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Macroeconomic impact of stranded fossil-fuel assets 

 

J.-F. Mercure1,2,3*, H. Pollitt3,2, J. E. Viñuales2, N. R. Edwards2,4, P. B. Holden4, U. Chewpreecha3, P.  

Salas2, I. Sognnaes2, A. Lam2 & F. Knobloch1 

 

Several major economies rely heavily on fossil-fuel production and exports, yet current low-carbon 

technology diffusion, energy efficiency and climate policy may be substantially reducing global 

demand for fossil fuels.1-4 This trend is inconsistent with observed investment in new fossil-fuel 

ventures1,2, which could become stranded as a result. Here we use an integrated global economy-

environment simulation model to study the macroeconomic impact of stranded fossil-fuel assets 

(SFFA). Our analysis suggests that part of the SFFA would occur as a result of an already ongoing 

technological trajectory, irrespective of whether new climate policies are adopted or not; the loss 

would be amplified if new climate policies to reach the 2°C target are adopted and/or if low-cost 

producers (some OPEC countries) maintain their level of production (‘sell-out’) despite declining 

demand; the magnitude of the loss from SFFA may amount to a discounted global wealth loss of $1-

4tn; and there are clear distributional impacts, with winners (e.g. net importers such as China or the 

EU) and losers (e.g. Russia, the US or Canada, which could see their fossil-fuel industries nearly shut 

down), although the two effects would largely offset each other at the level of aggregate global GDP.   

The Paris Agreement aims to limit the increase in global average temperature to ‘well below 2°C 

above pre-industrial levels’5. This requires that a fraction of existing reserves of fossil fuels and 

production capacity remain unused, hence becoming stranded fossil-fuel assets (SFFA)6-10. Where 

investors assume that these reserves will be commercialised, the stocks of listed fossil-fuel companies 
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may be over-valued. This gives rise to a ‘carbon bubble’, which has been emphasised or downplayed 

by reference to the credibility of climate policy8,9,11-14. Here, we show that climate policy is not the only 

driver of stranding. Stranding results from an ongoing technological transition, which remains robust 

even if major fossil-fuel producers (e.g. US) refrain from adopting climate mitigation policies. Such 

refusal would only aggravate the macroeconomic impact on producers because of their increased 

exposure to stranding as global demand decreases, potentially amplified by a likely asset sell-out by 

lower-cost fossil-fuel producers and new climate policies. For importing countries, a scenario that 

leads to stranding has moderate positive effects on GDP and employment levels. Our conclusions 

support the existence of a carbon bubble which, if not deflated early, could lead to a discounted global 

wealth loss of between $1-4tn, a loss comparable to the 2007 financial crisis. Further economic 

damage from a potential bubble burst could be avoided by decarbonising early. 

The existence of a carbon bubble has been questioned on grounds of credibility or timing of climate 

policies11,12. That would explain investors’ relative confidence in fossil-fuel stocks11,12 and the projected 

increase in fossil-fuel prices until 20402. Yet, there is evidence that climate mitigation policies may 

intensify in the future. A report covering 99 countries concludes that over 75% of global emissions are 

subject to an economy-wide emissions-reduction or climate policy scheme15. Moreover, the ratification 

of the Paris Agreement and its reaffirmation at COP-22 have added momentum to climate action 

despite the position of the new US administration16. Furthermore, low fossil-fuel prices may reflect the 

intention of producer countries to ‘sell-out’ their assets, i.e. to maintain or increase their level of 

production despite declining demand for fossil-fuel assets.17 But that is not all. 

Irrespective of whether new climate policies are adopted or not, global demand growth for fossil fuels 

is already slowing down in the current technological transition1,2. The question then is whether under 

the current pace of low-carbon technology diffusion, fossil-fuel assets are bound to become stranded 

due to the trajectories in renewable energy deployment, transport fuel efficiency and transport 

electrification. Indeed, the technological transition currently underway has major implications for the 

value of fossil fuels, due to investment and policy decisions made in the past. Faced with SFFA of 



potentially massive proportions, the financial sector’s response to the low-carbon transition will largely 

determine whether the carbon bubble burst will prompt a 2008-like crisis11,12,14,18. 

We use a simulation-based integrated energy-economy-carbon-cycle-climate model, E3ME-FTT-

GENIE (see Methods and see Suppl. Table 1) to calculate the macroeconomic implications of future 

SFFA. Integrated assessment models (IAMs) generally rely on general equilibrium methods and 

systems optimisation25-27. Such models struggle to represent the effects of imperfect information and 

foresight for real-world agents and investors. By contrast, a dynamic simulation-based model relying 

on empirical data on socio-economic and technology diffusion trajectories can better serve this 

purpose (see Suppl. Note 1). In this method, investments in new technology and the interactional 

effects of changing social preferences generate 'momentum' for technology diffusion that can be 

quantitatively estimated for specific policy sets. Our model, E3ME-FTT-GENIE, is currently the only 

such simulation-based IAM that couples the macroeconomy, energy and the environment covering the 

entire global energy and transport systems with detailed sectoral and geographical resolution19,28,29.  

We study and compare three main scenarios (see Table 1 and Methods for scenario details): fuel use 

from the International Energy Agency (IEA) ‘new policies scenario’, which we call ‘IEA expectations’ 

(IEA) to reflect the influence of the IEA’s projections on the formation of investor and policy-maker 

expectations as to future demand (see Fig 1a,b for electricity generation and transport); our own 

E3ME-FTT ‘Technology Diffusion Trajectory’ (TDT) projection with energy demand derived from 

our technology diffusion modelling in the power21, road transport23, buildings and other sectors under 

the ongoing technological trajectory (Fig 1c,d); and a projection, which we call ‘2°C’ scenario, under a 

chosen set of policies that achieve 75% probability of remaining below 2°C (Fig 1e,f, see Suppl. Fig. 1 

for climate modelling), while keeping the use of bioenergy below 95 EJ/y and thereby limiting 

excessive land-use change30. Only the TDT and 2°C scenarios rely on FTT technology diffusion 

modelling. 

Unlike the ‘IEA expectations’ scenario, our ‘Technology Diffusion Trajectory’ scenario captures 

technology diffusion phenomena by relying on historical data and projecting it into the future. 



Significantly, historical data implicitly includes the effects of past policies and investment decisions. On 

that basis, the ‘Technology Diffusion Trajectory’ scenario reflects higher energy efficiency and leads to 

lower demand. Liquid fossil-fuel use in transport peaks in both our ‘Technology Diffusion Trajectory’ 

and the ‘2°C’ scenarios before 2050 (Fig 1, Fig. 2a, for sectoral fuel use and emissions, see Suppl. 

Fig. 2). Solar energy partially displaces the use of coal and natural gas for power generation. Based 

on recent diffusion data (see Methods and Suppl. Table 1), our model suggests that a low-carbon 

transition is already underway in both sectors. Our sensitivity analysis (Suppl. Note 2 and Suppl. Table 

3) confirms that these results are robust and driven by historical data rather than by exogenous 

modelling assumptions. 

Significantly, the lower demand for fossil fuels leads to substantial SFFA, whether 2°C policies are 

adopted or not (Fig. 2a). For individual countries, the effects vary depending on regional marginal 

costs of fossil-fuel production, with concentration of production in OPEC countries where costs are 

lower (Fig 2b). Regions with higher marginal costs experience a steep decline in production (e.g. 

Russia), or lose almost their entire oil and gas industry (e.g. Canada, US).  

The magnitude of the loss depends on a variety of factors. Our analysis suggests that the behaviour of 

low-cost producers and/or the adoption of 2°C policies can lead to an amplification of the loss (see 

Table 1 and Supp. Table 2). The magnitude of the loss may indeed be amplified if low-cost producers 

decide to increase their production relative to reserves ratio to outplay other asset owners and 

minimise their losses (‘selling out’, a detailed definition is given in the Methods and Suppl. Note 3)  

(Fig 2c,d). Slowing or peaking demand leads to fossil-fuel prices peaking (without sell-out) or 

immediately declining (with sell-out). In the ‘2°C’ scenario, fossil-fuel markets substantially shrink and 

the prices fall abruptly between 2020-2030, a potentially disastrous scenario with substantial wealth 

losses to asset owners (investors, companies) but not to consumer countries. This result highlights the 

important strategic implications of decarbonisation for the EU, China and India (consumers) as 

compared to the US, Canada or Russia (producers).  



At the global level, it is possible to quantify the potential loss in value of fossil-fuel assets (see Suppl. 

Notes 4). If we assume that investment in fossil fuels in the present day continues based on:  

questioning commitments to policy; the return expectations derived from the ‘IEA expectations’ 

projection; and the assets’ rigid lifespan with expected returns until 2035. And then if, contrary to 

investors’ expectations, policies to achieve the 2°C target are adopted, and low-cost producers sell-out 

their assets, then approximately $12tn (in 2016 USD, which amounts to $4tn present value when 

discounted with a 10% corporate rate) of financial value could vanish off their balance sheets globally 

in the form of stranded assets (see Supp. Table 2). This is over 15% of global GDP in 2016 ($75tn). 

This quantification arises from pairing the ‘IEA expectations’ scenario with the ‘2°C’ scenario with ‘sell-

out’. If instead of the ‘IEA expectations’, we pair our own baseline (the ‘Technology Diffusion 

Trajectory’ scenario) with the ‘2°C’ scenario under the sell-out assumption, the total value loss from 

SFFA is approximately $9tn (in 2016 USD) ($3tn with 10% discount rate) (see Supp. Table 2). Our 

quantification is broadly consistent with recent financial exposure estimates calculated at a regional 

and country level for the EU and the US14 (detailed explanation in Suppl. Note 4). Note that a 10% 

discount rate represents an investment horizon of about 10-15 years, and that fossil-fuel ventures 

have lifetimes ranging between 2 (shale oil) and 50 (pipelines) years (oil wells: 15-30 years; oil 

tankers: 20-30 years; coal mines: > 50 years). For reference, the subprime mortgage market value 

loss that took place following the 2007-8 financial crisis was around $0.25tn, leading to global stock 

market capitalisation decline of about $25tn18. 

Regarding the impact of SFFA on GDP and employment, Figure 2e,f shows the change in GDP and 

employment between our ‘Technology Diffusion Trajectory’ without sell-out and ‘2°C’ scenarios, with 

sell-out, for several major economies/groups. The low-carbon transition generates a modest GDP and 

employment increase in regions with limited exposure to fossil-fuel production (e.g. Germany and 

most EU countries, and Japan). This is due to a reduction of the trade imbalance arising from fossil-

fuel imports, and higher employment arising from new investment in low-carbon technologies. The 

improvement occurs despite the general increase of energy prices and hence costs for energy-



intensive industries28,29. Meanwhile, fossil-fuel exporters experience a steep decline in their output and 

employment, due to the near shutdown of their fossil-fuel industry. These patterns emerge alongside a 

<1% overall impact of the transition on global GDP (<1% GDP change), indicating that impacts are 

primarily distributional, with clear winners (e.g. the EU and China) and losers (e.g. US and Canada, 

but also Russia and OPEC countries). 

In both the ‘Technology Diffusion Trajectory’ and ‘2°C’ scenarios, a substantial fraction of the global 

fossil-fuel industry eventually becomes stranded. In reality, these impacts should be felt in two 

independent ways (see Suppl. Note 4): through wealth losses and value of fossil-fuel companies and 

their shareholders, and through macroeconomic change (GDP and employment losses in the fossil-

fuel industry, structural change) leaving winners and losers. Figure 3a compares cumulative GDP 

changes with the cumulative 2016 value of SFFA between the present and 2035. Due to different 

country-reliance on the fossil-fuel industry, impacts have different magnitudes and directions (see 

Suppl. Note 5).  

Reducing fossil-fuel demand generates an overall positive effect for the EU and China and a negative 

one for Canada and the US. Figure 3b,c shows, however, that since impacts on the Canadian and US 

economies primarily depend on decisions taken in the rest of the World, the US is worse off if it 

continues to promote fossil fuel production and consumption than if it moves away from them. This is 

due to the way global fossil-fuel prices are formed. If the rest of the world reduces fossil-fuel 

consumption and there is a sell-out, then lower fuel prices will make much US production non-viable, 

regardless of its own policy, meaning that its assets become stranded. If the US promotes a fossil fuel-

intensive economy, then the situation becomes worse, as it ends up importing this fuel from low-cost 

producers in the Middle East, while it forgoes the benefits of investment in low-carbon technology (for 

other countries, see Suppl. Fig. 3, Suppl. Table 8 and Suppl. Note 5). 

Importantly, the macroeconomic impacts of SFFA on producer countries are primarily determined by 

climate mitigation decisions taken by the sum of consuming countries (e.g. China or the EU), and thus 

a single country, however large, cannot alter this trajectory on its own. Also, critically, this finding 



contradicts the conventional assumption that global climate action is accurately described by the 

prisoner’s dilemma game, which would allow a country to free-ride. But an exposed country can 

mitigate the impact of stranding by divesting from fossil fuels, as an insurance policy against what the 

rest of the world does. What remains to be known, however, is the degree to which SFFAs impose a 

risk to regional and global financial stability. 

  



 

 

 
Figure 1 | Projections of future energy use for power generation and transport. a-b) Global IEA 
fuel demand in the ‘IEA expectations’ scenario. c-f) Technology composition in electricity generation 
(c,e) and road transport (d,f) in our ‘Technology Diffusion Trajectory’ (c-d) and ‘2°C’ scenarios (e-f).  
IEA fuel demand is taken from [2]. Dashed lines refer to our ‘Technology Diffusion Trajectory’ scenario 
for comparison. 
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Figure 2 | Change in fossil-fuel asset value and production across countries, and in 
macroeconomic indicators. a) Global production of fossil fuels, for the ‘IEA expectations’ (IEA) 
scenario, our ‘Technology Diffusion Trajectory’ scenario (TDT), and our ‘2°C’ policies scenario. b) 
Change in total fossil-fuel production, between the ‘2°C policies’ and our ‘Technology Diffusion 
Trajectory’ scenarios. c-d) Marginal costs of fossil fuels in the same three scenarios, without sell-out 
(c) and with sell-out (d). e-f) Changes in GDP and employment between the ‘2°C policies’ sell-out 
scenario and our ‘Technology Diffusion Trajectory’ scenario without sell-out (negative means a loss). 
The width of traces represents maximum uncertainty generated by varying technology parameters 
(see Suppl. Table 3). OPEC excludes Saudi Arabia for higher detail. Macro impacts for Canada 
feature higher levels of economic uncertainty (not shown), as such high impacts could be mitigated in 
reality by various policies such as deficit spending by the government; however, we exclude studying 
deficit spending here for simplicity of interpretation (we assume balanced budgets). 
 

 



 

 

Figure 3 | SFFA losses and impacts across countries. a) Discounted cumulated fossil-fuel value 
loss to 2035 for oil, gas and coal, and GDP changes up to 2035, between the 2°C sell-out scenario 
and the ‘IEA expectations’ scenario (see Suppl. Table 2 and Suppl. Fig. 4 for other scenarios and 
aggregation methods). Negative bars indicate losses. Error bars represent maximum uncertainty on 
total SFFA generated by varying technology parameters (see Suppl Table 3, Suppl. Table 4 provides 
a breakdown for individual fuels). b) Percent change in GDP between the 2°C sell-out scenario and 
our ‘Technology Diffusion Trajectory’ non-sell-out scenario (solid lines), and between the 2°C sell-out 
scenario with a US’ withdrawal from climate policy and the same (dashed lines). c) Same for labour 
force employment change.  

 

 

  



Table 1 | Scenarios and models 

Sect
or 

 
Power 

generation 
Road 

Transport 
Household 

heating 
Other 

transport 
Industry Rest 

Model FTT FTT FTT E3ME E3ME E3ME 

S
c

e
n

a
ri

o
 

IEA expectations Energy sector not modelled, replaced by fuel use data taken from IEA  

Technology 
Diffusion 

Trajectory 

No  
sell-out 

CO2P, FiT, 
Reg 

Implicit in 
data 

Implicit in 
data 

Implicit in 
data 

Implicit in 
data 

Implicit in 
data 

Sell-out Same, with exogenous assumptions over fossil fuel production (prod./reserve ratio) 

2°C 

No  
sell-out 

CO2P, 
Sub, FiT, 

Reg,  
K-S 

FT, RT, 
BioM, 

Reg, K-S 

FT, Sub CO2P, Reg CO2P, Reg CO2P, Reg 

Sell-out Same, with exogenous assumptions over fossil fuel production (prod./reserve ratio) 

Abbreviations: CO2P = Carbon Price, FiT = Feed-in Tariff, Sub = Capital cost subsidies, RT = registration carbon tax, 
Reg = Regulations, K-S = Kick-start program 

Notes: Policy details available in the Methods. For carbon prices, sell-out assumptions and a sell-out 
sensitivity analysis, see Suppl. Figs. 5-6. For key model characteristics, see Methods, Suppl. Table 1 
and Suppl. Note 1. For sensitivity analyses on key technology parameters, see Suppl. Note 2, Suppl. 
Tables 3-4 and Suppl. Fig. 8. Suppl. Table 5 and Suppl. Fig. 7-11 compare our scenarios to others in 
the literature. Suppl. Table 6 compares GENIE outputs with other models. For fossil fuel prices see 
Suppl Table 7. For sectoral impacts, see Suppl. Note 5 and Suppl. Table 8. The ‘IEA expectations’ 
scenario corresponds to the World Energy Outlook’s ‘New Policies Scenario’ [2]. Detailed policies can 
be obtained from the Suppl. Data. 
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Methods 

 

Detailed scenario definitions 

‘IEA Expectations’: In this scenario, we replace our energy model (FTT and E3ME estimations) by 

exogenous fuel use data from the IEA’s ‘new policies’ scenario31. We derive macroeconomic variables 

from the evolution of a fixed energy system (FTT is turned off). We use our fossil-fuel resource 

depletion model in order to estimate changes in the marginal cost of production of fossil fuels. This 

enables us to calculate fossil-fuel asset values. Given that this scenario does not make use of our 

technology projections with FTT, we use this scenario with the interpretation that it represents the 

expectations of investors, who do not fully realise the state of change of technology, in particular 

electric vehicles and renewables that, as we argue in the text, is taking place.  

‘Technology Diffusion Trajectory’: In this scenario, we use the three FTT diffusion models and our own 

E3ME energy sector model (see Suppl. Table 1) to estimate changes in fuel use due to the diffusion of 

new technologies. This is the baseline of the E3ME-FTT-GENIE model, which differs substantially 

from the IEA’s. We interpret this scenario as that which, we argue, is likely to be realised instead of the 

‘IEA expectations’, according to the current technological trajectory observed in historical data that 

parameterise our models, if no climate policies are adopted. Policies are not specified explicitly, but 

instead, are implicitly taken into consideration through the data. 

‘2°C’: In this scenario, we choose a set of policies that achieves 75% chance of not exceeding 2°C of 

peak warming, according to the GENIE model, itself validated with respect to CMIP5 models (see 

Suppl. Fig 1). We estimate the diffusion of new low-carbon technologies and evolution of the energy 

sector under these policies using E3ME-FTT. Policies (e.g. subsidies, taxes, regulations) are specified 

explicitly. 

‘Sell-out’ versions of all scenarios: In both the ‘Technology Diffusion Trajectory’ and the ‘2°C’ 

scenarios, the issue of the sell-out of fossil fuel resources by low-cost producers is a real but not 

inevitable possibility. We therefore present both ‘sell-out’ and ‘non-sell-out’ versions for each scenario. 



The ‘sell-out’ is defined by increasing production to reserve ratios of producer countries, which 

concentrates production to OPEC and other low-cost production areas. Meanwhile, in the ‘non-sell-

out’ scenarios, these ratios are constant, as they have been until recently22. These assumptions are 

exogenous (see Suppl. Note 3). SFFAs are given for all combinations in Suppl. Table 2. 

Policy assumptions for achieving a 2°C target 

The set of policies that we use to reach the Paris targets constitutes one of many possible sets that 

could theoretically reach the targets. They achieve emissions reductions consistent with a 75% 

probability of reaching the 2°C target, and include the following: 

Multiple sectors: CO2 pricing is used to incentivise technological change across sectors in E3ME-FTT. 

One price/tax is defined exogenously, in nominal USD, at every year for every country, shown in 

Suppl. Figure 5A. This policy applies to power generation and all heavy industry sectors (oil & gas, 

metals, cement, paper, etc). It is not applied to households nor to road transport. 

Electricity generation: Combinations of policies are used to efficiently decarbonise electricity 

generation, following earlier work21. These involve CO2 pricing (above) to incentivise technological 

change away from fossil-fuel generators, subsidies to some renewables (biomass, geothermal, CCS) 

and nuclear to level the playing field, feed-in tariffs for wind and solar-based technologies, and 

regulations to phase out the use of coal-based generators (none newly built). In some countries 

(foremost USA, China, India), a kick-start program for CCS and bioenergy with CCS is implemented to 

accelerate its uptake. All new policies are introduced in or after 2020.  

Road transport: Combinations of policies are used to incentivise the adoption of vehicles with lower 

emissions, following earlier work23. This includes (1) fuel efficiency regulations for new liquid fuel 

vehicles; (2) a phase-out of older models with lower efficiency; (3) kick-start procurement programmes 

for electric vehicles where they are not available (by public authorities or private institutions, e.g. 

municipality vehicles and taxis); (4) a tax starting at 50$/(gCO2/km) (2012 values) to incentivise 

vehicle choice; (5) a fuel tax (increasing from 0.10$ per litre of fuel in 2018 to 1.00$, in 2050, 2012 

prices) to curb the total amount of driving; (6) biofuel mandates that increase between current values 



to between 10% and 30% (40% in Brazil) in 2050, different for every country, extrapolating IEA 

projections32. 

Industrial sectors: Fuel efficiency policy and regulations are used, requiring firms to invest in more 

recent, higher efficiency production capital and processes, beyond what is delivered by the carbon 

price. These measures are publicly funded, following the IEA’s 450ppm scenario assumptions32. 

Further regulations are used that ban newly built coal-based processes (e.g. boilers) in all sectors. 

Buildings: For households, we assume a tax on the residential use of fossil fuels (starting at 60$/tCO2 

in 2020, linearly increasing by 6$/tCO2 per year, 2016 prices), and subsidies on modern renewable 

heating technologies (starting at -25% in 2020, gradual phase-out after 2030). Commercial buildings 

increase energy efficiency rates, following the assumptions in the IEA’s 450ppm scenario32.  

The Simulation-based Integrated Assessment model 

E3ME-FTT-GENIE is an integrated assessment simulation model that comprises a model of the global 

economy and energy sector (E3ME), three subcomponents for modelling technological change with 

higher detail than E3ME (the FTT family), a global model of fossil-fuel supply, and an integrated model 

of the carbon cycle and climate system (GENIE). E3ME, FTT and the fossil supply model are hard-

linked in the same computer simulation, while GENIE is run separately, connected to the former group 

by soft-coupling (transferring data). A peer-reviewed description of the model with fully detailed 

equations is available with open access19; key model codes and datasets can be obtained upon 

request to the authors. 

The E3ME model 

E3ME is a highly disaggregated demand-led global macroeconometric model20,33-35 based on Post-

Keynesian foundations29,35,36, which implies a non-equilibrium simulation framework (see Suppl. Table 

1). It assumes that commercial banks lend according to bank reserves, which are created on-demand 

by the central bank36-38. This means that increased demand for technologies and intermediate 

products in the process of decarbonisation is financed (at least in part) by bank loans, and spare 



production capacity in the economy, as well as existing unemployment, lead to possible output boosts 

during major building periods and slumps during debt repayment periods29. In the jargon of the field, 

while Computable General Equilibrium (CGE) models normally ‘crowd-out’ finance (additional 

investment in a given asset class implies a compensating reduction in investment in other asset 

classes), E3ME assumes a full availability of finance through credit creation by banks (additional 

investment in one sector does not require cancelling investment elsewhere, see [29] for a discussion). 

Note that E3ME does not feature an explicit representation of the sectoral detail of the financial sector 

(it is not stock-flow consistent) or model financial contagion; however, it features endogenous money 

through its investment equations, which is necessary and sufficient for this paper. 

E3ME has 43 sectors of production, 22 users of fuels, 12 fuels, and 59 regions. It uses a chosen set of 

28 econometric relationships (incl. employment, trade, prices, investment, household consumption, 

energy demand) regressed over a corresponding high dimension dataset covering the past 45 years, 

and extrapolates these econometric relationships self-consistently up to 2050. E3ME includes 

endogenous technological change in the form of technology progress indicators in each industrial 

sector and fuel user, providing the source of endogenous growth. It is not an equilibrium model; it is 

path dependent and demand-led in the Keynesian sense. E3ME has been used in numerous policy 

analyses and impact assessments, for the European Commission and elsewhere internationally (for 

example, see [39-41]). Recent discussions of the implications on results of the choice of an economic 

model for assessing the impacts of energy and climate policies are given in [29,35]. Previously, such 

debates have often concerned simpler types of IAMs (e.g. DICE)42-44, while newer debates are 

emerging that address issues of framing and philosophy of science45,46. Recent empirical studies 

appear to find no evidence for crowding-out in the finance of innovation, from the perspective of 

access to finance47,48. E3ME has been validated against historical data by reproducing history 

between 1972 and 2006, based on the normal regression parameters49. 

 

The FTT model 



Technology diffusion is not well described by time series econometrics, as it involves non-linear 

diffusion dynamics (S-shaped diffusion50). To improve our resolution of technological change in the 

fossil-fuel intensive sectors of electricity and transport, we use the Future Technology Transformations 

(FTT) family of sectoral evolutionary bottom-up models of technological change dynamically integrated 

to E3ME19,21,23,51. FTT projects existing low-carbon technology diffusion trajectories based on 

observationally determined preferences of heterogenous consumers and investors using a diffusion 

algorithm.  

FTT models market share exchanges between competing technologies in the power, road transport 

and household heating sectors based on technology ‘fitness’ to consumer/investor preferences. 

Agents have probabilistically distributed preferences calibrated on cross-sectional market 

datasets23,51,52. Choices are evaluated using chains of binary logits, weighted by their market share. 

The diffusion patterns of technologies are functions of their own market share and those of others, 

which reproduces standard observed S-shaped diffusion profiles (a so-called evolutionary replicator 

dynamics equation, or Lotka-Volterra competition equation53-55). FTT does not use optimisation 

algorithms and it is a time-step path-dependent simulation model (see Suppl. Table 1). 

It is crucial to note that FTT projects the evolution of technology in the future by extending the current 

technological trajectory with a diffusion algorithm calibrated on recent history. The key property of 

FTT, strong path-dependence (or strong auto-correlation in time), typically found in technology 

transitions,50,56,57 is given to the model by two features. (1) Technologies with larger market shares 

have a proportionally greater propensity to increase their market share, until they reach market 

domination. This is a key stylised feature of the diffusion of innovations50,57,58. (2) Continuity of the 

technological trajectory at the transition year from historical data to the projection (2013 ± 3-5 years) is 

obtained by empirically determining cost factors (denoted γ , see below and Suppl. Fig. 8). Since the 

diffusion of innovations typically evolves continuously, there should not be a change of trajectory at the 

transition from history to projection. By ensuring that this is so, we obtain a baseline trajectory in which 

some new low-carbon technologies (e.g. Hybrid and Electric Vehicles, solar PV) already diffuse to 



non-negligible or substantial market shares, and some traditional vehicle types decline (e.g. small 

motorcycles in China). This baseline (the ‘Technology Diffusion Trajectory’ scenario) includes current 

policies implicitly in the data, i.e. they are not specified explicitly. The introduction of additional policy, 

in later years, results in further gradual changes to the technological trajectory, typically after 2025, 

differences that become further from the baseline along the simulation time span. Sensitivity analysis 

(Suppl. Table 3) shows that these trajectories are robust under substantial changes of all relevant 

technological parameters. 

The γ  factors are determined in the following way. Historical databases were carefully constructed by 

the authors by combining various data sources (transport and household heating, see Suppl. Table 1) 

or taken from IEA statistics (power generation). The γ  values are added to the respective levelised 

cost that is compared among options by hypothetical (heterogenous) agents in the model.23,52 One 

and only one set of γ  values ensures that the first 3-5 years of projected diffusion features the same 

trajectory (time-derivative of market shares) as the last 3-5 years of historical data from the starting 

date of the various simulations (2012 for transport, 2013 for power, 2016 for heat, see Suppl. Fig. 8 for 

an example). This is the sole purpose of γ . The interpretation of γ  is a sum of all pecuniary or non-

pecuniary cost factors not explicitly defined in the model, which includes agent preferences and 

existing incentives from current policy frameworks, as well as implicit valuations of non-pecuniary 

factors such as (for vehicles) engine power, comfort, status, etc. While the heterogeneity of agents is 

explicitly specified in FTT cost data and handled by the model (through empirical cost distributions, 

see for example [52]), γ  are constant scalar values (i.e. not distributed or time-dependent). As is the 

case for any parameter determined with historical data, the further we model in the future, the less 

reliable the γ  are but, just as with regression parameters, they do represent our best current 

knowledge as inferred from history. 

 

 



The fossil-fuel supply model 

The supply of oil, coal and gas, in primary form, is modelled using a dynamical resource depletion 

algorithm22. It is equivalent in function and theory to that recently used by McGlade & Ekins6. Cost 

distributions of non-renewable resources are used, based on an extensive survey of global fossil 

reserves and resources22. The algorithm is then used to evaluate how resources are depleted, and 

how their marginal cost changes as the demand changes (i.e. which is the most costly extraction 

venture, given extraction rates for all other extraction sites in production, supplying demand). As 

reserves are consumed and/or demand increases, fossil resources previously considered 

uneconomic, come online, requesting price increases. Meanwhile, when demand slumps, the most 

costly extraction ventures are first to shut down production (e.g. deep offshore, oil sands). The data 

are disaggregated geographically following the E3ME regional classification. 

The model assumes that the marginal cost sets the price, thus excluding effects on the price by events 

such as armed conflicts, processing bottlenecks (e.g. refineries coming online and offline) and time 

delays associated to new projects coming online. While fossil-fuel price changes may not always 

immediately follow changes in the marginal cost in reality, differences are cyclical (due to the ability of 

firms to cross-subsidise and produce at a loss for a limited time) and the long-term trend is robust. 

Taxes and duties on fuels, which differ in every region of the world, are not included in Fig. 2 of the 

main paper, nor in the calculation of SFFA. E3ME includes end-user fuel prices from the IEA 

database, including taxes. The source for energy price data is the IEA. In the scenarios we do not 

explicitly include the phase-out of fossil fuel subsidies but the carbon price, when applied to fuels, 

effectively tursn the subsidies into taxes. It is noted that some of the largest fuel subsidies are in 

countries that are energy exporters and that reducing or removing the subsidies would help support 

public budgets (although increase pressure on households). End-user prices are updated during the 

simulation to reflect changes in fossil-fuel marginal costs from the fossil fuel supply model; however 

end-user prices are not used in the calculation of SFFA. Behavioural assumptions over production 

decisions have important impacts in this sub-model, described further below.  



The GENIE model 

GENIE is a global climate-carbon cycle model, applied in the configuration of [24], comprising the 

GOLDSTEIN 3-D ocean coupled to a 2-D energy-moisture balance atmosphere, with models of sea 

ice, the ENTSML terrestrial carbon storage and land-use change (LUC), BIOGEM ocean 

biogeochemistry, weathering and SEDGEM sediment modules59-62. Resolution is 10°×5° on average 

with 16 depth levels in the ocean. To provide probabilistic projections, we perform ensembles of 

simulations using an 86-member set that varies 28 model parameters and is constrained to give 

plausible post-industrial climate and CO2 concentrations63. Simulations are continued from 850 to 

2005 AD historical transients64. Post-2005 CO2 emissions are from E3ME, scaled by 9.82/8.62, to 

match estimated total emissions65, accounting for sources not represented in E3ME, and extrapolated 

to zero at 2079. For the 2C scenario, non-CO2 trace gas radiative forcing and LUC maps are taken 

from RCP2.666. For the purposes of validation, the GENIE ensemble has been forced with the RCP 

scenarios and these simulations are compared with the CMIP5 and AR5 EMIC ensembles in Suppl. 

Table 6. 

In the 2°C scenario, median peak warming relative to 2005 is 1.00°C, with 10% and 90% percentiles 

of 0.74°C and 1.45°C. Corresponding values for peak CO2 concentration are 457, 437 and 479 ppm. 

Total warming from 1850–1900 to 2003–2012 is estimated as 0.78±0.06°C67, giving median peak 

warming relative to preindustrial levels of 1.78°C. Ensemble distributions of warming and CO2 are 

plotted in Suppl. Figure 1. Oscillations are associated with reorganizations of ocean circulation or 

snow-albedo feedbacks rendered visible by the lack of chaotic variability in the simplified atmosphere. 

It could be questioned why such a detailed climate model is needed in this analysis. One key aspect of 

our analysis is the quantification of additional SFFA that arise due to climate policy. For this 

quantification to be meaningful, it is also necessary to quantify the climate and carbon cycle 

uncertainties that are associated with these policies (here a 75% probability of avoiding 2°C warming). 

Rapid decarbonisation pathways lie outside of the RCP framework, so that our physically based 



climate-carbon cycle model is a more appropriate and robust tool than e.g. an emulator under 

extrapolation. 
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