important	 data	 gaps	 and	 new	 initiatives	
to	 close	 them,	 for	 example	 through	 space‐	 and	 airborne	 sensors,	 (b)	 how	 various	
data	 sources	and	 types	 can	be	 integrated,	 (c)	how	uncertainty	 can	be	assessed	 in	
data‐driven	analyses	and	 (d)	how	Big	Data	and	machine	 learning	approaches	have	
opened	new	ways	of	investigating	processes	rather	than	simply	describing	patterns.	
We	discuss	how	Big	Data	opens	up	new	opportunities,	but	also	poses	new	challenges	
to	macroecological	research.	In	the	future,	it	will	be	essential	to	carefully	assess	data	
quality,	the	reproducibility	of	data	compilation	and	analytical	methods,	and	the	com‐
munication	of	uncertainties.	Major	progress	in	the	field	will	depend	on	the	definition	
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1  | INTRODUC TION

Data	 analysis	 through	 Big	 Data	 and	 machine	 learning	 methods	 is	
used	in	a	wide	range	of	applications	in	our	daily	lives.	Big	Data	are	
defined	by	 the	 five	Vs:	 volume,	 variety	 (heterogeneity	of	 sources,	
unstructured	 data),	 velocity	 (speed	 of	 data	 generation	 and	 collec‐
tion),	veracity	(uncertainty	and	data	quality)	and	value.	As	the	first	
four	Vs	 are	 self‐explanatory,	 the	 value	of	Big	Data	 refers	 to	what	
scientific	knowledge	we	can	extract	from	it.	The	applications	of	Big	
Data	 range	 from	 personalized	medicine,	movie	 recommendations,	
personalized	 advertisements	 in	 social	 media,	 to	 transportation	
scheduling,	 online	 shopping	 suggestions	 or	 even	 self‐driving	 cars.	
But	of	what	value	are	Big	Data	in	macroecological	research?	This	was	
the	topic	of	the	2018	meeting	of	the	Specialist	Group	Macroecology	
of	the	Ecological	Society	of	Germany,	Austria,	and	Switzerland	(GfÖ)	
“Macro2018”	held	 at	 the	Swiss	Federal	Research	 Institute	WSL	 in	
Birmensdorf,	Switzerland.	The	aim	of	this	paper	was	to	synthesize,	
and	provide	an	overview	of,	the	current	developments	in	macroecol‐
ogy	with	respect	to	Big	Data	that	were	highlighted	during	this	con‐
ference,	and	to	flag	potential	pitfalls	and	opportunities	arising	from	
these	developments.

Over	the	 last	decades,	we	have	seen	a	massive	 increase	 in	the	
amount	of	publicly	 available	data	 that	 are	 relevant	 for	macroecol‐
ogy.	Such	data	can	include	environmental,	genetic,	trait,	distribution,	
movement,	co‐occurrence	or	population	demographic	data.	Figure	1	
illustrates	this	increase	in	data	availability	using	the	example	of	oc‐
currence	information	in	the	Global	Biodiversity	Information	Facility	
(GBIF;	www.gbif.org)	and	animal	tracking	data	in	Movebank	(www.
moveb	ank.org).	As	more	data	become	available,	publications	on	Big	
Data	 have	 increased	 correspondingly	 in	most	 natural	 and	 life	 sci‐
ences	(Figure	1).	In	fact,	within	the	broad	field	of	ecological	and	bio‐
geographic	research,	Big	Data	tools	(from	generation,	maintenance,	
integration	of	multiple	data	sets,	to	actual	analyses)	appear	to	have	
been	 most	 often	 used	 in	 macroecological	 publications	 (Figure	 1).	
Due	to	the	large	amount	of	data	assembled,	many	data	collection	ini‐
tiatives	now	offer	unprecedented	possibilities	to	search	for	general	
patterns	 and	mechanisms	 in	 the	global	distribution	of	biodiversity	
(Bruelheide	et	al.,	2018).	This	development	has	been	partly	assisted	
by	 the	 fact	 that	many	 journals	have	adopted	a	data	sharing	policy	
and	increasingly	demand	that	authors	make	their	data	publicly	avail‐
able,	thus	moving	towards	open	science.	In	addition,	a	new	category	
of	papers	has	appeared,	where	data	and	their	metadata,	as	well	as	
their	generation	protocols,	can	be	published.

Progress	 in	the	acquisition	of	 large,	publicly	available	data	sets	
has	been	accompanied	by	the	development	of	artificial	intelligence,	
novel	statistical	tools	and	adapted	computer	platforms	that	are	able	
to	manage	and	analyse	Big	Data	beyond	the	capacity	of	a	single	com‐
puter.	The	term	“Big	Data”	is	often	used	synonymously	with	“large	
data”	in	macroecology.	Volume	is,	however,	only	one	of	the	five	Vs.	
In	other	words,	“Big	Data”	do	not	only	refer	to	data	sets	that	are	large	
in	size.	Instead,	the	four	remaining	Vs	(variety,	velocity,	veracity	and	
value)	imply	that	Big	Data	analyses	require	specific	methods	that	are	
suitable	 to	analyse	data	of	 large	volume	that	stem	from	heteroge‐
neous,	autonomous	sources	and	aim	at	exploring	the	complex	and	
rapidly	evolving	relationships	among	data	(Kambatla,	Kollias,	Kumar,	
&	Grama,	2014;	Xindong	et	al.,	2014).	The	difference	between	large	
and	Big	Data	 can	be	 illustrated	by	 a	 thought	 experiment:	 imagine	
a	univariate	data	 set	of	millions	of	data	points	 that,	 despite	being	
large,	can	be	assessed	with	classical	methodology	such	as	frequen‐
tist	or	Bayesian	statistics.	Such	data	are	not	necessarily	Big	Data,	but	
rather	large	data.	What	makes	large	data	big	is	the	fact	that	the	data	
are	heterogeneous,	collected	from	a	multitude	of	sources	that	each	
had	their	own	aim	for	gathering	the	data.	The	sheer	complexity	of	
these	heterogeneous	data	requires	purpose	built	methodologies	and	
careful	assessment	of	uncertainties,	while	opening	up	a	multitude	of	
questions	that	could	be	answered	with	it.

In	 their	 horizon‐scanning	 paper	 for	 macroecology,	 Beck	 et	 al.	
(2012)	identified	four	major	challenges	in	macroecological	research:	
integration	of	historical	contingencies,	explicit	consideration	of	pro‐
cesses,	aggregation	of	large	high‐quality	data	sets	on	a	global	scale	
and	 the	 advancement	of	 statistical	methods	 tailored	 to	 the	needs	
of	macroecology.	Contributions	at	 the	GfÖ	macroecology	meeting	
2018	explicitly	linked	aspects	of	the	latter	three	of	these	major	chal‐
lenges	 to	Big	Data.	We	specifically	 cover	 the	 topics	 that	emerged	
from	the	meeting	 in	 the	 four	 first	sections	of	 this	paper	 (a)	aggre‐
gation	of	large	data	sets,	(b)	data	harmonization	and	integration,	(c)	
uncertainty	propagation	and	bias	 in	data,	 and	 (d)	 the	explicit	 con‐
sideration	 of	 processes.	 Each	 section	 outlines	 recent	 advances	 in	
relation	to	Big	Data,	and,	where	appropriate,	links	to	the	macroeco‐
logical	challenges	outlined	by	Beck	et	al.	(2012).	In	the	last	section	
(the	future	of	Big	Data	in	macroecology),	we	postulate	that	the	huge	
amounts	 of	 information	 that	 are	 now	 becoming	 available	 to	mac‐
roecologists	–	be	it	environmental,	taxonomic,	biogeographic,	trait	
or	phylogenetic	information	–	open	up	new	possibilities	for	macro‐
ecological	research	in	the	upcoming	decade,	if	the	major	challenges	
regarding	data	processing,	quality	control	and	analyses	can	be	met.

of	data	standards	and	workflows	for	macroecology,	such	that	scientific	quality	and	
integrity	are	guaranteed,	and	collaboration	in	research	projects	is	made	easier.

K E Y W O R D S

Biogeography,	conference	overview,	data	science,	Linnean	shortfall,	machine	learning,	
Macroecology,	remote	sensing,	space‐borne	ecology,	Wallacean	shortfall
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2  | AGGREGATION OF L ARGE DATA SETS

Major	new	sources	of	data	for	macroecological	research	that	have	
become	available	in	recent	years	helped	to	fill	three	major	gaps	up	
to	now:	gaps	across	spatial	scales	(the	“scale	shortfall”),	gaps	in	the	
biomes	covered	(the	“Wallacean	shortfall”)	and	gaps	in	the	number	
of	taxa	covered	(the	“Linnean	shorfall”,	Beck	et	al.,	2012;	Hortal	et	
al.,	2015).	The	developments	that	we	outline	below	have	contributed	
to	overcoming	 these	 shortfalls	 and	 to	 all	 aspects	of	Big	Data,	 but	
especially	so	to	volume,	variety	and	velocity.

Improvements	 in	 the	 availability	of	 data	 at	 high	 spatial	 resolu‐
tion	 (i.e.	 grain	 size	≤1	 km2)	 at	 large	 extents	 (continental	 to	 global)	
have	 been	 relatively	 recent	 and	 are	 linked	 to	 the	 use	 of	 remotely	
sensed,	 space‐borne	 environmental,	 animal	 and	 plant	 data.	 Well‐
known	examples	of	reducing	the	scale	shortfall	include	time‐series	
for	 a	 multitude	 of	 vegetation	 indices	 from	MODIS	 (e.g.	 Huete	 et	
al.,	 2002),	 the	 SENTINEL	 imagery	 complementing	 LANDSAT,	 and	

high‐resolution	digital	elevation	models	with	global	coverage	deliv‐
ered	by	SRTM	and	now	TanDEM_X	(Figure	1).	Every	new	generation	
of	sensors	thereby	leads	to	higher	spatial,	temporal	or	thematic	res‐
olution.	And	there's	more	to	come.	For	example,	the	recent	launch	
of	the	ICARUS	(International	Cooperation	for	Animal	Research	Using	
Space,	Figure	1)	antenna	on	the	 International	Space	Station	marks	
the	beginning	of	a	new	era	in	animal	tracking,	generating	enormous	
amounts	of	data	every	minute.	Applications	of	animal	tracking	data	
range	from	forecasting	earthquakes	(Mai	et	al.,	2018)	to	investigat‐
ing	the	spread	of	diseases	by	animal	vectors	 (www.icarus.mpg.de).	
The	even	more	recent	launch	of	the	GEDI	mission	(Global	Ecosystem	
Dynamics	 Investigation)	 uses	 light	 detection	 and	 ranging	 (LiDAR)	
to	track	changes	in	tree	canopies	at	a	global	scale	and	is	expected	
to	produce	about	10	billion	cloud‐free	observations	during	 its	24‐
month	mission	length.

The	 increase	 in	spatial	 resolution	over	 large	extents	 is	not	 lim‐
ited	 to	 space‐borne	 sensors	but	 is	paralleled	by	airborne	 systems.	

F I G U R E  1  Timeline	of	Big	Data	in	
macroecology	(bottom	panel)	and	its	
imprint	on	the	publication	record	(top	
panel).	Pie	charts	show	the	amount	
of	publications	with	the	term	“Big	
Data”	in	either	the	title,	or	the	topic,	
in	combination	with	several	scientific	
disciplines	(colours	are	categorical	and	
represent	the	respective	discipline),	from	
a	search	on	ISI	Web	of	Knowledge	over	
the	years.	The	scale	is	similar	for	both	pie	
charts.	The	width	of	each	slice	gives	the	
percentage	of	publications	that	carry	the	
term	Big	Data	in	relation	to	the	overall	
amount	of	publications	in	the	respective	
fields.	The	timeline	at	the	bottom	
indicates	the	creation	of	major	data	
portals,	as	well	as	key	events	with	respect	
to	sources	generating	Big	Data.	Global	
storage	capacity	(1	exabyte	=	109GB)	is	
taken	from	(Hilbert	&	López,	2011)	which	
provide	data	until	2011.	Times	after	2011	
(light	grey)	are	extrapolated	[Colour	figure	
can	be	viewed	at	wileyonlinelibrary.com]
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Even	 though	 airborne	 campaigns	provide	data	with	higher	 resolu‐
tion,	 they	 typically	 cover	 smaller	 geographical	 extents.	 Airborne	
LiDAR	campaigns	at	national	scales	provide	data	on	vegetation	and	
terrain	structure	of	approximately	1x1m	resolution	and	have	been	
found	 to	 explain	 a	 considerable	 amount	 of	 the	 local	 variation	 in	
the	diversity	of	different	taxonomic	groups	 (e.g.	Clawges,	Vierling,	
Vierling,	&	Rowell,	2008;	Thers	et	al.,	2017;	Zellweger	et	al.,	2016).	
Additionally,	 airborne	 systems	 provide	 important	 information	 on	
microclimate	quantification	 (Zellweger,	Frenne,	 Lenoir,	Rocchini,	&	
Coomes,	2018).	UAVs	(unmanned	aerial	vehicles)	equipped	with,	for	
example,	 visual,	 multispectral,	 thermal	 or	 LiDAR	 sensors,	 provide	
data	with	 spatial	 resolutions	 of	 up	 to	 a	 few	millimetres.	 Typically,	
higher	spatial	resolution	comes	at	the	expense	of	lower	geographi‐
cal	coverage	as	it	generally	depends	on	flight	height.	However,	such	
ultra‐high‐resolution	 data	 captured	 on	 demand	 allow	 researchers	
to	 investigate	 microclimatic	 differentiation	 at	 the	 scale	 of	 single	
plant	individuals	within	an	entire	landscape	(Figure	2;	Cruzan	et	al.,	

2016;	Cunliffe,	Brazier,	&	Anderson,	2016;	Tang	&	Shao,	2015;	Tay,	
Erfmeier,	&	Kalwij,	2018;	Wich	&	Koh,	2018).	Orthophotos	created	
from	multiple	images	can	additionally	be	used	to	detect	vegetation	
composition	by	means	of	machine	learning	(pattern	recognition	al‐
gorithms)	based	on	training	data,	but	once	trained	these	algorithms	
are	 able	 to	 gather	 community	 composition	 data	 over	 large	 spatial	
extents	(sensu	Waser,	Ginzler,	Kuechler,	Baltsavias,	&	Hurni,	2011).	
Up	to	now,	many	of	these	techniques	are	limited	to	relatively	small	
areas	(approximately	1	km2)	and	generally	applied	in	easily	accessible	
landscapes,	where	UAVs	can	be	conveniently	operated,	and	plant	or	
animal	species	can	be	clearly	distinguished.

A	second	data	gap,	the	Wallacean	shortfall,	is	linked	to	the	fact	
that	not	every	biome	 is	equally	well	 represented	by	publicly	avail‐
able	species	distribution	data	from	sources	like	GBIF	(https	://www.
gbif.org,	2018)	or	BIEN	(Enquist,	Condit,	Peet,	Schildhauer,	&	Thiers,	
2016).	While	Europe	and	North	America	are	rather	well	represented,	
some	countries	(e.g.	Russia,	see	Figure	3a)	or	entire	biomes	such	as	

F I G U R E  2  Example	comparison	
of	remotely	sensed	environmental	
data	derived	from	satellite	and	UAV	
(Unmanned	Aerial	Vehicle)	remote	
sensing	at	a	site	(80.5029,	−23.6274)	in	
North	Eastern	Greenland	(a),	indicated	
with	a	star	in	(b;	corresponding	to	the	
inlet	in	a).	The	site	harbours	dry	and	wet	
tundra	developed	on	permafrost	soils	(c).	
Overlap	between	WorldView‐3	satellite	
imagery	and	a	UAV	derived	orthomosaic	
(ca.	2	×	2	cm	pixel	size)	is	shown	in	(d).	A	
comparison	of	the	spatial	resolution	of	
the	WorldView‐3	(e)	and	UAV	based	data	
(f)	is	illustrated	by	zooming	to	the	white	
inlet	area	in	(d).	Information	on	terrain	
structure	(g)	and	microclimatic	variation	
(h)	illustrated	with	a	digital	surface	
model	(g,	in	relative	height	difference,	
ca.	2	×	2	cm	pixel	size)	and	a	thermal	
orthomosaic	(h,	in	absolute	temperature,	
ca.	15	×	15	cm	pixel	size).	UAV	footage	
and	data	from	UAS4Ecology	Lab,	Aarhus	
University.	The	vegetation	classes	in	(a)	
and	(b)	are	based	on	Karami	et	al.	(2018):	
barren,	dark	grey;	abrasion	plateau,	light	
grey;	fen	areas,	yellow;	light	to	dark	green,	
represent	dry	and	wet	tundra	as	well	as	
tall	shrub	vegetation	[Colour	figure	can	be	
viewed	at	wileyonlinelibrary.com]
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the	diverse	tropics	are	under‐represented	(Beck	et	al.,	2012;	Meyer,	
Weigelt,	Weigelt,	 &	 Kreft,	 2016).	 Bulk	 collections	 such	 as	 the	 re‐
cently	launched	GIFT	(Global	Inventory	of	Floras	and	Traits;	Weigelt	
et	 al.,	 2019)	 represent	 important	 steps	 towards	 filling	 these	 data	
gaps	by	assembling	 species	 lists	 (checklists)	 for	 regions	across	 the	
globe.	Moreover,	such	aggregated	information	about	where	species	
occur	might	help	to	assess	biases	in	data	sets	based	on	point	locality	
information	(Meyer,	Weigelt,	et	al.,	2016).

A	 third	major	 shortcoming	 is	 that	many	 taxonomic	 groups	 are	
poorly	represented	or	entirely	absent	from	currently	available	data	
sets	(the	Linnean	shortfall).	The	meeting	highlighted	that	macroecol‐
ogists	have	worked	hard	in	recent	years	to	aggregate	data	on	under‐
sampled	taxa	that	have	been	collected	by	specialized	taxonomists	
or	 field	biologists.	The	fact	 that	these	data	collectors	are	opening	
up	their	archives	and	make	their	data	available	is	catalysing	efforts	
to	 overcome	 the	 Linnean	 shortfall.	 For	 example,	 a	 biogeographic	
assessment	of	saprotrophic	and	ectomycorrhizal	 fungi	 (Andrew	et	
al.,	 2018)	was	 based	 on	 a	 Big	Data	 integration	 effort	 (Andrew	 et	
al.,	2017),	boosting	data	availability	for	such	an	under‐represented	
group	as	fungi.	Furthermore,	data	integration	and	synthesis	on	ma‐
rine	 taxa	 have	 allowed	 researchers	 to	 globally	 synthesize	 marine	
diversity	(Tittensor	et	al.,	2010),	or	assess	the	biogeography	of	co‐
pepod	 traits	 (Brun,	 Payne,	 &	Kiørboe,	 2016).	 Yet,	many	 organism	
groups	remain	underexplored	at	the	continental	to	global	scale,	and	
even	well‐known	groups	 like	mammals	 show	significant	data	gaps	
(Jones	et	al.,	2009;	Meyer,	Jetz,	Guralnick,	Fritz,	&	Kreft,	2016).

In	summary,	we	have	seen	major	advances	in	the	recent	past	in	
aggregating	data	from	various	sources	to	overcome	the	data	gaps.	

However,	despite	these	major	advances,	there	is	still	a	long	way	to	
go,	in	particular	because	data	gathering	that	contributes	to	Big	Data	
in	macroecology	in	itself	is	not	sufficient	to	achieve	a	better	under‐
standing	of	macroecological	patterns	and	processes.

3  | DATA HARMONIZ ATION AND 
INTEGR ATION

The	 huge	 efforts	 to	 overcome	 shortcomings	 in	 macroecological	
data	 in	the	past	years	have	 led	to	an	exponential	 increase	 in	data	
becoming	available	from	data	portals	(Figure	1)	such	as	GBIF	(https	
://www.gbif.org,	2018),	MOVEBANK	(Wikelski	&	Kays,	2018),	TRY	
(Kattge	et	al.,	2011),	sPLOT	(Dengler	et	al.,	2014),	BIEN	(Enquist	et	
al.,	2016)	and	GIFT	(Weigelt	et	al.,	2019).	A	crucial	question	is	how	
to	integrate	this	steadily	increasing	amount	of	data	to	obtain	mean‐
ingful	scientific	inference.

König	 et	 al.	 (2019)	 showed	 that	 existing	 data	 portals	 and	
infrastructure	 predominantly	 focus	 on	 the	 disaggregated	 end	
of	 the	 data	 spectrum	 (e.g.	 point	 occurrences,	 individual	 trait	
measurements),	 while	 the	 wealth	 of	 often	 highly	 curated	 in‐
formation	 in	 aggregated	 data,	 like	 species	 checklists	 or	 taxo‐
nomic	 monographs,	 often	 remains	 scattered	 across	 different	
platforms.	 Integrating	 information	 on	 the	 distribution	 of	 spe‐
cies	with	functional	and/or	physiological	data	in	a	phylogenetic	
context	is	not	easy,	but	key	for	advancing	research	at	the	mac‐
roecological	 scale	 (Pearse	 et	 al.,	 2018).	 A	 recent	 example	 of	
this	is	the	integration	of	plant	trait	data	from	TRY	with	that	of	

F I G U R E  3  a,	Number	of	observations	
from	the	BIEN	data	portal	on	a	relative	
logarithmic	scale	in	Europe	(35–70°N).	
b,	Number	of	observations	in	France	
on	a	relative	logarithmic	scale	with	the	
observations	of	Carex bohemica	indicated	
as	black	dots.	c,	A	close‐up	of	the	region	
defined	by	the	black	square	in	(b)	shows	
that	most	observational	data	are	recorded	
on	a	regular	grid	(ca.	5	km	resolution),	
indicating	that	the	data	may	stem	from	
an	atlas	that	would	not	represent	point	
observations	(BIEN	version	4.1,	accessed	
5th	Nov.	2018)	[Colour	figure	can	be	
viewed	at	wileyonlinelibrary.com]

(a)

(b) (c)

bib32://www.gbif.org
bib32://www.gbif.org
www.wileyonlinelibrary.com
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the	 plant	 community	 database	 sPlot	 (Bruelheide	 et	 al.,	 2018)	
to	 detect	 environmental	 drivers	 of	 community	 trait	 composi‐
tion	at	the	community	level.	To	achieve	this,	it	was	necessary	to	
overcome	the	common	problem	of	integrating	data	from	multi‐
ple	spatial	scales	(e.g.	dealing	with	varying	taxonomies).	While	
vegetation	plots	are	often	assessed	at	a	very	small	spatial	grain	
(usually	 below	 1ha),	 environmental	 variables	 are	 globally	 only	
available	at	much	coarser	resolutions	(ca.	1	km2;	eg.	WorldClim,	
Hijmans,	 Cameron,	 Parra,	 Jones,	 &	 Jarvis,	 2005;	 or	 CHELSA,	
Karger	et	al.,	2017a,	2017b),	which	raises	the	issue	of	detecting	
the	 relevant	environmental	drivers	of	 community	composition	
or	dynamics.

Data	 integration	 not	 only	 requires	 data	 portals	 that	 collect	
and	 provide	 integrated	 data,	 but	 also	 the	 development	 of	 inte‐
grative	 methodologies	 to	 cope	 with	 heterogeneous	 data	 from	
various	sources	and	of	different	quality.	The	last	decade	has	seen	
an	 increasing	use	of	such	 integrative	methods.	Examples	 include	
occupancy	models,	which	 use	 information	 from	 repeated	 obser‐
vations	 at	 each	 site	 to	 estimate	 detectability	 and	 were	 mainly	
developed	 to	 solve	 the	 problems	 created	 by	 imperfect	 detect‐
ability	 (Kéry,	 Guillera‐Arroita,	 Lahoz‐Monfort,	 Guillera‐Arroita,	
&	 Lahoz‐Monfort,	 2013).	 Also,	 joint	 species	 distribution	models	
(JSDMs)	 are	 increasingly	 used	 to	 model	 species	 jointly,	 rather	
than	 using	 data	 only	 from	 single	 species,	 which	 should	 support	
models	 on	 species	 distributions	 by	 using	 information	 from	 co‐
occurrence	 patterns	 (Clark,	 Gelfand,	Woodall,	 &	 Zhu,	 2014;	 e.g.	
Ovaskainen	&	 Soininen,	 2011;	 Pollock	 et	 al.,	 2014;	 Zurell	 et	 al.,	
2019).	Furthermore,	an	increasing	number	of	packages	in	the	free	
statistical	computing	software	R	is	devoted	to	facilitate	workflows	
and	data	standardization,	and	these	are	heavily	used	by	the	scien‐
tific	community	(e.g.	Taxonstand,	Cayuela,	Cerda,	Albuquerque,	&	
Golicher	2012, CoordinateCleaner,	Zizka,	2019).

The	 meeting	 highlighted	 that	 statistical	 methods	 employed	
in	 macroecology	 are	 steadily	 moving	 towards	 more	 integrative	
methods.	 For	 example,	 Tobler	 et	 al.	 (unpublished)	 started	 inte‐
grating	 the	 two	 above‐mentioned	 methodologies:	 a	 combina‐
tion	 of	 joint	modelling	 of	 species	with	models	 that	 account	 for	
imperfect	 detection	 increased	 the	 robustness	 of	 predicting	 oc‐
currences.	 Including	 intra‐specific	 trait	 variation	 and	 joint	 trait	
modelling	 can	 improve	 the	 prediction	 of	 traits	 along	 environ‐
mental	 gradients	 when	 extrapolating	 outside	 the	 observed	 en‐
vironmental	 range	 (Wüest,	 Münkemüller,	 Lavergne,	 Pollock,	 &	
Thuiller,	 2018).	 Löbel,	Mair,	 Lönnell,	 Schröder,	 and	 Snäll	 (2018)	
used	a	combination	of	ensemble	SDMs	and	hybrid	fourth‐corner	
models	based	on	data	 from	public	data	 sources	 to	 identify	 crit‐
ical	 response	 traits	 of	 dead	wood	 inhabiting	 bryophytes	 to	 cli‐
mate	change.	Finally,	Hof	et	al.	(2018)	outlined	opportunities	and	
pitfalls	in	approaches	that	combine	data	on	land‐use	and	climate	
change	to	forecast	biodiversity	dynamics.

In	sum,	macroecology	continues	to	be	a	rapidly	progressing	sub‐
discipline	of	ecology,	both	in	gathering	and	providing	integrated	data	
and	 in	developing	new	methodologies	 to	 integrate	heterogeneous	
data	from	various	sources.

4  | UNCERTAINT Y PROPAGATION AND 
BIA S IN DATA

With	the	rapid	aggregation,	integration	and	harmonization	of	data,	
the	proliferation	and	propagation	of	uncertainties	have	become	an	
important	focus	of	macroecological	research.	One	of	the	major	chal‐
lenges	 in	 the	coming	years	will	 be:	how	can	we	address	problems	
related	to	bias	and	uncertainties	in	data?

In	 the	 recent	 past,	 macroecology	 has	 learned	 from	 adjacent	
fields	 such	 as	 climate	 science.	 In	 both	 fields,	 ensembles	 are	 used	
to	embrace	uncertainties	 that	 arise	 from	using	different	models	–	
different	climate	models	in	climate	sciences	(see,	e.g.	Palmer,	2000;	
Tebaldi	&	Knutti,	 2007),	 and	different	 species	distribution	models	
(SDMs)	as	well	as	random	subsets	of	initial	distribution	data	in	mac‐
roecology	(see,	e.g.	Araújo	&	New,	2007;	Thuiller,	2003).	Ensembles	
in	macroecology	aim	at	accessing	the	uncertainties	stemming	from	a	
range	of	variable	conditions	such	as	input	data,	type,	structure	and	
complexity	 of	 the	 models,	 their	 parameters,	 or	 climate	 scenarios	
(Dormann	et	al.,	2018,	2012).	Research	throughout	the	last	decade	
has	 indicated	 that	most	uncertainty	 in	correlative	macroecological	
biodiversity	 models	 stems	 from	 the	 various	 modelling	 algorithms	
that	are	 involved	(e.g.	Buisson,	Thuiller,	Csajus,	Lek,	&	Grenouillet,	
2010).	Yet,	uncertainty	also	originates	from	the	biodiversity	measure	
investigated	 (Thuiller,	 Guéguen,	 Renaud,	 Karger,	 &	 Zimmermann,	
2019),	and	many	important	uncertainty	sources,	such	as	the	number	
of	and	correlation	between	variables,	as	well	as	the	response	shape	
complexity	in	SDMs,	are	only	being	explored	now	(Brun	et	al.,	this	
volume).

Another	source	of	uncertainty	is	linked	to	data:	all	data	sets	con‐
tain	limitations	of	some	sort.	While	the	original	data	owners	(ecolo‐
gists	that	collect	data	in	situ)	know	their	data	well,	macroecologists	
accessing	such	data	through	data	portals	may	not	be	aware	of	all	data	
properties	and	resulting	potentials	and	limitations	when	using	these	
data.	For	example,	if	a	macroecologist	were	to	download	occurrence	
data	of	Carex bohemica	for	France	from	BIEN	through	the	BIEN	R‐
package	(Enquist	et	al.,	2016),	she	might	be	happy	to	find	245	geo‐
referenced	observations	(Figure	3b).	She	might	be	concerned	about	
the	coordinate	precision,	but	will	diagnose	that	the	WGS84	coordi‐
nates	are	given	to	more	than	four	digits	after	the	decimal	separator	
and	may	conclude	that	the	precision	of	the	coordinates	is	very	high	
(<15	m);	certainly	high	enough	to	extract	climatic	data	from	CHELSA	
that	 are	 available	 at	 a	 resolution	 of	 30	 arc	 sec	 (ca.	 1	 km2;	 Karger	
et	al.,	2017a,	2017b).	What	macroecologists	could	easily	overlook	is	
that	the	data	might	not	represent	a	precise	point	observation.	The	
inspection	of	the	BIEN	data	for	all	species	in	France	reveals	that	in	
certain	areas,	most	observations	appear	to	be	collected	in	a	regular	
grid,	suggesting	that	the	observations	could	well	be	from	an	Atlas‐
type	collection.	This	implies	that	the	coordinates	associated	with	the	
records	in	fact	do	not	represent	a	point	location	but	rather	represent	
an	area	with	a	footprint	of	ca.	5	×	5	km.	The	metadata	as	provided	by	
the	BIEN	R‐package,	however,	do	not	give	any	indication	about	the	
type	of	observation	(all	data	accessed	through	the	BIEN	R‐package	
in	November	2018,	BIEN	version	4.1;	Enquist	et	al.,	2016).
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In	 conclusion,	 inference	 in	 macroecology	 should	 be	 based	 on	
an	appropriate	consideration	of	biases	and	uncertainties	stemming	
from	heterogeneous	input	data	sets.	Ideally,	best	practice	standards	
should	 be	 developed	 and	 constantly	 refined	 (Araújo	 et	 al.,	 2019).	
With	an	increasing	heterogeneity	in	data,	macroecological	inference	
can	only	be	robust	if	we	consider	bias	and	uncertainties	in	the	data	
as	well.	This	requires	not	only	that	researchers	comply	with	meta‐
data	standards	at	the	data	gathering	stage	(such	as	the	Darwin	Core,	
Darwin	 Core	 Task	 Group,	 2009),	 but	 to	 also	 deliver	 standardized	
metadata	to	the	end‐users	of	data	portals.	It	also	requires	that	data	
users	properly	consider	which	data	are	appropriate	for	their	specific	
research	question.

5  | THE E XPLICIT CONSIDER ATION OF 
PROCESSES

Linking	process	to	patterns	has	been	announced	as	one	of	the	major	
challenges	 in	macroecology	 (Beck	 et	 al.,	 2012).	 Traditionally,	mac‐
roecology	has	focused	on	identifying	patterns	and	has	inferred	the	
processes	that	may	have	generated	the	observed	patterns	(McGill,	
2019).	Causal	inference	and	projection	of	the	inferred	relationships	
to	 novel	 conditions,	 however,	 is	 often	 hampered	 by	 the	 fact	 that	
most	methodologies	are	correlational	(e.g.	Brown,	1999;	Dormann,	
2007).	 How	 can	 Big	 Data	 approaches	 contribute	 to	 the	 ongoing	
quest	 for	 identifying	processes	 rather	 than	only	documenting	pat‐
terns	in	macroecology?

Several	 approaches	 are	 used	 and	 were	 discussed	 during	 the	
meeting	to	overcome	problems	in	inferring	processes	from	the	pat‐
tern,	 with	 varying	 success.	 A	 first	 approach	 is	 sometimes	 termed	
experimental	macroecology	(Alexander,	Diez,	Hart,	&	Levine,	2016)	
and	suggests	that	macroecology	moves	forward	by	experimentally	
testing	 assumptions	 and	 inferring	 causal	 relationships.	 Transplant	
experiments	 of	 entire	 communities	 to	 mimic	 expected	 climatic	
changes	are	one	example	of	such	an	experiment	(Alexander,	Diez,	&	
Levine,	2015).	The	challenge	here	is	the	massive	difference	in	scale	
at	 which	 experiments	 are	 conducted	 (usually	 local)	 and	 at	 which	
macroecological	processes	operate	(regional	to	global,	Currie,	2019).	
Experiments	alone	are	unlikely	to	be	able	to	bridge	this	scale	gap,	but	
this	might	be	achieved	by	combining	experimental	and	observational	
data,	for	example,	in	an	Approximate	Bayesian	Computation	frame‐
work	(Pearse	et	al.,	2018).

Another	 approach	 to	 establish	 causality	 is	 to	 explicitly	 model	
processes	 and	 compare	 the	 emerging	 results	 with	 observed	 pat‐
terns.	The	call	for	process‐based	models	in	macroecology	is	not	new	
(e.g.	Brown,	1999),	and	the	continuing	diminution	of	computational	
limitations	 has	made	 it	 possible	 to	 include	 various	 processes	 into	
macroecological	 analyses.	 These	 processes	 include,	 for	 example,	
physiology‐related	 mechanisms	 (Kearney	 &	 Porter,	 2004),	 micro‐
evolutionary	dynamics	of	populations	via	explicit	simulation	of	the	
genetic	architecture	of	phenotypes	(Schiffers	et	al.,	2014),	metapop‐
ulation	dynamics	via	explicit	simulation	of	dispersal	and	local	demog‐
raphy	across	changing	environment	in	distribution	models	(Juliano	S	

Cabral	&	Schurr,	2010;	Zurell	et	al.,	2016),	metacommunity	dynamics	
via	 inclusion	of	 resource	competition	and	other	biotic	 interactions	
(Juliano	Sarmento	Cabral	&	Kreft,	2012;	Münkemüller	et	al.,	2012),	
macroevolutionary	processes	(Aguilée,	Gascuel,	Lambert,	&	Ferriere,	
2018;	Cabral,	Wiegand,	&	Kreft,	2019;	Jõks	&	Pärtel,	2018;	Rangel	et	
al.,	2018)	and	plate	tectonics	(Descombes	et	al.,	2018;	Leprieur	et	al.,	
2016).	The	current	trend	in	mechanistic	macroecology	is	to	include	
the	 manifold	 processes	 into	 an	 integrative	 modelling	 framework	
(Cabral,	Valente,	&	Hartig,	2017;	Leidinger	&	Cabral,	2017;	Methorst,	
Böhning‐Gaese,	Khaliq,	&	Hof,	2017;	Pontarp	et	al.,	2018;	Thuiller	
et	al.,	2013;	Urban	et	al.,	2016).	 Indeed,	a	discussion	group	at	 the	
meeting	focusing	on	mechanistic	simulation	models	attracted	many	
participants	integrating	various	processes	in	their	models	and	high‐
lighted	several	motivations	 in	going	mechanistic,	 for	example,	bet‐
ter	theoretical	explorations,	generalization	of	concepts	and	system	
understanding;	unfeasibility	of	doing	similar	experiments	at	macro‐
ecological	scales;	providing	feedback	to	empiricists	on	hypothesized	
patterns	(i.e.	models	as	hypothesis	generator),	developing	more	in‐
formative	metrics	and	data	 requirements;	properly	 linking	process	
to	data/Big	Data	and	thus	data‐constrained	process	inference.	The	
high	 number	 of	 participants	 in	 the	 discussion	 group	 concerning	
mechanistic	models	was	unprecedented	in	earlier	meetings.	Hence,	
the	trend	towards	mechanistic	macroecology	will	likely	continue	as	
macroecologists	and	biogeographers	increase	their	interest	and	ef‐
forts	in	representing	explicitly	eco‐evolutionary	and	environmental	
mechanisms	in	simulation	models	while	Big	Data	becomes	more	and	
more	informative	on	constraining	these	mechanisms.

Another	promising	avenue	 to	 study	macroecological	processes	
is	to	tap	into	novel	information	by	extracting	data	from	sources	that	
have	 been	 underexplored	 in	macroecology.	 Pinkert	 et	 al	 (unpubl.)	
presented	 a	 study	 on	 species	 interactions	 from	 images	 obtained	
from	GOOGLE™	picture	 searches,	 by	detecting	within	 the	 images	
whether	the	proboscis	of	a	butterfly	was	in	contact	with	a	potential	
food	plant	or	not.	Automatization	of	such	image	processing	can	be	
achieved	using	pattern	 recognition	algorithms	 from	 image	analysis	
(e.g.	Weinstein,	 2015)	 and	might	make	 the	 detection	 of	 biotic	 in‐
teractions	from	large	picture	searches	through	web	search	engines	
possible.	Although	 this	 is	 a	 promising	 approach,	 it	might	 easily	 be	
biased	towards	very	few	enigmatic	or	attractive	taxa,	such	as	but‐
terflies	on	plants	with	attractive	flowers.	An	approach	without	such	
a	strong	observer	bias	is	the	detection	of	species	using	GOOGLE™	
street	view	data	(Rousselet	et	al.,	2013,	although	this	approach	may	
lead	to	a	spatial	and	urban	bias	instead).	Finally,	such	data	mining	ap‐
proaches	might	make	it	possible	to	track	the	process	of	invasive	spe‐
cies	spreading	along	major	traffic	routes	(Nobis	et	al.	unpublished).

Taken	 together,	 macroecology	 is	 just	 starting	 to	 investigate	
processes	 rather	 than	 simply	 documenting	 patterns.	 Experimental	
macroecology	is	still	the	most	challenging	of	the	three	approaches	
described	above,	mainly	due	to	the	extremely	large	spatial	extents	
usually	investigated	in	macroecology.	Modelling	processes	and	com‐
paring	them	with	observations	is	certainly	becoming	more	popular,	
as	computing	power	increases.	Literally	observing	processes	in	large	
databases,	as	shown	in	the	example	of	pollination	in	images	available	
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on	 the	 web,	 represents	 a	 frontier	 whose	 potential	 application	 to	
macroecology	is	currently	hard	to	foresee.

6  | THE FUTURE OF BIG DATA IN 
MACROECOLOGY

The	meeting	showed	that	Big	Data	tools	and	machine	learning	ap‐
proaches	have	already	demonstrated	 the	potential	 to	advance	 the	
field	of	macroecology.	However,	 in	 order	 to	 utilize	 the	 full	 poten‐
tial	of	Big	Data	approaches,	the	macroecology	community	needs	to	
make	a	coordinated	effort	to	address	the	major	challenges	outlined	
below.	We	have	highlighted	examples	where	Big	Data	have	already	
contributed	to	addressing	some	of	the	well‐known	challenges	that	
macroecology	is	facing	(Beck	et	al.,	2012;	Juliano	Sarmento	Cabral	et	
al.,	2017;	Pearse	et	al.,	2018).	With	or	without	the	help	of	Big	Data,	
these	challenges	remain.

6.1 | Challenges

One	of	the	future	challenges	is	certainly	how	to	integrate	the	mas‐
sive	amounts	of	data	that	are	available	 in	the	ecological	 literature,	
including	data	that	are	gathered	for	a	specific	study	but	have	never	
been	integrated	with	any	of	the	common	data	portals.	We	have	out‐
lined	above	how	designated	web	search	algorithms,	in	combination	
with	pattern	recognition	methods,	could	be	used	to	gather	data	on	
macroecological	patterns.	Given	the	vast	amount	of	data	available	
today,	 the	 challenge	 is	 how	we	 can	make	 use	 of	 these	 data	 in	 an	
efficient	way	 to	 answer	macroecological	 questions.	 Another	 chal‐
lenge	is	associated	with	bulk	collections	such	as	GIFT,	which	provide	
access	to	floristic	data	that	are	usually	based	on	inventories	at	the	
level	of	administrative	units,	and	which	face	the	challenging	problem	
of	 integrating	biological	with	environmental	data.	Areas	 for	which	
the	biological	data	are	available	(usually	political	entities)	are	often	
environmentally	heterogeneous,	 and	generating	 the	 relevant	envi‐
ronmental	parameters	at	this	scale	 is	a	major	hurdle	that	needs	to	
be	overcome	(see	Keil,	Belmaker,	Wilson,	Unitt,	&	Jetz,	2013	for	an	
example).	Furthermore,	efforts	towards	data	 integration	should	be	
converted	 into	 a	 mechanistic	 understanding	 of	 underlying	 causal	
relationships,	where	we	see	the	use	of	Big	Data	to	constrain	param‐
eters	of	mechanistic	models	as	a	promising	research	avenue.

Given	 the	 challenges	 of	 error	 propagation	 and	 uncertainties	
in	data,	we	 foresee	 the	need	 for	defining	standards	 in	 the	coming	
years.	 Establishing	 a	 common	 set	 of	 essential	 variables	 (Kissling	
et	al.,	2018),	 standards	 for	biodiversity	assessments	 (Araújo	et	al.,	
2019)	and	a	common	glossary	of	terms	to	facilitate	data	exchange	
(the	Darwin	Core	standard,	https	://dwc.tdwg.org/)	are	steps	in	the	
right	direction.	They	may,	however,	hardly	be	achievable	across	the	
wide	range	of	applications	and	data	in	macroecological	research,	as	
data	are	usually	collected	with	very	specific	objectives	rather	than	
the	 intention	to	publish	them	 in	a	data	portal.	One	challenge	 is	 to	
find	appropriate	algorithms	and	transfer	functions	that	account	for	
the	 specific	 limitations	 of	 data	 such	 as	 inaccuracies	 in	 geographic	

coordinates	(e.g.	Figure	3).	However,	even	more	important	is	a	thor‐
ough	documentation	of	data:	metadata	must	not	only	be	carefully	
established	by	the	data	owners,	but	also	be	transferred	to	data	por‐
tals,	and	not	be	ignored	by	the	user	of	the	portals.

Planning	 and	 setting	 up	 new	macroecological	 research	 should	
not	 only	 consider	 the	 problems	 that	 arise	 from	 the	 integration	 of	
heterogeneous	data	sources,	the	means	of	analysing	them,	and	the	
underlying	scientific	hypotheses.	 Instead,	a	carefully	planned	mac‐
roecological	study	should	also	account	for	the	computational	chal‐
lenges	that	it	is	facing.	While	data	management	plans	have	become	
a	requirement	from	several	funding	agencies	for	submitted	research	
proposals,	 planning	 computational	 demands	 are	 usually	 not	 re‐
quired,	even	though	the	lack	of	considering	computational	demands	
could	lead	to	failure	of	the	proposed	research.

6.2 | Opportunities

Big	Data	have	already	proven	 their	value	 for	macroecology	by	 fa‐
cilitating	increasingly	complex	and	integrative	analyses.	We	suggest	
that	 macroecologists	 use	 their	 creativity	 to	 explore	 new	 ways	 to	
collect	and	integrate	data.	A	look	outside	macroecology,	such	as	at	
climatology,	image	analysis	or	macroevolution,	may	help	in	tackling	
some	of	the	challenges.	Modern	algorithms	that	extract	data	from	
huge	 online	 databases,	 such	 as	 social	 media	 or	 commercial	 inter‐
net	platforms,	 are	 already	 integrating	data	of	 various	 sources	 in	 a	
human‐readable	way	without	much	input	from	humans	(Kambatla	et	
al.,	2014).	However,	algorithms	generally	subsumed	under	the	term	
“deep	 learning”	 (deep	 in	the	sense	that	these	algorithms	use	many	
more	hidden	layers	in	their	networks	than	the	traditional	neural	net‐
works	with	one	to	three	hidden	layers)	have	hardly	been	used	by	the	
macroecological	community	up	to	now,	despite	their	large	potential	
to	solve	some	of	the	important	data	gathering	and	integration	chal‐
lenges	 that	macroecologists	will	 face	 in	 the	 years	 to	 come.	A	dis‐
cussion	group	at	the	meeting	with	data	scientists	from	the	Big	Data	
community	 has	 shown	 that	 macroecologists	 are	 well	 prepared	 to	
cope	with	the	methodological	challenges	of	such	algorithms:	many	
machine	learning	techniques,	such	as	dimension	reduction,	cluster‐
ing	or	classification	to	name	just	a	few,	are	already	routinely	applied	
in	macroecology.

We	 are	 convinced	 that	 our	 community	 should	 (and	will)	 use	
the	newest	data‐driven	methods,	computational	 tools	and	tech‐
nologies	available	to	tackle	scientific	questions.	Deep	learning,	a	
subfield	of	machine	 learning,	has	 lately	emerged	as	a	very	pow‐
erful	 tool	 for	data	analysis	 that	works	best	when	 large	amounts	
of	data,	such	as	image,	text	or	audio,	are	available.	Deep	learning	
techniques	such	as	convolutional	neural	networks	(CNNs)	or	long	
short‐term	memory	networks	(LSTMs)	can	be	extremely	accurate	
in	classification	or	prediction	tasks.	However,	 they	are	prone	to	
overfitting	and	are	more	difficult	to	interpret	than	standard	sta‐
tistical	and	machine	learning	techniques	such	as	linear	regression	
or	 decision	 trees,	 making	 them	more	 difficult	 to	 use	 in	 critical	
applications	 when	 transparency	 is	 required	 (Lecun,	 Bengio,	 &	
Hinton,	2015).

https://dwc.tdwg.org/
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Finally,	 the	discussion	group	also	showed	that	macroecologists	
should	not	be	shy	to	contact	data	scientists	to	jointly	formulate	the	
needs	of	 the	 community,	 and	either	 identify	 available	methods	or	
develop	new	techniques	that	can	solve	the	problem	at	hand.	There	
is	a	strong	potential	for	interdisciplinary	collaboration	between	mac‐
roecologists	and	data	scientists,	and	data	scientists	can	help	when	
standard	 techniques	 cannot	 be	 applied	 off‐the‐shelf	 to	 specific	
problems	encountered	in	macroecology.
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